中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 272-284 DOI: 10.7536/PC201205 Previous Articles   Next Articles

• Review •

Double Perovskite Material as Anode for Solid Oxide Fuel Cells

Yang Zhang1, Min Zhang1, Hailei Zhao1,2()   

  1. 1 School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing 100083, China
    2 Beijing Municipal Key Lab for Advanced Energy Materials and Technologies,Beijing 100083, China
  • Received: Revised: Online: Published:
  • Contact: Hailei Zhao
  • Supported by:
    National Key R&D Program of China(2018YFB1502202); Global Energy Interconnection Research Institute Co. Ltd(SGGR0000WLJS1900863)
Richhtml ( 67 ) PDF ( 668 ) Cited
Export

EndNote

Ris

BibTeX

Solid oxide fuel cell (SOFC) is an energy conversion device with advantages of high conversion efficiency, eco-friendliness, fuel flexibility, etc. The anode is one of the key components of SOFC, where the fuel oxidation reaction takes place. Compared to the traditional anode Ni-YSZ, perovskite oxides show strong resistance to carbon deposition and sulfur poisoning. Due to the diversity of ion occupancy site in the lattice, double perovskite oxides exhibit a more tailorable feature in terms of lattice structure and electrochemical properties and therefore have attracted extensive attention as SOFC anode material. However, their poor catalytic activity and low electrical conductivity, compared with the traditional Ni-YSZ anode, limit the practical application. This work summaries the recent research work and advancement of double perovskite oxides as SOFC anode in the past decade. With a brief introduction of the structure characteristics and formation origins of A-site and B-site perovskite, the properties and modification strategies of the two kinds of double perovskite anode materials are reviewed, including Sr2MgMoO6, Sr2CoMoO6, Sr2NiMoO6, Sr2FeMoO6, PrBaMn2O5+δ, etc. In the end, we propose the main future research directions.

Contents

1 Introduction

2 Double perovskite anode materials

2.1 Crystal structure of double perovskite oxides

2.2 B-site double perovskite anode materials Sr2MMoO6-δ

2.3 A-site double perovskite anode materials LnBaM2O5+δ

3 Conclusion and outlook

Fig. 1 Schematic diagram of simple perovskite structure.
Fig. 2 Schematic diagram of B-site double perovskite A2BB'O6
Fig. 3 Schematic diagrams of A-site double perovskite: (a) AA'B2O6, (b) AA'B2O5
Fig. 4 I-V curves of single cell (a), schematic diagram of crystal structure (b), HRTEM images of Sr2FeMo2/3Mg1/3O6 (c, d), anti-site defect in the lattice (d)[61]
Fig. 5 SEM images and I-V curves of Sr2FeMo0.65Ni0.35O6 (a, c) and Sr2Fe1.3Co0.2Mo0.5O6 (b, d) electrode with in-situ exsolved metal nanoparticles[105,106]
Table 1 Comparison of electrical conductivity of B-site double perovskite anode materials
Table 2 Comparison of polarization resistance of B-site double perovskite anode materials
Table 3 Comparison of maximum power density (MPD) of single-cell with B-site double perovskite as SOFC anodes
Fig. 6 (a) TGA curves of transition from Pr0.5Ba0.5MnO3 to layered PrBaMn2O5+δ, (b) Long-term stability of PBM anode with Co-Fe catalyst using C3H8 as fuel[110]
Table 4 Comparison of electrical conductivity of A-site double perovskite anode materials
Table 5 Comparison of polarization resistance of A-site double perovskite anode materials
Table 6 Comparison of MPD of single-cell with A-site double perovskite as SOFC anodes
[1]
Joon K. J. Power Sources, 1998, 71(1/2): 12.

doi: 10.1016/S0378-7753(97)02765-1
[2]
Choudhury A, Chandra H, Arora A. Renew. Sustain. Energy Rev., 2013, 20: 430.

doi: 10.1016/j.rser.2012.11.031
[3]
van Biert L, Godjevac M, Visser K, Aravind P V. J. Power Sources, 2016, 327: 345.

doi: 10.1016/j.jpowsour.2016.07.007
[4]
Sun C W, Hui R, Roller J. J. Solid State Electrochem., 2010, 14(7): 1125.

doi: 10.1007/s10008-009-0932-0
[5]
Fergus J W. J. Power Sources, 2006, 162(1): 30.

doi: 10.1016/j.jpowsour.2006.06.062
[6]
Mogensen M, Jensen K V, Jørgensen M J, Primdahl S. Solid State Ionics, 2002, 150(1/2): 123.

doi: 10.1016/S0167-2738(02)00269-2
[7]
Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J. Nat. Mater., 2004, 3(1): 17.

pmid: 14704781
[8]
Service R F. Science, 2007, 315(5809): 172.

pmid: 17218499
[9]
Setoguchi T, Okamoto K, Eguchi K, Arai H. J. Electrochem. Soc., 1992, 139(10): 2875.

doi: 10.1149/1.2068998
[10]
Spacil H S. US3503809A, 1970.
[11]
Simwonis D, Tietz F, Stöver D. Solid State Ionics, 2000, 132(3/4): 241.

doi: 10.1016/S0167-2738(00)00650-0
[12]
Edwards J H, Maitra A M. Fuel Process. Technol., 1995, 42(2/3): 269.

doi: 10.1016/0378-3820(94)00105-3
[13]
Zhan Z, Barnett S A. Science, 2005, 308(5723): 844.

doi: 10.1126/science.1109213
[14]
Sun C W, Sun J, Yang W, Ma C H, Li S, Xian C N, Wang S F, Xiao R J, Shi S Q, Li H, Chen L Q. Strategic Study of CAE, 2013, 15(2): 77.
( 孙春文, 孙杰, 杨伟, 马朝晖, 李帅, 仙存妮, 王少飞, 施思齐, 李泓, 陈立泉. 中国工程科学, 2013, 15(2): 77.)
[15]
Zheng Y, Zhou W, Ran R, Shao Z P. Prog. Chem., 2008, 20(2): 413.
( 郑尧, 周嵬, 冉然, 邵宗平. 化学进展, 2008, 20(2): 413.)
[16]
Shu L N, Sunarso J, Hashim S S, Mao J K, Zhou W, Liang F L. Int. J. Hydrog. Energy, 2019, 44(59): 31275.

doi: 10.1016/j.ijhydene.2019.09.220
[17]
Ishihara T.. Perovskite Oxide for Solid Oxide Fuel Cells. Boston, MA: Springer US, 2009: 1/16.
[18]
Jonker G H, van Santen J H. Physica, 1950, 16(3): 337.

doi: 10.1016/0031-8914(50)90033-4
[19]
Shannon R D. Acta Crystallogr. Sect. A, 1976, 32(5): 751.

doi: 10.1107/S0567739476001551
[20]
Ullmann H, Trofimenko N. J. Alloys Compd., 2001, 316(1/2): 153.

doi: 10.1016/S0925-8388(00)01448-1
[21]
Cook R L, Sammells A F. Solid State Ion., 1991, 45(3/4): 311.

doi: 10.1016/0167-2738(91)90167-A
[22]
Anderson M T, Greenwood K B, Taylor G A, Poeppelmeier K R. Prog. Solid State Chem., 1993, 22(3): 197.

doi: 10.1016/0079-6786(93)90004-B
[23]
King G, Woodward P M. J. Mater. Chem., 2010, 20(28): 5785.

doi: 10.1039/b926757c
[24]
Taskin A A, Lavrov A N, Ando Y. Appl. Phys. Lett., 2005, 86(9): 091910.

doi: 10.1063/1.1864244
[25]
Taskin A A, Lavrov A N, Ando Y. Prog. Solid State Chem., 2007, 35(2/4): 481.

doi: 10.1016/j.progsolidstchem.2007.01.014
[26]
Yamazoe N, Teraoka Y. Catal. Today, 1990, 8(2): 175.

doi: 10.1016/0920-5861(90)87017-W
[27]
Danilovic N, Vincent A, Luo J L, Chuang K T, Hui R, Sanger A R. Chem. Mater., 2010, 22(3): 957.

doi: 10.1021/cm901875u
[28]
Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. J. Electrochem. Soc., 2006, 153(7): A1266.

doi: 10.1149/1.2195882
[29]
Marrero-LÓpez D, Peña-Martínez J, Ruiz-Morales J C, Martín-Sedeño M C, Núñez P. J. Solid State Chem., 2009, 182(5): 1027.

doi: 10.1016/j.jssc.2009.01.018
[30]
Nielsen T H, Leipold M H. J. Am. Ceram. Soc., 1964, 47(3): 155.

doi: 10.1111/jace.1964.47.issue-3
[31]
Vasylechko L, Vashook V, Savytskii D, Senyshyn A, Niewa R, Knapp M, Ullmann H, Berkowski M, Matkovskii A, Bismayer U. J. Solid State Chem., 2003, 172(2): 396.

doi: 10.1016/S0022-4596(03)00016-1
[32]
Hayashi H, Kanoh M, Quan C J, Inaba H, Wang S R, Dokiya M, Tagawa H. Solid State Ionics, 2000, 132(3/4): 227.

doi: 10.1016/S0167-2738(00)00646-9
[33]
Huang Y H, Dass R I, Xing Z L, Goodenough J B. Science, 2006, 312(5771): 254.

doi: 10.1126/science.1125877
[34]
Marrero-LÓpez D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Solid State Ion., 2010, 180(40): 1672.

doi: 10.1016/j.ssi.2009.11.005
[35]
Bi Z H, Zhu J H. J. Electrochem. Soc., 2011, 158(6): B605.

doi: 10.1149/1.3569754
[36]
Li C, Wang W D, Zhao N, Liu Y X, He B, Hu F C, Chen C S. Appl. Catal. B: Environ., 2011, 102(1/2): 78.

doi: 10.1016/j.apcatb.2010.11.027
[37]
Dorai A K, Masuda Y, Joo J H, Woo S K, Kim S D. Mater. Chem. Phys., 2013, 139(2/3): 360.

doi: 10.1016/j.matchemphys.2013.02.039
[38]
Xie Z X, Zhao H L, Chen T, Zhou X, Du Z H. Int. J. Hydrog. Energy, 2011, 36(12): 7257.

doi: 10.1016/j.ijhydene.2011.03.075
[39]
Dager P K, Mogni L V, Zampieri G, Caneiro A. ECS Trans., 2017, 78(1): 1367.

doi: 10.1149/07801.1367ecst
[40]
Xie Z X, Zhao H L, Du Z H, Chen T, Chen N. J. Phys. Chem. C, 2014, 118(33): 18853.

doi: 10.1021/jp502503e
[41]
Xie Z X, Zhao H L, Du Z H, Chen T, Chen N, Liu X T, Skinner S J. J. Phys. Chem. C, 2012, 116(17): 9734.

doi: 10.1021/jp212505c
[42]
Vasala S, Lehtimäki M, Haw S C, Chen J M, Liu R S, Yamauchi H, Karppinen M. Solid State Ion., 2010, 181(15/16): 754.

doi: 10.1016/j.ssi.2010.03.037
[43]
Escudero M J, GÓmez de Parada I, Fuerte A, Daza L. J. Power Sources, 2013, 243: 654.

doi: 10.1016/j.jpowsour.2013.05.198
[44]
Aguadero A, Alonso J A, Martínez-Coronado R, Martínez-Lope M J, Fernández-Díaz M T. J. Appl. Phys., 2011, 109(3): 034907.

doi: 10.1063/1.3544068
[45]
Filonova E A, Dmitriev A S. Eurasian Chem. Technol. J., 2012, 14(2): 139.

doi: 10.18321/ectj107
[46]
Wei T, Ji Y, Meng X W, Zhang Y L. Electrochem. Commun., 2008, 10(9): 1369.

doi: 10.1016/j.elecom.2008.07.005
[47]
Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Chem. Mater., 2009, 21(11): 2319.

doi: 10.1021/cm8033643
[48]
Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. J. Power Sources, 2011, 196(4): 1738.

doi: 10.1016/j.jpowsour.2010.10.007
[49]
Kumar P, Singh N K, Singh R K, Singh P. Appl. Phys. A, 2015, 121(2): 635.

doi: 10.1007/s00339-015-9448-x
[50]
Wei T, Zhang Q, Huang Y H, Goodenough J B. J. Mater. Chem., 2012, 22(1): 225.

doi: 10.1039/C1JM14756K
[51]
Zheng K, Świerczek K, Zajᶏc W, Klimkowicz A. Solid State Ion., 2014, 257: 9.

doi: 10.1016/j.ssi.2014.01.030
[52]
Zheng K, Świerczek K. J. Eur. Ceram. Soc., 2014, 34(16): 4273.

doi: 10.1016/j.jeurceramsoc.2014.06.032
[53]
Wei T, Zhang Q, Huang Y H. J. Electrochem. Soc., 2012 (6): 332.
[54]
Zhang L L, Zhou Q J, He Q, He T M. J. Power Sources, 2010, 195(19): 6356.

doi: 10.1016/j.jpowsour.2010.04.021
[55]
Wang Z M, Tian Y, Li Y D. J. Power Sources, 2011, 196(15): 6104.

doi: 10.1016/j.jpowsour.2011.03.053
[56]
Liu G Y, Rao G H, Feng X M, Yang H F, Ouyang Z W, Liu W F, Liang J K. J. Alloys Compd., 2003, 353(1/2): 42.

doi: 10.1016/S0925-8388(02)01316-6
[57]
Li H J, Zhao Y C, Wang Y C, Li Y D. Catal. Today, 2016, 259: 417.

doi: 10.1016/j.cattod.2015.04.025
[58]
Rager J, Zipperle M, Sharma A, Macmanus-Driscoll J L. J. Am. Ceram. Soc., 2004, 87(7): 1330.

doi: 10.1111/j.1151-2916.2004.tb07730.x
[59]
Xiao G L, Liu Q, Dong X H, Huang K, Chen F L. J. Power Sources, 2010, 195(24): 8071.

doi: 10.1016/j.jpowsour.2010.07.036
[60]
Xiao G, Liu Q, Nuansaeng S, Chen F. ECS Trans., 2012, 45(1): 355.
[61]
Du Z H, Zhao H L, Li S M, Zhang Y, Chang X W, Xia Q, Chen N, Gu L, Świerczek K, Li Y, Yang T R, An K. Adv. Energy Mater., 2018, 8(18): 1800062.

doi: 10.1002/aenm.v8.18
[62]
Dai N N, Feng J, Wang Z H, Jiang T Z, Sun W, Qiao J S, Sun K N. J. Mater. Chem. A, 2013, 1(45): 14147.

doi: 10.1039/c3ta13607h
[63]
Liu Q, Dong X H, Xiao G L, Zhao F, Chen F L. Adv. Mater., 2010, 22(48): 5478.

doi: 10.1002/adma.v22.48
[64]
Liu Q, Bugaris D E, Xiao G L, Chmara M, Ma S G, zur Loye H C, Amiridis M D, Chen F L. J. Power Sources, 2011, 196(22): 9148.

doi: 10.1016/j.jpowsour.2011.06.085
[65]
Zheng K, Świerczek K, Polfus J M, Sunding M F, Pishahang M, Norby T. J. Electrochem. Soc., 2015, 162(9): F1078.

doi: 10.1149/2.0981509jes
[66]
Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, Foust T D. Science, 2007, 315(5813): 804.

doi: 10.1126/science.1137016
[67]
Li H J, Tian Y, Wang Z M, Qie F C, Li Y D. RSC Adv., 2012, 2(9): 3857.

doi: 10.1039/c2ra01256a
[68]
Bode G L, McIntyre M D, Neuberger D M, Walker R A, Thorstensen B P, Eigenbrodt B C. ChemElectroChem, 2018, 5(21): 3162.

doi: 10.1002/celc.201800827
[69]
Gou M L, Ren R Z, Sun W, Xu C M, Meng X G, Wang Z H, Qiao J S, Sun K N. Ceram. Int., 2019, 45(12): 15696.

doi: 10.1016/j.ceramint.2019.03.130
[70]
Zhang L L, Zhou Q J, He Q, He T M. J. Power Sources, 2010, 195(19): 6356.

doi: 10.1016/j.jpowsour.2010.04.021
[71]
Cowin P I, Lan R, Petit C T G, Tao S W. Mater. Chem. Phys., 2015, 168: 50.

doi: 10.1016/j.matchemphys.2015.10.056
[72]
Osinkin D A, Zabolotskaya E V, Kellerman D G, Suntsov A Y. J. Solid State Electrochem., 2018, 22(4): 1209.

doi: 10.1007/s10008-017-3868-9
[73]
Osinkin D A, Beresnev S M, Khodimchuk A V, Korzun I V, Lobachevskaya N I, Suntsov A Y. J. Solid State Electrochem., 2019, 23(2): 627.

doi: 10.1007/s10008-018-04169-2
[74]
Xu Z Q, Hu X Y, Wan Y H, Xue S S, Zhang S W, Zhang L J, Zhang B Z, Xia C R. Electrochimica Acta, 2020, 341: 136067.

doi: 10.1016/j.electacta.2020.136067
[75]
Qi H, Thomas T, Li W Y, Li W, Liu X B. ACS Appl. Energy Mater., 2019, 2(6): 4244.

doi: 10.1021/acsaem.9b00494
[76]
Kumar P, Jena P, Patro P K, Lenka R K, Sinha A S K, Singh P, Singh R K. ACS Appl. Mater. Interfaces, 2019, 11(27): 24659.

doi: 10.1021/acsami.9b03481
[77]
Xie Z X, Chen T, Zhao H L, Du Z H, Li Y M. J. Chin. Ceram. Soc., 2016, 44(6): 817.
( 谢志翔, 陈婷, 赵海雷, 杜志鸿, 李月明. 硅酸盐学报, 2016, 44(6): 817.)
[78]
Yang X, Chen J, Panthi D, Niu B B, Lei L B, Yuan Z H, Du Y H, Li Y F, Chen F L, He T M. J. Mater. Chem. A, 2019, 7(2): 733.

doi: 10.1039/c8ta10061f
[79]
Ji Y, Huang Y H, Ying J R, Goodenough J B. Electrochem. Commun., 2007, 9(8): 1881.

doi: 10.1016/j.elecom.2007.04.006
[80]
Howell T G, Kuhnell C P, Reitz T L, Eigenbrodt B C, Singh R N. J. Am. Ceram. Soc., 2014, 97(11): 3636.

doi: 10.1111/jace.13208
[81]
Wang Y, Li P, Li H, Zhao Y, Li Y. Fuel Cells, 2014, 14(6): 973.

doi: 10.1002/fuce.201300250
[82]
Zhang L L, He T M. J. Power Sources, 2011, 196(20): 8352.

doi: 10.1016/j.jpowsour.2011.06.064
[83]
Hou S E, Aguadero A, Alonso J A, Goodenough J B. J. Power Sources, 2011, 196(13): 5478.

doi: 10.1016/j.jpowsour.2010.11.122
[84]
Sugahara T, Araki T, Ohtaki M, Suganuma K. J. Ceram. Soc. Japan, 2012, 120(1402): 211.

doi: 10.2109/jcersj2.120.211
[85]
Cowin P I, Lan R, Petit C T G, Wang H T, Tao S W. J. Mater. Sci., 2016, 51(8): 4115.

doi: 10.1007/s10853-016-9734-9
[86]
Yao G B, Cai H D, Zhang L L, Xu J S, Song Z Y. J. Liaoning Shihua Univ., 2019, 39(4): 28.
( 姚桂彬, 蔡洪东, 张磊磊, 徐璟升, 宋昭远. 辽宁石油化工大学期刊社, 2019, 39(4): 28.)
[87]
Jiang L, Liang G, Han J T, Huang Y H. J. Power Sources, 2014, 270: 441.

doi: 10.1016/j.jpowsour.2014.07.079
[88]
He B B, Zhao L, Song S X, Liu T, Chen F L, Xia C R. J. Electrochem. Soc., 2012, 159(5): B619.

doi: 10.1149/2.020206jes
[89]
Osinkin D A, Lobachevskaya N I, Kuz’min A V. Russ. J. Appl. Chem., 2017, 90(1): 41.

doi: 10.1134/S1070427217010074
[90]
Osinkin D A, Beresnev S M, Lobachevskaya N I. Russ. J. Electrochem., 2017, 53(6): 665.

doi: 10.1134/S1023193517060131
[91]
Osinkin D A, Lobachevskaya N I, Suntsov A Y. J. Alloys Compd., 2017, 708: 451.

doi: 10.1016/j.jallcom.2017.03.057
[92]
Gansor P, Xu C C, Sabolsky K, Zondlo J W, Sabolsky E M. J. Power Sources, 2012, 198: 7.

doi: 10.1016/j.jpowsour.2011.09.069
[93]
Guo Y Y, Guo T M, Zhou S J, Wu Y J, Chen H, Ou X M, Ling Y H. Ceram. Int., 2019, 45(8): 10969.

doi: 10.1016/j.ceramint.2019.02.179
[94]
Xie Z X, Zhao H L, Lei Y M, Chen T. J. Ceram., 2016, 37(1): 53.
( 谢志翔, 赵海雷, 李月明, 陈婷. 陶瓷学报, 2016, 37(1): 53.)
[95]
Suthirakun S, Ammal S C, Muñoz-García A B, Xiao G L, Chen F L, zur Loye H C, Carter E A, Heyden A. J. Am. Chem. Soc., 2014, 136(23): 8374.

doi: 10.1021/ja502629j pmid: 24826843
[96]
Jiang S P. Mater. Sci. Eng.: A, 2006, 418(1/2): 199.
[97]
Jiang S P. Int. J. Hydrog. Energy, 2012, 37(1): 449.

doi: 10.1016/j.ijhydene.2011.09.067
[98]
Xiao G L, Chen F L. Electrochem. Commun., 2011, 13(1): 57.

doi: 10.1016/j.elecom.2010.11.012
[99]
Xiao G L, Jin C, Liu Q, Heyden A, Chen F L. J. Power Sources, 2012, 201: 43.

doi: 10.1016/j.jpowsour.2011.10.103
[100]
Rath M K, Lee K T. Electrochimica Acta, 2016, 212: 678.

doi: 10.1016/j.electacta.2016.07.037
[101]
Han Z Y, Wang Y H, Yang Y R, Li L L, Yang Z B, Han M F. J. Alloys Compd., 2017, 703: 258.

doi: 10.1016/j.jallcom.2017.01.341
[102]
Liu J, Lei Y, Li Y M, Gao J, Han D, Zhan W T, Huang F Q, Wang S R. Electrochem. Commun., 2017, 78: 6.

doi: 10.1016/j.elecom.2017.02.019
[103]
Neagu D, Tsekouras G, Miller D N, MÉnard H, Irvine J T S. Nat. Chem., 2013, 5(11): 916.

doi: 10.1038/nchem.1773
[104]
Sun Y F, Li J H, Cui L, Hua B, Cui S H, Li J, Luo J L. Nanoscale, 2015, 7(25): 11173.

doi: 10.1039/C5NR02518D
[105]
Du Z H, Zhao H L, Yi S, Xia Q, Swierczek K. ACS Nano, 2016, 10(9): 8660.

doi: 10.1021/acsnano.6b03979
[106]
Yang Y R, Wang Y R, Yang Z B, Lei Z, Jin C, Liu Y D, Wang Y H, Peng S P. J. Power Sources, 2019, 438: 226989.

doi: 10.1016/j.jpowsour.2019.226989
[107]
Trukhanov S V, Trukhanov A V, Szymczak H, Szymczak R, Baran M. J. Phys. Chem. Solids, 2006, 67(4): 675.

doi: 10.1016/j.jpcs.2005.09.099
[108]
Nakajima T, Yoshizawa H, Ueda Y. J. Phys. Soc. Jpn., 2004, 73(8): 2283.

doi: 10.1143/JPSJ.73.2283
[109]
Rykov A I, Ueda Y, Nomura K. J. Solid State Chem., 2009, 182(8): 2157.

doi: 10.1016/j.jssc.2009.05.029
[110]
Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Nat. Mater., 2015, 14(2): 205.

doi: 10.1038/nmat4166
[111]
Jeamjumnunja K, Gong W Q, Makarenko T, Jacobson A J. J. Solid State Chem., 2016, 239: 36.

doi: 10.1016/j.jssc.2016.04.006
[112]
Pineda O L, Moreno Z L, Roussel P, Świerczek K, Gauthier G H. Solid State Ion., 2016, 288: 61.

doi: 10.1016/j.ssi.2016.01.022
[113]
Zhang Y, Zhao H L, Du Z H, Świerczek K, Li Y Y. Chem. Mater., 2019, 31(10): 3784.

doi: 10.1021/acs.chemmater.9b01012
[114]
Sun Y F, Zhang Y Q, Hua B, Behnamian Y, Li J, Cui S H, Li J H, Luo J L. J. Power Sources, 2016, 301: 237.

doi: 10.1016/j.jpowsour.2015.09.127
[115]
Zhang Y, Zhang B, Zhao H, Świerczek K, Li H. Catal. Today, 2020.
[116]
Ding H P, Xue X J. J. Power Sources, 2010, 195(20): 7038.

doi: 10.1016/j.jpowsour.2010.05.010
[117]
He Z P, Xia L N, Chen Y H, Yu J C, Huang X W, Yu Y. RSC Adv., 2015, 5(71): 57592.

doi: 10.1039/C5RA09762B
[118]
Ding H P, Xue X J. J. Power Sources, 2010, 195(15): 4718.

doi: 10.1016/j.jpowsour.2010.02.027
[119]
Chen Y H, Cheng Z X, Yang Y, Gu Q W, Tian D, Lu X Y, Yu W L, Lin B. J. Power Sources, 2016, 310: 109.

doi: 10.1016/j.jpowsour.2016.02.013
[120]
Dong G H, Yang C Y, He F, Jiang Y M, Ren C L, Gan Y, Lee M, Xue X J. RSC Adv., 2017, 7(37): 22649.

doi: 10.1039/C7RA03143B
[121]
Lee D, Kim D, Son S J, Kwon Y I, Lee Y, Ahn J H, Joo J H. J. Power Sources, 2019, 434: 226743.

doi: 10.1016/j.jpowsour.2019.226743
[122]
Ding H P, Tao Z T, Liu S, Zhang J J. Sci. Rep., 2015, 5(1): 1.
[123]
Miyake M, Iwami M, Takeuchi M, Nishimoto S, Kameshima Y. J. Power Sources, 2018, 390: 181.

doi: 10.1016/j.jpowsour.2018.04.051
[124]
Ding G C, Gan T, Yu J, Li P, Yao X L, Hou N J, Fan L J, Zhao Y C, Li Y D. Catal. Today, 2017, 298: 250.

doi: 10.1016/j.cattod.2017.03.060
[125]
Kim S, Kim C, Lee J H, Shin J, Lim T H, Kim G. Electrochimica Acta, 2017, 225: 399.

doi: 10.1016/j.electacta.2016.12.178
[126]
Choi S, Sengodan S, Park S, Ju Y W, Kim J, Hyodo J, Jeong H Y, Ishihara T, Shin J, Kim G. J. Mater. Chem. A, 2016, 4(5): 1747.

doi: 10.1039/C5TA08878J
[127]
Hua B, Li M, Sun Y F, Zhang Y Q, Yan N, Li J, Etsell T, Sarkar P, Luo J L. Appl. Catal. B: Environ., 2017, 200: 174.

doi: 10.1016/j.apcatb.2016.07.001
[128]
Kwon O, Sengodan S, Kim K, Kim G, Jeong H Y, Shin J, Ju Y W, Han J W, Kim G,. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6
[129]
Sengodan S, Ju Y W, Kwon O, Jun A, Jeong H Y, Ishihara T, Shin J, Kim G. ACS Sustainable Chem. Eng., 2017, 5(10): 9207.

doi: 10.1021/acssuschemeng.7b02156
[130]
Bahout M, Managutti P B, Dorcet V, Le Gal la Salle A, Paofai S, Hansen T C. J. Mater. Chem. A, 2020, 8(7): 3590.

doi: 10.1039/C9TA10159D
[131]
Xue S S, Shi N, Wan Y H, Xu Z Q, Huan D M, Zhang S W, Xia C R, Peng R R, Lu Y L. J. Mater. Chem. A, 2019, 7(38): 21783.

doi: 10.1039/C9TA07027C
[132]
Li J W, Wei B, Yue X, Li H, Lü Z. Electrochimica Acta, 2019, 304: 30.

doi: 10.1016/j.electacta.2019.02.113
[1] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[2] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[3] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[4] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[5] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[6] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[7] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[8] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[9] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[10] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[11] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[12] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[13] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[14] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[15] Jiahui Li, Jing Zhang, Binglong Rui, Li Lin, Limin Chang, Ping Nie. Application of MXene and Its Composites in Sodium/Potassium Ion Batteries [J]. Progress in Chemistry, 2019, 31(9): 1283-1292.