中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1238-1248 DOI: 10.7536/PC210218 Previous Articles   

• Review •

Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure

Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao*()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Contact: Shijun Liao
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)
Richhtml ( 30 ) PDF ( 221 ) Cited
Export

EndNote

Ris

BibTeX

Fuel cell technology and its industrialization have been developed rapidly in China in recent years. However, the high cost of the fuel cell caused mainly by the using of precious Pt catalysts is still one of the most important factors restricting the development of fuel cell commercialization. It is of great significance to develop low Pt catalysts with much higher catalytic efficiency and lower Pt loadings. In recent years, Pt-based catalysts with three-dimensional morphology or/nanostructures have been emerged as a type of ultra-important low Pt catalysts, due to their special morphology/structures, their catalytic activity are usually much higher than that of the widely used Pt/C catalysts. In this paper, the research progress of Pt-based catalysts with special three-dimensional morphology(such as nanoframe structure, flower-like structure, nanocage structure, sea urchin structure, etc.) and their applications in fuel cells are reviewed. Meanwhile, some weaknesses and challenges of these catalysts are concluded. Furthermore, the future development and application of these catalysts are prospected.

Contents

1 Introduction

2 Pt-based electrocatalysts with three-dimensional nanoframe structures

3 Pt-based electrocatalysts with three-dimensional nanoflower morphologies

4 Pt-based electrocatalysts with other three-dimensional structures

5 Conclusions and outlooks

Fig. 1 Two usually used methods for the synthesis of metal nanoframes[21]. Copyright 2016, Oxford Univ Press
Fig.2 Schematic diagram of synthesis of Pt cube nanoframe[26]. Copyright 2016, Wiley
Fig. 3 Structural schematic diagram of PtNi3nanometer polyhedron evolving into Pt3Ni NFs/C-With Pt-Skin and corresponding TEM images[16]. Copyright 2014, AAAS
Fig. 4 (a,b) Comparison of specific activity and mass activity of Pt/C, solid PtNi/C, Pt3Ni/C nanoframe, Pt3Ni/C nanoframes /IL at 0.95V (c) Electrochemical stability test of Pt3Ni NFS /C-with Pt-Skin catalyst and (d,e)HRTEM images of Pt3Ni NFS/C- with Pt-Skin catalyst[16]. Copyright 2014, AAAS
Fig. 5 (a) TEM image of the PtCu octagonal nanoframe; (b) An enlarged view of image a; (c) Spherical aberration TEM image; (d) Images of the HAADF-STEM and EDS mapping[33]. Copyright 2016, Wiley
Fig. 6 TEM image of PtCu rhombus dodecahedron nanoframe[34]. Copyright 2015, RSC
Fig. 7 Synthesis schematic diagram of PtCu@PtCuNi core-shell nanoframe[35]. Copyright 2017, ACS
Fig. 8 Electrochemical performance diagram of PtCu@PtCuNi catalyst[35]. Copyright 2017, ACS
Fig. 9 Synthesis diagram of O-PtCu NFs/C (a) and corresponding TEM images of different stages (b~d)[39]. Copyright 2020, ACS
Fig. 10 (a)CV curves, (b) ORR polarization curves, (c,d) SA and MA comparison of Pt, D-PtCu NFs/C and O-PtCu NFs/C before and after ADT test[39]. Copyright 2020, ACS
Fig. 11 Schematic illustration of the formation mechanism of Pt66Ni34 NFs[50]. Copyright 2018, Elsevier
Fig. 12 Low- (a) medium- (b) high- (c) magnification and high-resolution (d,e) TEM images of Pt66Ni34 NFs (f) The corresponding SAED pattern[50]. Copyright 2018, Elsevier
Fig. 13 Simultaneously acquired (a) HAADF and (b) BF images of Pd-Pt core-shell nanoparticles. (c) Pd and (d) Pt signal of EDX mapping. (e) Atomically resolved HAADF-STEM image of Pd-Pt interface[68]. Copyright 2016, ACS
Fig. 14 Synthesis schematic diagram of G-PtNi NS[78]. Copyright 2018, RSC
Table 1 ORR activity and ECSA of Pt-based catalysts with different morphologies
[1]
Li M F, Zhao Z P, Cheng T, Huang Y, Duan X F. Science, 2016, 354:1414.

doi: 10.1126/science.aaf9050
[2]
Peng X Y, Lu D T, Qin Y N, Li M M, Guo Y J, Guo S J. ACS Appl. Mater. Interfaces, 2020, 12(27):30336.

doi: 10.1021/acsami.0c05868
[3]
Yang Q, Shi L J, Yu B B, Xu J, Wei C, Wang Y W, Chen H Y. J. Mater. Chem. A, 2019, 7(32):18846.

doi: 10.1039/C9TA03945G
[4]
Tian X L, Tang H B, Luo J M, Nan H X, Shu T, Du L, Zeng J H, Liao S J, Adzic R R. ACS Catal., 2017, 7(6):3810.

doi: 10.1021/acscatal.7b00366
[5]
Huang X Q, Li M F, Duan X F, Mueller T, Huang Y. Science, 2015, 348:1230.

doi: 10.1126/science.aaa8765
[6]
Xia B Y, Wu H B, Li N, Yan Y, Lou X W D, Wang X. Angew. Chem. Int. Ed., 2015, 54(12):3797.

doi: 10.1002/anie.201411544
[7]
Lu J J, Luo L, Yin S B, Hasan S W, Tsiakaras P. ACS Sustainable Chem. Eng., 2019, 7(19):16209.

doi: 10.1021/acssuschemeng.9b03176
[8]
Gamler J T L, Leonardi A, Sang X H, Koczkur K M, Unocic R R, Engel M, Skrabalak S E. Nanoscale Adv., 2020, 2(3):1105.

doi: 10.1039/D0NA00061B
[9]
Bu L Z, Zhang N, Ma J Y, Su D, Huang X Q. Science, 2016, 354:1410.

doi: 10.1126/science.aah6133
[10]
Sun Y J, Liang Y X, Luo M C, Lv F, Qin Y N, Guo S J. Small, 2018, 14:1.
[11]
Zhu J W, Huang Y P, Mei W C, Zhao C Y, Zhang C T, Zhang J, Amiinu I S, Mu S C. Angew. Chem. Int. Ed., 2019, 58(12):3859.

doi: 10.1002/anie.v58.12
[12]
Alinezhad A, Benedetti T M, Gloag L, Cheong S, Watt J, Chen H S, Gooding J J, Tilley R D. ACS Appl. Nano Mater., 2020, 3(6):5995.

doi: 10.1021/acsanm.0c01159
[13]
Fichtner J, Watzele S, Garlyyev B, Kluge R M, Wang W, Wang D, Bandarenka A S. ACS Catalysis, 2020, 10:3131.

doi: 10.1021/acscatal.9b04974
[14]
Stamenkovic V R, Ben F, Bongjin S M, Wang G F, Ross P N, A. L C, Markovic N M. Science, 2007, 315:493.

pmid: 17218494
[15]
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316(5825):732.

pmid: 17478717
[16]
Chen C, Kan Y J, Yang P D, Stamenkovic V R. Science, 2014, 343:1339.

doi: 10.1126/science.1249061 pmid: 24578531
[17]
Luo M C, Sun Y J, Zhang X, Qin Y N, Li M Q, Li Y J, Guo S J. Adv. Mater., 2018, 30:1.
[18]
Zhu J W, Elnabawy A O, Lyu Z H, Xie M H, Murray E A, Chen Z T, Jin W Q, Mavrikakis M, Xia Y N. Mater. Today, 2020, 35:69.

doi: 10.1016/j.mattod.2019.11.002
[19]
Tian X L, Luo J M, Nan H X, Zou H B, Chen R, Shu T, Li X H, Li Y W, Song H Y, Liao S J, Adzic R R. J. Am. Chem. Soc., 2016, 138(5):1575.

doi: 10.1021/jacs.5b11364
[20]
Ma Z, Li S, Wu L J, Song L, Jiang G P, Liang Z X, Su D, Zhu Y M, Adzic R R, Wang J X, Chen Z W. Nano Energy, 2020, 69:104455.

doi: 10.1016/j.nanoen.2020.104455
[21]
Wang X, Ruditskiy A, Xia Y N. Natl. Sci. Rev., 2016, 3(4):520.

doi: 10.1093/nsr/nww062
[22]
Becknell N, Son Y, Kim D, Li D G, Yu Y, Niu Z Q, Lei T, Sneed B T, More K L, Markovic N M, Stamenkovic V R, Yang P D. J. Am. Chem. Soc., 2017, 139(34):11678.

doi: 10.1021/jacs.7b05584 pmid: 28787139
[23]
Park J, Kwon T, Kim J, Jin H, Kim H Y, Kim B, Joo S H, Lee K. Chem. Soc. Rev., 2018, 47(22):8173.

doi: 10.1039/C8CS00336J
[24]
Kwon H, Kabiraz M K, Park J, Oh A, Baik H, Choi S I, Lee K. Nano Lett., 2018, 18(5):2930.

doi: 10.1021/acs.nanolett.8b00270
[25]
Luo S P, Shen P K. ACS Nano, 2017, 11(12):11946.

doi: 10.1021/acsnano.6b04458
[26]
Park J, Wang H L, Vara M, Xia Y N. ChemSusChem, 2016, 9(19):2855.

doi: 10.1002/cssc.201600984
[27]
Wang Q, Tao H L, Li Z Q, Wang G X. J. Alloys Compd., 2020, 814:152212.

doi: 10.1016/j.jallcom.2019.152212
[28]
Khan I A, Qian Y H, Badshah A, Nadeem M A, Zhao D. ACS Appl. Mater. Interfaces, 2016, 8(27):17268.

doi: 10.1021/acsami.6b04548
[29]
Xiong Y, Yang Y, DiSalvo F J, Abruña H D. ACS Nano, 2020, 14(10):13069.

doi: 10.1021/acsnano.0c04559
[30]
Wang J, Xue Q, Li B, Yang D J, Lv H, Xiao Q F, Ming P W, Wei X Z, Zhang C M. ACS Appl. Mater. Interfaces, 2020, 12(6):7047.

doi: 10.1021/acsami.9b17248
[31]
Shang C S, Guo Y X, Wang E K. J. Mater. Chem. A, 2019, 7(6):2547.

doi: 10.1039/C9TA00191C
[32]
Wang Z, Huang L, Tian Z Q, Shen P K. J. Mater. Chem. A, 2019, 7(31):18619.

doi: 10.1039/C9TA06119C
[33]
Luo S, Tang M, Shen P K, Ye S. Adv Mater, 2017,29.
[34]
Ding J B, Zhu X, Bu L Z, Yao J L, Guo J, Guo S J, Huang X Q. Chem. Commun., 2015, 51(47):9722.

doi: 10.1039/C5CC03190G
[35]
Park J, Kanti Kabiraz M, Kwon H, Park S, Baik H, Choi S I, Lee K. ACS Nano, 2017, 11(11):10844.

doi: 10.1021/acsnano.7b04097
[36]
Kwon T, Jun M, Kim H Y, Oh A, Park J, Baik H, Joo S H, Lee K. Adv. Funct. Mater., 2018, 28(13):1706440.

doi: 10.1002/adfm.v28.13
[37]
Wu Z, Dang D, Tian X. ACS Appl. Mater Interfaces, 2019, 11:9117.

doi: 10.1021/acsami.8b21459
[38]
Liang J S, Zhao Z L, Li N, Wang X M, Li S Z, Liu X, Wang T Y, Lu G, Wang D L, Hwang B J, Huang Y H, Su D, Li Q. Adv. Energy Mater., 2020, 10(29):2000179.

doi: 10.1002/aenm.v10.29
[39]
Kim H Y, Kwon T, Ha Y, Jun M, Baik H, Jeong H Y, Kim H, Lee K, Joo S H. Nano Lett., 2020, 20(10):7413.

doi: 10.1021/acs.nanolett.0c02812
[40]
Chen S P, Li M F, Gao M Y, Jin J B, van Spronsen M A, Salmeron M B, Yang P D. Nano Lett., 2020, 20(3):1974.

doi: 10.1021/acs.nanolett.9b05251
[41]
Zhu X X, Huang L, Wei M, Tsiakaras P, Shen P K. Appl. Catal. B: Environ., 2021, 281:119460.

doi: 10.1016/j.apcatb.2020.119460
[42]
Yoo S, Cho S, Kim D, Ih S, Lee S, Zhang L Q, Li H, Lee J Y, Liu L C, Park S. Nanoscale, 2019, 11(6):2840.

doi: 10.1039/C8NR08231F
[43]
Ye C M, Huang H W, Zeng J. Chin. J. Chem. Phys., 2017, 30(5):581.

doi: 10.1063/1674-0068/30/cjcp1705100
[44]
Qin Y C, Zhang W L, Guo K, Liu X B, Liu J Q, Liang X Y, Wang X P, Gao D W, Gan L Y, Zhu Y T, Zhang Z C, Hu W P. Adv. Funct. Mater., 2020, 30(11):1910107.

doi: 10.1002/adfm.v30.11
[45]
Gruzeł G, Arabasz S, Pawlyta M, Parlinska-Wojtan M. Nanoscale, 2019, 11(12):5355.

doi: 10.1039/C9NR01359H
[46]
Saleem F, Ni B, Yong Y, Gu L, Wang X. Small, 2016, 12(38):5261.

doi: 10.1002/smll.v12.38
[47]
Wei L, Fan Y J, Wang H H, Tian N, Zhou Z Y, Sun S G. Electrochimica Acta, 2012, 76:468.

doi: 10.1016/j.electacta.2012.05.063
[48]
Wang H J, Li Y H, Yang D D, Qian X Q, Wang Z Q, Xu Y, Li X N, Xue H R, Wang L. Nanoscale, 2019, 11(12):5499.

doi: 10.1039/C8NR10398D
[49]
Zheng J N, He L L, Chen C, Wang A J, Ma K F, Feng J J. J. Power Sources, 2014, 268:744.

doi: 10.1016/j.jpowsour.2014.06.109
[50]
Huang X Y, Zhu X Y, Zhang X F, Zhang L, Feng J J, Wang A J. Electrochimica Acta, 2018, 271:397.

doi: 10.1016/j.electacta.2018.03.169
[51]
Liu S, Wang Y, Liu L W, Li M L, Lv W, Zhao X S, Qin Z L, Zhu P, Wang G X, Long Z Y, Huang F M. J. Power Sources, 2017, 365:26.

doi: 10.1016/j.jpowsour.2017.08.073
[52]
Nguyen A T N, Shim J H. Appl. Surf. Sci., 2018, 458:910.

doi: 10.1016/j.apsusc.2018.07.161
[53]
You S L, Luo P, Fang L, Gao J J, Liu L, Xu H T, Zhang H J, Wang Y. Electrochimica Acta, 2019, 294:406.

doi: 10.1016/j.electacta.2018.10.121
[54]
Lv J J, Feng J X, Li S S, Wang Y Y, Wang A J, Zhang Q L, Chen J R, Feng J J. Electrochimica Acta, 2014, 133:407.

doi: 10.1016/j.electacta.2014.04.077
[55]
Chen H Y, Niu H J, Ma X H, Feng J J, Weng X X, Huang H, Wang A J. J. Colloid Interface Sci., 2020, 561:372.

doi: 10.1016/j.jcis.2019.10.122
[56]
Dhanasekaran P, Lokesh K, Ojha P K, Sahu A K, Bhat S D, Kalpana D. J. Colloid Interface Sci., 2020, 572:198.

doi: 10.1016/j.jcis.2020.03.078
[57]
Li H Y, Liu S J, Wang X X, Zu G N, Li D D, Wang J S, Zhao J L. Sustain. Mater. Technol., 2019, 20:e00093.
[58]
Guo D J, Cui S K, Cheng D, Zhang P, Jiang L, Zhang C C. J. Power Sources, 2014, 255:157.

doi: 10.1016/j.jpowsour.2013.12.117
[59]
Wu F X, Zhang L, Lai J P, Niu W X, Luque R, Xu G B. J. Mater. Chem. A, 2019, 7(14):8568.

doi: 10.1039/C9TA01236B
[60]
Zhang J W, Li H Q, Ye J Y, Cao Z M, Chen J Y, Kuang Q, Zheng J, Xie Z X. Nano Energy, 2019, 61:397.

doi: 10.1016/j.nanoen.2019.04.093
[61]
Li Z J, Jiang X, Wang X R, Hu J R, Liu Y Y, Fu G T, Tang Y W. Appl. Catal. B: Environ., 2020, 277:119135.

doi: 10.1016/j.apcatb.2020.119135
[62]
Song P P, Cui X N, Shao Q, Feng Y G, Zhu X, Huang X Q. J. Mater. Chem. A, 2017, 5(47):24626.

doi: 10.1039/C7TA08467F
[63]
Guo N K, Xue H, Bao A, Wang Z H, Sun J, Song T S, Ge X, Zhang W, Huang K K, He F, Wang Q. Angew. Chem. Int. Ed., 2020, 59(33):202083361.
[64]
Wu L, Luo Y Y, Liu C, Li J, Li D. J. Electrochem. Soc., 2020, 167(6):066518.

doi: 10.1149/1945-7111/ab86c6
[65]
Kong F, Liu S, Li J, Du L, Yin G, Zhao Z, Sun X. Nano Energy, 2019,64.
[66]
Wang J X, Ma C, Choi Y, Su D, Zhu Y M, Liu P, Si R, Vukmirovic M B, Zhang Y, Adzic R R. J. Am. Chem. Soc., 2011, 133(34):13551.

doi: 10.1021/ja204518x pmid: 21780827
[67]
Arenz M, Mayrhofer K J J, Stamenkovic V, Blizanac B B, Tomoyuki T, Ross P N, Markovic N M. J. Am. Chem. Soc., 2005, 127(18):6819.

doi: 10.1021/ja043602h
[68]
He D S, He D P, Wang J, Lin Y, Yin P Q, Hong X, Wu Y E, Li Y D. J. Am. Chem. Soc., 2016, 138(5):1494.

doi: 10.1021/jacs.5b12530
[69]
Yao W Q, Jiang X, Li M, Li Y L, Liu Y Y, Zhan X, Fu G T, Tang Y W. Appl. Catal. B: Environ., 2021, 282:119595.

doi: 10.1016/j.apcatb.2020.119595
[70]
Zhou X W, Gan Y L, Du J J, Tian D N, Zhang R H, Yang C Y, Dai Z X. J. Power Sources, 2013, 232:310.

doi: 10.1016/j.jpowsour.2013.01.062
[71]
Fu S F, Zhu C Z, Song J H, Engelhard M H, He Y, Du D, Wang C M, Lin Y H. J. Mater. Chem. A, 2016, 4(22):8755.

doi: 10.1039/C6TA01801G
[72]
Liu W, Haubold D, Rutkowski B, Oschatz M, Hübner R, Werheid M, Ziegler C, Sonntag L, Liu S H, Zheng Z K, Herrmann A K, Geiger D, Terlan B, Gemming T, Borchardt L, Kaskel S, Czyrska-Filemonowicz A, Eychmüller A. Chem. Mater., 2016, 28(18):6477.

doi: 10.1021/acs.chemmater.6b01394
[73]
Wang A J, Liu L, Lin X X, Yuan J H, Feng J J. Electrochimica Acta, 2017, 245:883.

doi: 10.1016/j.electacta.2017.06.013
[74]
Fan Y, Liu P F, Zhang Z W, Cui Y, Zhang Y. J. Power Sources, 2015, 296:282.

doi: 10.1016/j.jpowsour.2015.07.078
[75]
Xu C, Wang R, Chen M, Zhang Y, Ding Y. Phys. Chem. Chem. Phys., 2010, 12:239.

doi: 10.1039/B917788D
[76]
Nguyen V T, Nguyen N A, Ali Y, Tran Q C, Choi H S. Carbon, 2019, 146:116.

doi: 10.1016/j.carbon.2019.01.087
[77]
Xiao M L, Feng L G, Zhu J B, Liu C P, Xing W. Nanoscale, 2015, 7(21):9467.

doi: 10.1039/C5NR00639B
[78]
Tran Q C, An H, Ha H, Nguyen V T, Quang N D, Kim H Y, Choi H S. J. Mater. Chem. A, 2018, 6(18):8259.

doi: 10.1039/C8TA01847B
[79]
Lu Q Q, Huang J S, Han C, Sun L T, Yang X R. Electrochimica Acta, 2018, 266:305.

doi: 10.1016/j.electacta.2018.02.021
[80]
Hsieh C T, Wei J M, Lin J S, Chen W Y. Catal. Commun., 2011, 16(1):220.

doi: 10.1016/j.catcom.2011.09.030
[81]
Chou S W, Chen H C, Zhang Z Y, Tseng W H, Wu C I, Yang Y Y, Lin C Y, Chou P T. Chem. Mater., 2014, 26(24):7029.

doi: 10.1021/cm5033628
[82]
You H J, Zhang F L, Liu Z, Fang J X. ACS Catal., 2014, 4(9):2829.

doi: 10.1021/cs500390s
[83]
Xu G R, Si R, Liu J Y, Zhang L Y, Gong X, Gao R, Liu B C, Zhang J. J. Mater. Chem. A, 2018, 6(26):12759.

doi: 10.1039/C8TA03196G
[84]
Eid K, Wang H J, Malgras V, Alothman Z A, Yamauchi Y, Wang L. J. Phys. Chem. C, 2015, 119(34):19947.

doi: 10.1021/acs.jpcc.5b05867
[85]
Yang Y, Luo L M, Zhang R H, Du J J, Shen P C, Dai Z X, Sun C H, Zhou X W. Electrochimica Acta, 2016, 222:1094.

doi: 10.1016/j.electacta.2016.11.080
[86]
Yu S C, Li F Q, Yang H S, Li G P, Zhu G H, Li J, Zhang L H, Li Y P. Int. J. Hydrog. Energy, 2017, 42(50):29971.

doi: 10.1016/j.ijhydene.2017.06.228
[87]
Lokanathan M, Patil I M, Kakade B. Int. J. Hydrog. Energy, 2018, 43(18):8983.

doi: 10.1016/j.ijhydene.2018.03.157
[88]
Huang L, Han Y J, Dong S J. Chem. Commun., 2016, 52(56):8659.

doi: 10.1039/C6CC03073D
[89]
Chalgin A, Shi F L, Li F, Xiang Q, Chen W L, Song C Y, Tao P, Shang W, Deng T, Wu J B. CrystEngComm, 2017, 19(46):6964.

doi: 10.1039/C7CE01721A
[90]
Kong F P, Liu S H, Li J J, Du L, Banis M N, Zhang L, Chen G Y, Doyle-Davis K, Liang J N, Wang S Z, Zhao F P, Li R Y, Du C Y, Yin G P, Zhao Z J, Sun X L. Nano Energy, 2019, 64:103890.

doi: 10.1016/j.nanoen.2019.103890
[91]
Kuo C S, Lyu L M, Sia R F, Lin H M, Sneed B T, Chen C F, Chang J, Chiu T W, Chuang Y C, Kuo C H. ACS Sustainable Chem. Eng., 2020, 8(28):10544.

doi: 10.1021/acssuschemeng.0c03256
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[6] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[7] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[8] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[9] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[10] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[13] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[14] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[15] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.