中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1841-1855 DOI: 10.7536/PC200862 Previous Articles   Next Articles

• Review •

Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites

Sha Tan1,2, Jianzhong Ma1,2(), Yan Zong1,2()   

  1. 1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
    2 Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
  • Received: Revised: Online: Published:
  • Contact: Jianzhong Ma, Yan Zong
  • Supported by:
    National Key Research and Development Program of China(2017YFB0308602); National Natural Science Foundation of China(51903143)
Richhtml ( 18 ) PDF ( 650 ) Cited
Export

EndNote

Ris

BibTeX

The complex of poly(3,4-ethylenedioxythiophene)∶poly(4-styrenesulfonate)(PEDOT∶PSS) is a water-soluble conducting polymer system with many advantages such as easy processability, high transmittance and flexibility. Its application, however, is only limited as flexible electrode material in some electronic devices. To solve this, introducing inorganic nanomaterials into PEDOT∶PSS complex to realize multifunctional materials is a relatively effective method to further expand its application. In this review, four most commonly used strategies to prepare PEDOT∶PSS/inorganic nanocomposites, including in-situ method, blending method, self-assembly method and intercalation method are summarized at first. Following this, each of the methods is detailed with their mechanism and experimental features, and the structural design of the nanocomposites as well as the structure-property relationships that affected by introduced inorganic nanofillers are also elucidated. Then the latest research progress of applications in sensors, solar cells, supercapacitors, thermoelectric generators of PEDOT∶PSS/inorganic nanocomposites are reviewed. Finally, the existing challenges in PEDOT∶PSS/inorganic nanocomposites studies are pointed out, and the future perspectives are provided for the research direction and potential progress and trends of these materials.

Contents

1 Introduction

2 Preparation of PEDOT∶PSS/inorganic nanocomposites

2.1 In-situ method

2.2 Blending method

2.3 Self-assembly method

2.4 Intercalation preparation method

3 Applications of PEDOT∶PSS/inorganic nanocomposites

3.1 Sensors

3.2 Solar cells

3.3 Supercapacitors

3.4 Thermoelectric generators

3.5 Other applications

4 Conclusion and outlook

Scheme 1 Chemical structure of PEDOT∶PSS
Fig. 1 Schematic of the fabrication of the PEDOT∶PSS-coated Cu7Te4/PEDOT∶PSS-coated Te composite film. Reprinted with permission from [38]. Copyright 2018, American Chemical Society
Fig. 2 Synthetic scheme of direct in-situ synthesis of PEDOT∶PSS/graphene/MWCNTs composites. Reprinted with permission from [55]. Copyright 2013, Royal Society of Chemistry
Fig. 3 Schematic of the preparation of PEDOT∶PSS/Au nanocomposites. Reproduced from reference [57]. Copyright 2007, American Chemical Society
Fig. 4 (a) Schematic of the preparation of Ag/PEDOT∶PSS composite interface;(b) X-ray photoelectron spectroscopy(XPS)((a) pristine PEDOT∶PSS and(b) Ag/PEDOT∶PSS);(c) transmittance spectra; and(d) ultraviolet photoelectron spectroscopy(UPS) images of pristine PEDOT∶PSS and Ag/PEDOT∶PSS films;(e) log(J)-log(V) characterization of the device with a structure of ITO/PEDOT∶PSS or Ag/PEDOT∶PSS/Ag in the dark. The doping content of Ag is 5% in volume ratio for all of the composite films. Reprinted with permission from [81]. Copyright 2019, American Chemical Society
Fig. 5 Schematic of the assembly of CoNi LDH monolayers and PEDOT∶PSS[92]. Copyright 2015, John Wiley & Sons
Fig.6 PEDOT∶PSS/iron oxide composite nanofilms transferred to various substrates:(a) freestanding PEDOT∶PSS/NP5 nanofilm(2 cm×1 cm) floating in water after PVA dissolving.(b) SEM micrographs showing PEDOT∶PSS/NP1 nanofilm collected onto a steel mesh(scale bar: 100 μm). Nanofilms collected onto(c) Teflon screw,(d) paper,(e) plastic tube, and(f) flexible PDMS. In(g), an SEM picture of the edge of ananofilm collected on paper showing the paper fiber structure to which the nanofilm conforms(scale bar: 50 μm). Reprinted with permission from [110]. Copyright 2013, American Chemical Society
Fig. 7 Inverted planar perovskite solar cell[120]
Fig. 8 Overall procedure for fabricating RuO2/PEDOT∶PSS/graphene screen-printed electrode and digital camera image of screen-printed electrode. Reprinted with permission from [123]. Copyright 2015, American Chemical Society
Fig. 9 Schematic showing the processing steps of the hybrid TE material and device: step(1), one-pot synthesis of the in situ PEDOT∶PSS/Bi2Te3 hybrid nanowire; step(2), fabrication of the self-assembled 3D network of nanowire-embedded PEDOT∶PSS nanofilms as TE test specimen; and step(3), construction of the insulator-pipeline TE device for large-scale deployment of low-temperature energetic harvesting. Reprinted with permission from [138]. Copyright 2019, American Chemical Society
[1]
Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J. J. Chem. Soc., Chem. Commun., 1977(16): 578.
[2]
Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A. Nat. Rev. Mater., 2016, 1(10): 1.
[3]
Du Y, Shen S Z, Cai K F, Casey P S. Prog. Polym. Sci., 2012, 37(6): 820.

doi: 10.1016/j.progpolymsci.2011.11.003
[4]
Song H J, Cai K F. Energy, 2017, 125: 519.

doi: 10.1016/j.energy.2017.01.037
[5]
Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Nat. Mater., 2011, 10(6): 429.

doi: 10.1038/nmat3012 pmid: 21532583
[6]
Wang J, Cai K F, Yin J L, Shen S. Synth. Met., 2017, 224: 27.

doi: 10.1016/j.synthmet.2016.11.031
[7]
Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R. Adv. Mater., 2000, 12(7): 481.

doi: 10.1002/(ISSN)1521-4095
[8]
Vosgueritchian M, Lipomi D J, Bao Z N. Adv. Funct. Mater., 2012, 22(2): 421.

doi: 10.1002/adfm.201101775
[9]
Xia Y J, Sun K, Ouyang J Y. Adv. Mater., 2012, 24(18): 2436.

doi: 10.1002/adma.201104795
[10]
Xu Y F, Wang Y, Liang J J, Huang Y, Ma Y F, Wan X J, Chen Y S. Nano Res., 2009, 2(4): 343.

doi: 10.1007/s12274-009-9032-9
[11]
Strakosas X, Sessolo M, Hama A, Rivnay J, Stavrinidou E, Malliaras G G, Owens R M. J. Mater. Chem. B, 2014, 2(17): 2537.

doi: 10.1039/c3tb21491e pmid: 32261421
[12]
Zhu Z Y, Song H J, Xu J K, Liu C C, Jiang Q L, Shi H. J. Mater. Sci.: Mater. Electron., 2015, 26(1): 429.

doi: 10.1007/BF00576538
[13]
Park T, Park C, Kim B, Shin H, Kim E. Energy Environ. Sci., 2013, 6(3): 788.

doi: 10.1039/c3ee23729j
[14]
Taggart D K, Yang Y, Kung S C, McIntire T M, Penner R M. Nano Lett., 2011, 11(1): 125.

doi: 10.1021/nl103003d pmid: 21133353
[15]
Wen Y P, Xu J K. J. Polym. Sci. Part A: Polym. Chem., 2017, 55(7): 1121.

doi: 10.1002/pola.v55.7
[16]
Wang J C, Karmakar R S, Lu Y J, Chan S H, Wu M C, Lin K J, Chen C K, Wei K C, Hsu Y H. ACS Appl. Mater. Interfaces, 2019, 11(37): 34305.

doi: 10.1021/acsami.9b10575
[17]
Yu Y Y, Peng S H, Blanloeuil P, Wu S Y, Wang C H. ACS Appl. Mater. Interfaces, 2020, 12(32): 36578.

doi: 10.1021/acsami.0c07649
[18]
Ikeda N, Koganezawa T, Kajiya D, Saitow K I. J. Phys. Chem. C, 2016, 120(34): 19043.

doi: 10.1021/acs.jpcc.6b07101
[19]
Liang Z M, Su M Z, Wang H, Gong Y T, Xie F Y, Gong L, Meng H, Liu P Y, Chen H J, Xie W G, Chen J. ACS Appl. Mater. Interfaces, 2015, 7(10): 5830.

doi: 10.1021/am508879b
[20]
Yang Z H, Gao P Q, He J, Chen W C, Yin W Y, Zeng Y H, Guo W, Ye J C, Cui Y. ACS Energy Lett., 2017, 2(3): 556.

doi: 10.1021/acsenergylett.7b00015
[21]
Zhang C F, Higgins T M, Park S H, O'Brien S E, Long D H, Coleman J N, Nicolosi V. Nano Energy, 2016, 28: 495.

doi: 10.1016/j.nanoen.2016.08.052
[22]
Qin L Q, Tao Q Z, El Ghazaly A, Fernandez-Rodriguez J, Persson P O Å, Rosen J, Zhang F L. Adv. Funct. Mater., 2018, 28(2): 1703808.

doi: 10.1002/adfm.v28.2
[23]
Lu J X, Feng W J, Mei G D, Sun J Y, Yan C Z, Zhang D, Lin K B, Wu D, Wang K, Wei Z H. Adv. Sci., 2020, 7(11): 2000689.

doi: 10.1002/advs.v7.11
[24]
Beduk T, Bihar E, Surya S G, Castillo A N, Inal S, Salama K N. Sens. Actuat. B: Chem., 2020, 306: 127539.

doi: 10.1016/j.snb.2019.127539
[25]
Zhan C X, Yu G Q, Lu Y, Wang L Y, Wujcik E, Wei S Y. J. Mater. Chem. C, 2017, 5(7): 1569.
[26]
Wei Y H, Li J J, Sun X J, Zhao L J. Chin. Plast. Ind., 2016, 44(8): 1.
( 魏燕红, 李娟娟, 孙希静, 赵丽娟. 塑料工业, 2016, 44(8): 1.)
[27]
Li J. Polym. Mater. Sci. Eng., 2013, 29(11): 173.
( 李蛟. 高分子材料科学与工程, 2013, 29(11): 173.)
[28]
Li S W, Xia S W, Liu L, Xu Y Y, Qin Q Y. Chem. Enterp. Manag., 2016(29): 88.
( 李斯文, 夏思文, 刘璐, 徐洋洋, 秦琪颖. 化工管理, 2016(29): 88.)
[29]
Zhang W N, Chen S, Xu J K. J. Jiangxi Sci. Technol. Norm. Univ., 2016(6): 43.
( 张文娜, 陈帅, 徐景坤. 江西科技师范大学学报, 2016(6): 43.)
[30]
Zhang J L, Li J, Liu J C. Mater. Rev., 2010, 24(19): 136.
( 张金玲, 李蛟, 刘俊成. 材料导报, 2010, 24(19): 136.)
[31]
Xu D, Shen H J, Yuan H H, Wang W, Xie J J, Prog. Chem., 2018, 30(2/3): 252.
( 许頔, 沈沪江, 袁慧慧, 王炜, 解俊杰. 化学进展, 2018, 30(2/3): 252.)

doi: 10.7536/PC170813
[32]
Yang L, Cheng T, Zeng W J, Lai W Y, Huang W. Prog. Chem., 2015, 27(11): 1615.

doi: 10.7536/PC150505
( 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 化学进展, 2015, 27(11): 1615.)

doi: 10.7536/PC150505
[33]
Woo S, Lee S J, Kim D H, Kim H, Kim Y. Electrochimica Acta, 2014, 116: 518.

doi: 10.1016/j.electacta.2013.10.210
[34]
Woo S, Jeong J H, Lyu H K, Han Y S, Kim Y. Nanoscale Res. Lett., 2012, 7(1): 1.
[35]
Koebel M M, Jones L C, Somorjai G A. J. Nanoparticle Res., 2008, 10(6): 1063.

doi: 10.1007/s11051-008-9370-7
[36]
Hu X G, Wang T, Dong S J. J. Nanosci. Nanotech., 2006, 6(7): 2056.

doi: 10.1166/jnn.2006.351
[37]
Moreno K J, Moggio I, Arias E, Llarena I, Moya S E, Ziolo R F, Barrientos H. J. Nanosci. Nanotech., 2009, 9(6): 3987.

doi: 10.1166/jnn.2009.215
[38]
Lu Y, Qiu Y, Jiang Q L, Cai K F, Du Y, Song H J, Gao M Y, Huang C J, He J Q, Hu D H. ACS Appl. Mater. Interfaces, 2018, 10(49): 42310.

doi: 10.1021/acsami.8b15252
[39]
Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3): 183.

pmid: 17330084
[40]
Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438(7065): 201.

doi: 10.1038/nature04235
[41]
Wang X, Zhi L J, Müllen K. Nano Lett., 2008, 8(1): 323.

doi: 10.1021/nl072838r
[42]
Yin Z Y, Wu S X, Zhou X Z, Huang X, Zhang Q C, Boey F, Zhang H. Small, 2010, 6(2): 307.

doi: 10.1002/smll.v6:2
[43]
Xia J L, Chen F, Li J H, Tao N J. Nat. Nanotechnol., 2009, 4(8): 505.

doi: 10.1038/nnano.2009.177
[44]
Chang H X, Tang L H, Wang Y, Jiang J H, Li J H. Anal. Chem., 2010, 82(6): 2341.
[45]
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230): 706.

doi: 10.1038/nature07719
[46]
Wu J B, Agrawal M, Becerril H A, Bao Z N, Liu Z F, Chen Y S, Peumans P. ACS Nano, 2010, 4(1): 43.

doi: 10.1021/nn900728d
[47]
Yoo D, Kim J, Kim J H. Nano Res., 2014, 7(5): 717.

doi: 10.1007/s12274-014-0433-z
[48]
Lee S, Eom T, Kim M K, Yang S G, Shim B S. Electrochimica Acta, 2019, 313: 79.
[49]
Baruah B, Kumar A, Umapathy G R, Ojha S. J. Electroanal. Chem., 2019, 840: 35.
[50]
Kim D, Kim Y, Choi K, Grunlan J C, Yu C. ACS Nano, 2010, 4(1): 513.

doi: 10.1021/nn9013577
[51]
Yu C, Choi K, Yin L, Grunlan J C. ACS Nano, 2011, 5(10): 7885.

doi: 10.1021/nn202868a
[52]
Moriarty G P, De S, King P J, Khan U, Via M, King J A, Coleman J N, Grunlan J C. J. Polym. Sci. B Polym. Phys., 2013, 51(2): 119.

doi: 10.1002/polb.23186
[53]
Song H J, Liu C C, Xu J K, Jiang Q L, Shi H. RSC Adv., 2013, 3(44): 22065.

doi: 10.1039/c3ra42414f
[54]
Zhang Z, Chen G M, Wang H F, Li X. Chem. Asian J., 2015, 10(1): 149.

doi: 10.1002/asia.201403100
[55]
Yoo D, Kim J, Lee S H, Cho W, Choi H H, Kim F S, Kim J H. J. Mater. Chem. A, 2015, 3(12): 6526.

doi: 10.1039/C4TA06710J
[56]
Shipway A N, Katz E, Willner I. ChemPhysChem, 2000, 1(1): 1.

doi: 10.1002/(ISSN)1439-7641
[57]
Kumar S S, Kumar C S, Mathiyarasu J, Phani K L. Langmuir, 2007, 23(6): 3401.

doi: 10.1021/la063150h
[58]
Wang Y, Pang F F, Liu D D, Han G Z. Synth. Met., 2017, 230: 1.

doi: 10.1016/j.synthmet.2017.05.011
[59]
Cai Y K, Chen C, Pang F F, Geng X, Han G Z. Chin. J. Inorg. Chem., 2014, 30(6): 1339.

doi: 10.1002/cjoc.201200196
[60]
Wang B, Wilkes G L, Hedrick J C, Liptak S C, McGrath J E. Macromolecules, 1991, 24(11): 3449.

doi: 10.1021/ma00011a063
[61]
Schubert U, Huesing N, Lorenz A. Chem. Mater., 1995, 7(11): 2010.

doi: 10.1021/cm00059a007
[62]
Liu Y H, Ma J Z, Bao Y, Liu J L. China Leather, 2012, 41(23): 1.
( 刘易弘, 马建中, 鲍艳, 刘俊莉. 中国皮革, 2012, 41(23): 1.)
[63]
Wu D D, Bao Y, Ma J Z, Tian W L. J. Chin. Ceram. Soc., 2016, 44(5): 720.
( 吴朵朵, 鲍艳, 马建中, 田万乐. 硅酸盐学报, 2016, 44(5): 720.)
[64]
Bao Y, Yang Y Q, Ma J Z. J. Colloid Interface Sci., 2013, 407: 155.

doi: 10.1016/j.jcis.2013.06.045
[65]
Ma J Z, Zhang W B, Gao D G, Chen C, Wang G. Polym. Mater. Sci. Eng., 2012, 28(12): 59.
( 马建中, 张文博, 高党鸽, 陈琛, 王刚. 高分子材料科学与工程, 2012, 28(12): 59.)
[66]
Lu J L, Song H, Li S N, Wang L, Han L, Ling H, Lu X H. Thin Solid Films, 2015, 584: 353.

doi: 10.1016/j.tsf.2014.12.008
[67]
Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Prog. Polym. Sci., 2013, 38(8): 1232.

doi: 10.1016/j.progpolymsci.2013.02.003
[68]
Song N, Hou X S, Cui S Q, Ba C Q, Jiao D J, Ding P, Shi L Y. Polym. Eng. Sci., 2017, 57(4): 374.

doi: 10.1002/pen.v57.4
[69]
Abbasian M, Pakzad M, Amirmanesh M. Polym. Compos., 2017, 38(6): 1127.

doi: 10.1002/pc.v38.6
[70]
Du Y, Shi Y L, Meng Q F, Shen S Z. Synth. Met., 2020, 261: 116318.

doi: 10.1016/j.synthmet.2020.116318
[71]
Jiang Q L, Lan X Q, Liu C C, Shi H, Zhu Z Y, Zhao F, Xu J K, Jiang F X. Mater. Chem. Front., 2018, 2(4): 679.

doi: 10.1039/C7QM00515F
[72]
Kim J Y, Lee W, Kang Y H, Cho S Y, Jang K S. Carbon, 2018, 133: 293.

doi: 10.1016/j.carbon.2018.03.041
[73]
Liu S Q, Li H, He C B. Carbon, 2019, 149: 25.

doi: 10.1016/j.carbon.2019.04.007
[74]
Benchirouf A, Palaniyappan S, Ramalingame R, Raghunandan P, Jagemann T, Müller C, Hietschold M, Kanoun O. Sens. Actuat. B: Chem., 2016, 224: 344.

doi: 10.1016/j.snb.2015.10.009
[75]
Qi X, Miao T T, Chi C, Zhang G, Zhang C, Du Y Z, An M, Ma W G, Zhang X. Nano Energy, 2020, 77: 105096.
[76]
Zhou Y M, Mei S J, Feng J J, Sun D W, Mei F, Xu J X, Cao X N. RSC Adv., 2020, 10(44): 26381.

doi: 10.1039/D0RA04425C
[77]
Zhang M Y, Yeow J T W. Carbon, 2020, 156: 339.

doi: 10.1016/j.carbon.2019.09.062
[78]
Zheng Y, Lee D, Koo H Y, Maeng S. Carbon, 2015, 81: 54.

doi: 10.1016/j.carbon.2014.09.023
[79]
Russo P A, Donato N, Leonardi S G, Baek S, Conte D E, Neri G, Pinna N. Angew. Chem. Int. Ed., 2012, 51(44): 11053.

doi: 10.1002/anie.201204373
[80]
Anand K, Singh O, Singh M P, Kaur J, Singh R C. Sens. Actuat. B: Chem., 2014, 195: 409.
[81]
Peng R X, Wan Z Y, Song W, Yan T T, Qiao Q Q, Yang S F, Ge Z Y, Wang M T. ACS Appl. Mater. Interfaces, 2019, 11(45): 42447.

doi: 10.1021/acsami.9b16404
[82]
Lian H, Tang Z Y, Guo H, Zhong Z, Wu J, Dong Q C, Zhu F R, Wei B, Wong W Y. J. Mater. Chem. C, 2018, 6(18): 4903.

doi: 10.1039/C7TC05554D
[83]
Liu X J, Iqbal A, Ali N, Qi R R, Qian X F. ACS Appl. Mater. Interfaces, 2020, 12(17): 19431.

doi: 10.1021/acsami.0c00755
[84]
Novak T G, Shin H, Kim J, Kim K, Azam A, Nguyen C V, Park S H, Song J Y, Jeon S. ACS Appl. Mater. Interfaces, 2018, 10(21): 17957.

doi: 10.1021/acsami.8b03982
[85]
Guan X, Feng W, Wang X Z, Venkatesh R, Ouyang J. ACS Appl. Mater. Interfaces, 2020, 12(11): 13013.

doi: 10.1021/acsami.9b21185
[86]
Xu H F, Guo Y, Wu B, Hou C Y, Zhang Q H, Li Y G, Wang H Z. ACS Appl. Mater. Interfaces, 2020, 12(29): 33297.

doi: 10.1021/acsami.0c09446
[87]
Wang J M, Yu H Z, Hou C L, Zhang J. ACS Appl. Mater. Interfaces, 2020, 12(23): 26543.

doi: 10.1021/acsami.0c02489
[88]
Hou C L, Yu H Z. J. Mater. Chem. C, 2020, 8(12): 4169.

doi: 10.1039/D0TC00075B
[89]
Kim W S, Anoop G, Jeong I S, Lee H J, Kim H B, Kim S H, Goo G W, Lee H, Lee H J, Kim C, Lee J H, Mun B S, Park J W, Lee E, Jo J Y. Nano Energy, 2020, 67: 104207.

doi: 10.1016/j.nanoen.2019.104207
[90]
Lee K C, Chang-Jian C W, Cho E C, Huang J H, Lin W T, Ho B C, Chou J A, Hsiao Y S. Sol. Energy Mater. Sol. Cells, 2019, 195: 1.

doi: 10.1016/j.solmat.2019.02.027
[91]
Yi H M, Wang D, Duan L P, Haque F, Xu C, Zhang Y, Conibeer G, Uddin A. Electrochimica Acta, 2019, 319: 349.

doi: 10.1016/j.electacta.2019.06.134
[92]
Zhao J W, Xu S M, Tschulik K, Compton R G, Wei M, O'Hare D, Evans D G, Duan X. Adv. Funct. Mater., 2015, 25(18): 2745.

doi: 10.1002/adfm.v25.18
[93]
Zhou A W. Master Dissertation of Beijing University of Chemical Technology, 2016.
( 周阿武. 北京化工大学硕士论文, 2016. ).
[94]
Wang X D, Meng F L, Jiang Q L, Zhou W Q, Jiang F X, Wang T Z, Li X, Li S, Lin Y C, Xu J K. ACS Appl. Energy Mater., 2018, 1(7): 3123.

doi: 10.1021/acsaem.8b00315
[95]
Bai S C, Guo X Z, Chen T R, Zhang Y, Zhang X Y, Yang H, Zhao X Y. Compos. A: Appl. Sci. Manuf., 2020, 139: 106088.

doi: 10.1016/j.compositesa.2020.106088
[96]
Yan W R, Li J H, Zhang G P, Wang L, Ho D. J. Mater. Chem. A, 2020, 8(2): 554.

doi: 10.1039/C9TA07383C
[97]
Pan L, Wang F, Cheng Y, Leow W R, Zhang Y W, Wang M, Cai P Q, Ji B H, Li D C, Chen X D. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7
[98]
Hwang S, Park N I, Choi Y J, Lee S M, Han S Y, Chung D W, Lee S. J. Ind. Eng. Chem., 2019, 76: 116.
[99]
Murugan A V, Kale B B, Kwon C W, Campet G, Vijayamohanan K. J. Mater. Chem., 2001, 11(10): 2470.
[100]
Gong S, Schwalb W, Wang Y W, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W L. Nat. Commun., 2014, 5(1): 1.
[101]
Manekkathodi A, Lu M Y, Wang C W, Chen L J. Adv. Mater., 2010, 22(36): 4059.

doi: 10.1002/adma.201001289
[102]
Hyun W J, Park O O, Chin B D. Adv. Mater., 2013, 25(34): 4729.

doi: 10.1002/adma.v25.34
[103]
Wang L B, Chen W, Xu D H, Shim B S, Zhu Y Y, Sun F X, Liu L Q, Peng C F, Jin Z Y, Xu C L, Kotov N A. Nano Lett., 2009, 9(12): 4147.

doi: 10.1021/nl902368r
[104]
Kumar S, Sen A, Kumar S, Augustine S, Yadav B K, Mishra S, Malhotra B D. Appl. Phys. Lett., 2016, 108(20): 203702.

doi: 10.1063/1.4950961
[105]
Kumar S, Rai P, Sharma J G, Sharma A, Malhotra B D. Adv. Mater. Technol., 2016, 1(4): 1600056.

doi: 10.1002/admt.v1.4
[106]
Jang J, Chang M, Yoon H. Adv. Mater., 2005, 17(13): 1616.

doi: 10.1002/(ISSN)1521-4095
[107]
Briseno A L, Roberts M, Ling M M, Moon H, Nemanick E J, Bao Z N. J. Am. Chem. Soc., 2006, 128(12): 3880.

doi: 10.1021/ja058226v
[108]
Yan H, Kagata T, Mori Y, Harashina Y, Hara Y, Okuzaki H. Chem. Lett., 2008, 37(1): 44.

doi: 10.1246/cl.2008.44
[109]
Kumar S, Umar M, Saifi A, Kumar S, Augustine S, Srivastava S, Malhotra B D. Anal. Chimica Acta, 2019, 1056: 135.

doi: 10.1016/j.aca.2018.12.053
[110]
Taccola S, Greco F, Zucca A, Innocenti C, de Julián Fernández C, Campo G, Sangregorio C, Mazzolai B, Mattoli V. ACS Appl. Mater. Interfaces, 2013, 5(13): 6324.

doi: 10.1021/am4013775
[111]
Shaban M N, Hasanzadeh M, Solhi E. Anal. Methods, 2019, 11(44): 5661.

doi: 10.1039/C9AY01988J
[112]
Richter A, Burrows J P, Nüß H, Granier C, Niemeier U. Nature, 2005, 437(7055): 129.
[113]
Zampetti E, Pantalei S, Muzyczuk A, Bearzotti A, De Cesare F, Spinella C, Macagnano A. Sens. Actuat. B: Chem., 2013, 176: 390.

doi: 10.1016/j.snb.2012.10.005
[114]
Lin C Y, Chen J G, Hu C W, Tunney J J, Ho K C. Sens. Actuat. B: Chem., 2009, 140(2): 402.

doi: 10.1016/j.snb.2009.04.041
[115]
Sadek A Z, Wlodarski W, Shin K, Kaner R B, Kalantar-Zadeh K. Nanotechnology, 2006, 17(17): 4488.

doi: 10.1088/0957-4484/17/17/034
[116]
Lin Y J, Huang L, Chen L, Zhang J K, Shen L, Chen Q, Shi W Z. Sens. Actuat. B: Chem., 2015, 216: 176.

doi: 10.1016/j.snb.2015.04.045
[117]
Yan Y L, Cao J M, Meng F N, Wang N, Gao L G, Ma T L. Prog. Chem., 2019, 31(7): 1031.
( 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 化学进展, 2019, 31(7): 1031.)

doi: 10.7536/PC181202
[118]
Zhang Y, Liu W Q, Tan F R, Gu Y Z. J. Power Sources, 2015, 274: 1224.

doi: 10.1016/j.jpowsour.2014.10.145
[119]
Niu J, Yang D, Ren X, Yang Z, Liu Y, Zhu X, Zhao W, Liu S. Organ. Electron., 2017, 48: 165.

doi: 10.1016/j.orgel.2017.05.044
[120]
Albert A, Sreelekshmi N, Jinchu I, Sreelatha K S, Sreekala C O. AIP Conf. Proc. AIP, 2019. 020122.
[121]
Gemeiner P, Kuliček J, Syrový T, Ház A, Khunová V, Hatala M, Mikula M, Hvojnik M, Gál L, Jablonský M, Omastová M. Synth. Met., 2019, 256: 116148.

doi: 10.1016/j.synthmet.2019.116148
[122]
Tiwari D C, Dwivedi S K, Dipak P, Chandel T. AIP Conf. Proc. AIP, 2018. 100065.
[123]
Cho S, Kim M, Jang J. ACS Appl. Mater. Interfaces, 2015, 7(19): 10213.
[124]
Khasim S, Pasha A, Badi N, Lakshmi M, Mishra Y K. RSC Adv., 2020, 10(18): 10526.
[125]
Liu L, Choi S. 2020 IEEE 33rd Intern. Conf. Micro Electro Mechan. Syst. IEEE, 2020, 18/22: 554.
[126]
Wang L M, Liu Y C, Zhang Z M, Wang B R, Qiu J J, Hui D, Wang S R. Compos. B: Eng., 2017, 122: 145.
[127]
Yang L, Chen Z G, Dargusch M S, Zou J. Adv. Energy Mater., 2018, 8(6): 1701797.

doi: 10.1002/aenm.v8.6
[128]
Lu Y, Ding Y F, Qiu Y, Cai K F, Yao Q, Song H J, Tong L, He J Q, Chen L D. ACS Appl. Mater. Interfaces, 2019, 11(13): 12819.

doi: 10.1021/acsami.9b01718
[129]
Yee S K, Coates N E, Majumdar A, Urban J J, Segalman R A. Phys. Chem. Chem. Phys., 2013, 15(11): 4024.

doi: 10.1039/c3cp44558e
[130]
Wang L M, Yao Q, Bi H, Huang F Q, Wang Q, Chen L D. J. Mater. Chem. A, 2015, 3(13): 7086.

doi: 10.1039/C4TA06422D
[131]
Hsieh Y Y, Zhang Y, Zhang L, Fang Y B, Kanakaraaj S N, Bahk J H, Shanov V. Nanoscale, 2019, 11(14): 6552.

doi: 10.1039/C8NR10537E
[132]
Liu X, Du Y, Meng Q F, Shen S Z, Xu J Y. J. Mater. Sci.: Mater. Electron., 2019, 30(23): 20369.
[133]
Xu N, Xu Y, Zhu J. Npj Quantum Mater., 2017, 2(1): 1.
[134]
Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P, Cava R J. Phys. Rev. B, 2009, 79(19): 195208.

doi: 10.1103/PhysRevB.79.195208
[135]
Ashalley E, Chen H Y, Tong X, Li H D, Wang Z M. Front. Mater. Sci., 2015, 9(2): 103.
[136]
Sahu A, Russ B, Su N C, Forster J D, Zhou P, Cho E S, Ercius P, Coates N E, Segalman R A, Urban J J. J. Mater. Chem. A, 2017, 5(7): 3346.

doi: 10.1039/C6TA09781B
[137]
Xiong J H, Wang L Y, Xu J K, Liu C C, Zhou W Q, Shi H, Jiang Q L, Jiang F X. J. Mater. Sci.: Mater. Electron., 2016, 27(2): 1769.
[138]
Thongkham W, Lertsatitthanakorn C, Jiramitmongkon K, Tantisantisom K, Boonkoom T, Jitpukdee M, Sinthiptharakoon K, Klamchuen A, Liangruksa M, Khanchaitit P. ACS Appl. Mater. Interfaces, 2019, 11(6): 6624.
[139]
Song S, Wang K, Zhang Y H, Wang Y K, Zhang C L, Wang X, Zhang R, Chen J R, Wen T, Wang X K. Environ. Pollut., 2019, 250: 196.

doi: 10.1016/j.envpol.2019.04.020
[140]
Anilkumar K M, Jinisha B, Manoj M, Pradeep V S, Jayalekshmi S. Appl. Surf. Sci., 2018, 442: 556.
[141]
Baruah B, Kumar A. Synth. Met., 2018, 245: 74.

doi: 10.1016/j.synthmet.2018.08.009
[142]
Li H Z, McRae L, Elezzabi A Y. ACS Appl. Mater. Interfaces, 2018, 10(12): 10520.

doi: 10.1021/acsami.7b18310
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[3] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[6] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[9] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[10] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[11] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[12] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[13] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[14] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[15] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.