中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 973-982 DOI: 10.7536/PC210429 Previous Articles   Next Articles

• Review •

Post-Treatment Technology Improves Fuel Cell Catalyst Stability

Yangyang Liu1,2, Zigang Zhao1,2, Hao Sun3, Xianghui Meng3, Guangjie Shao1, Zhenbo Wang2,3()   

  1. 1 College of Environment and Chemical Engineering, Yanshan University,Qinhuangdao 066004, China
    2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology,Harbin 150001, China
    3 Shandong ALLGRAND New Energy Technology Co., Ltd,Dezhou 253000, China
  • Received: Revised: Online: Published:
  • Contact: Zhenbo Wang
  • Supported by:
    National Natural Science Foundation of China(21673064); National Natural Science Foundation of China(51802059); National Natural Science Foundation of China(21905070); National Natural Science Foundation of China(22075062); Heilongjiang Province “Hundred Million” Major Project of Engineering Science and Technology(2019ZX09A02); Shandong Taishan Industry Leading Talent Project(2017TSCYCX-33)
Richhtml ( 24 ) PDF ( 455 ) Cited
Export

EndNote

Ris

BibTeX

Fuel cell is a kind of renewable new energy technology, which can directly convert the chemical energy of fuel into electric energy through the chemical reaction at the interface of electrode and electrolyte. Because energy conversion efficiency is high, no noise and pollution.Proton exchange membrane fuel cell (PEMFC) is one of the most widely used fuel cells, but PEMFC still has some problems to be solved, such as high cost, low power density and poor catalyst stability. Therefore, to achieve the large-scale application of proton exchange membrane fuel cell, research and development of high activity and high stability catalyst is the top priority. In order to meet the requirements of high activity and high stability of fuel cell catalysts, this paper reviews the research progress and performance improvement methods of catalysts for fuel cells. The methods to improve the stability of fuel cell were discussed from the perspectives of active components and carrier. The performance of catalyst was improved by reducing the diameter of active component particles, preparing platinum particles with specific orientation surface, alloying platinum with transition metals and the modification of carrier also had a significant impact on the stability of catalyst. Finally, the future development direction of fuel cell catalysts and the main problems in practical application are proposed.

Contents

1 Introduction

2 Fuel cell electrocatalyst

3 Post-processing technology

3.1 Active component angle improves stability

3.2 Carrier angle improves stability

4 Conclusion and prospect

Fig. 1 TEM images of Pt3Ni (a) and Pt1.5Ni (b) aerogel,insets show the corresponding distributions of nanochain diameters[18];(c) schematic illustration of the revealed size-controlled growth mechanism of PtN i3[19]
Fig. 2 Schematic illustration of the selectively Pt facet exposure under different anodization voltages of (a) 1.5 V, (b) 1.7 V and (c) 2.2 V[29]
Fig. 3 (A) Plots of H2O2 yield and electron transfer numbers and (B) the corresponding Tafel plots of the Au33Pt67 sample and Pt/C catalyst[32];(C) schematic illustration of major states involved the synthesis of PtAu alloy through a microwave-assisted flash heating[34];(D) ORR polarization curves for Pt-Au/GNs (1:0.05) (a), Pt-Au/GNs (1:0.1) (b), Pt-Au/GNs (1:0.3) (c), Pt/GNs (1:0.6) (d), Pt/GNs (e) and PtRu/C-JM (f) at rotation rate of 1600 r/min, with the scan rate of 5 mV·s-1 in O2 saturated 0.5 mol/L H2SO4 solution[35]
Fig. 4 (a) The corrosion electrochemistry of PtNi alloy electrocatalysts during its catalytic ORR process[41];(b) illustrations of the synthesis of Au-Pt3Ni nanowires[44]
Fig. 5 Schematic illustration of the formation of FeSAs/PTF[51]
Fig. 6 Structures of Pt-Co rhombic dodecahedra[62]
Fig. 7 (a) Schematic diagram for preparation of PtFe-PtxFeyCezOj catalyst by microfluidic method[71];(b) schematic illustration of Pt/TiO2@CNT synthesis[73];(c) the fabrication process of Pt/TiO2-C catalysts[74]
[1]
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2015, 44(8): 2060.

doi: 10.1039/c4cs00470a pmid: 25672249
[2]
Ren X F, Lv Q Y, Liu L F, Liu B H, Wang Y R, Liu A M, Wu G. Sustain. Energy Fuels, 2020, 4(1): 15.

doi: 10.1039/C9SE00460B
[3]
Li J Z, Zhang H G, Samarakoon W, Shan W T, Cullen D A, Karakalos S, Chen M J, Gu D M, More K, Wang G F, Feng Z X, Wang Z B, Wu G. Angew. Chem. Int. Ed., 2019, 58:18971.

doi: 10.1002/anie.201909312
[4]
Gong W H, Jiang Z, Wu R F, Liu Y, Huang L, Hu N, Tsiakaras P, Shen P K. Appl. Catal. B Environ., 2019, 246: 277.

doi: 10.1016/j.apcatb.2019.01.061
[5]
Jiang M, Fu C P, Yang J, Liu Q, Zhang J, Sun B D. Energy Storage Mater., 2019, 18: 34.
[6]
Zhang Z J, Zhou D B, Bao X J, Yu H Z, Huang B Y. Int. J. Hydrog. Energy, 2018, 43(45): 20734.

doi: 10.1016/j.ijhydene.2018.09.153
[7]
Wang Q C, Ji Y J, Lei Y P, Wang Y B, Wang Y D, Li Y Y, Wang S Y. ACS Energy Lett., 2018, 3(5): 1183.

doi: 10.1021/acsenergylett.8b00303
[8]
Jiang H, Gu J X, Zheng X S, Liu M, Qiu X Q, Wang L B, Li W Z, Chen Z F, Ji X B, Li J. Energy Environ. Sci., 2019, 12(1): 322.

doi: 10.1039/C8EE03276A
[9]
Zhang L, Xiong J, Qin Y H, Wang C W. Carbon, 2019, 150: 475.

doi: 10.1016/j.carbon.2019.05.044
[10]
Shao Y Y, Yin G P, Gao Y Z. J. Power Sources, 2007, 171(2): 558.

doi: 10.1016/j.jpowsour.2007.07.004
[11]
Li C L, Tan H B, Lin J J, Luo X L, Wang S P, You J, Kang Y M, Bando Y, Yamauchi Y, Kim J. Nano Today, 2018, 21: 91.

doi: 10.1016/j.nantod.2018.06.005
[12]
Becknell N, Kang Y J, Chen C, Resasco J, Kornienko N, Guo J H, Markovic N M, Somorjai G A, Stamenkovic V R, Yang P D. J. Am. Chem. Soc., 2015, 137(50): 15817.

doi: 10.1021/jacs.5b09639 pmid: 26652294
[13]
Fang Z C, Wang Y C, Liu C X, Chen S, Sang W, Wang C, Zeng J. Small, 2015, 11(22): 2593.

doi: 10.1002/smll.201402799
[14]
Bing Y H, Liu H S, Zhang L, Ghosh D, Zhang J J. Chem. Soc. Rev., 2010, 39(6): 2184.

doi: 10.1039/b912552c
[15]
Yi S J, Jiang H, Bao X J, Zou S Q, Liao J J, Zhang Z J. J. Electroanal. Chem., 2019, 848: 113279.
[16]
Wang Y J, Zhao N N, Fang B Z, Li H, Bi X T, Wang H J. Chem. Rev., 2015, 115(9): 3433.

doi: 10.1021/cr500519c
[17]
Huang S Y, Shan A X, Wang R M. Catalysts, 2018, 8(11): 538.

doi: 10.3390/catal8110538
[18]
Henning S, Kühn L, Herranz J, Durst J, Binninger T, Nachtegaal M, Werheid M, Liu W, Adam M, Kaskel S, Eychmüller A, Schmidt T J. J. Electrochem. Soc., 2016, 163(9): F998.

doi: 10.1149/2.0251609jes
[19]
Gan L, Rudi S, Cui C H, Heggen M, Strasser P. Small, 2016, 12(23): 3189.

doi: 10.1002/smll.201600027
[20]
Bhunia K, Khilari S, Pradhan D. Dalton Trans., 2017, 46(44): 15558.

doi: 10.1039/C7DT02608K
[21]
Lin R, Cai X, Zeng H, Yu Z P. Adv. Mater., 2018, 30(17): 1705332.
[22]
Choi D S, Robertson A W, Warner J H, Kim S O, Kim H. Adv. Mater., 2016, 28(33): 7115.

doi: 10.1002/adma.201600469
[23]
Huang X Q, Zhao Z P, Cao L, Chen Y, Zhu E B, Lin Z Y, Li M F, Yan A M, Zettl A, Wang Y M, Duan X F, Mueller T, Huang Y. Science, 2015, 348(6240): 1230.

doi: 10.1126/science.aaa8765
[24]
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K. Nat. Chem., 2009, 1(7): 552.

doi: 10.1038/nchem.367 pmid: 21378936
[25]
Jinnouchi R, Toyoda E, Hatanaka T, Morimoto Y. J. Phys. Chem. C, 2010, 114(41): 17557.

doi: 10.1021/jp106593d
[26]
Brandiele R, Durante C, Grᶏdzka E, Rizzi G A, Zheng J, Badocco D, Centomo P, Pastore P, Granozzi G, Gennaro A. J. Mater. Chem. A, 2016, 4(31): 12232.

doi: 10.1039/C6TA04498K
[27]
Tetteh E B, Lee H Y, Shin C H, Kim S H, Ham H C, Tran T N, Jang J H, Yoo S J, Yu J S. ACS Energy Lett., 2020, 5(5): 1601.

doi: 10.1021/acsenergylett.0c00184
[28]
Tian X L, Xu Y Y, Zhang W Y, Wu T, Xia B Y, Wang X. ACS Energy Lett., 2017, 2(9): 2035.

doi: 10.1021/acsenergylett.7b00593
[29]
Wang G Z, Yang Z Z, Du Y G, Yang Y. Angew. Chem. Int. Ed., 2019, 58(44): 15848.

doi: 10.1002/anie.201907322
[30]
Xu S C, Kim Y, Park J, Higgins D, Shen S J, Schindler P, Thian D, Provine J, Torgersen J, Graf T, Schladt T D, Orazov M, Liu B H, Jaramillo T F, Prinz F B. Nat. Catal., 2018, 1(8): 624.

doi: 10.1038/s41929-018-0118-1
[31]
Chen Y L, Cheng T, Goddard W A. J. Am. Chem. Soc., 2020, 142(19): 8625.

doi: 10.1021/jacs.9b13218
[32]
Wu W, Tang Z H, Wang K, Liu Z, Li L G, Chen S W. Electrochim. Acta, 2018, 260: 168.

doi: 10.1016/j.electacta.2017.11.057
[33]
Vitale A, Murad H, Abdelhafiz A, Buntin P, Alamgir F M. ACS Appl. Mater. Interfaces, 2019, 11(1): 1026.

doi: 10.1021/acsami.8b17274
[34]
Zhang D T, Chen C N, Wang X Y, Guo G S, Sun Y G. Part. Part. Syst. Charact., 2018, 35(5): 1700413.
[35]
Xie Y X, Li Z S, Liu Y, Ye Y X, Zou X H, Lin S. Appl. Surf. Sci., 2020, 508: 145161.
[36]
Shen X C, Dai S, Pan Y B, Yao L B, Yang J L, Pan X Q, Zeng J, Peng Z M. ACS Catal., 2019, 9(12): 11431.

doi: 10.1021/acscatal.9b03430
[37]
Bu L Z, Feng Y G, Yao J L, Guo S J, Guo J, Huang X Q. Nano Res., 2016, 9(9): 2811.

doi: 10.1007/s12274-016-1170-2
[38]
Beermann V, Gocyla M, Willinger E, Rudi S, Heggen M, Dunin-Borkowski R E, Willinger M G, Strasser P. Nano Lett., 2016, 16(3): 1719.

doi: 10.1021/acs.nanolett.5b04636 pmid: 26854940
[39]
Escudero-Escribano M, Malacrida P, Hansen M H, Vej-Hansen U G, Velazquez-Palenzuela A, Tripkovic V, Schiotz J, Rossmeisl J, Stephens I E L, Chorkendorff I. Science, 2016, 352(6281): 73.

doi: 10.1126/science.aad8892 pmid: 27034369
[40]
Nie Y, Wei Z D. Prog. Nat. Sci. Mater. Int., 2020, 30(6): 796.

doi: 10.1016/j.pnsc.2020.10.004
[41]
Huang L, Zaman S, Tian X L, Wang Z T, Fang W S, Xia B Y. Acc. Chem. Res., 2021, 54(2): 311.

doi: 10.1021/acs.accounts.0c00488
[42]
Lim J, Shin H, Kim M, Lee H, Lee K S, Kwon Y, Song D, Oh S, Kim H, Cho E. Nano Lett., 2018, 18(4): 2450.

doi: 10.1021/acs.nanolett.8b00028
[43]
Zhang C L, Sandorf W, Peng Z M. ACS Catal., 2015, 5(4): 2296.

doi: 10.1021/cs502112g
[44]
Wu Z F, Su Y Q, Hensen E J M, Tian X L, You C H, Xu Q. J. Mater. Chem. A, 2019, 7(46): 26402.

doi: 10.1039/C9TA08682J
[45]
Kuttiyiel K A, Kattel S, Cheng S B, Lee J H, Wu L J, Zhu Y M, Park G G, Liu P, Sasaki K, Chen J G, Adzic R R. ACS Appl. Energy Mater., 2018, 1(8): 3771.

doi: 10.1021/acsaem.8b00555
[46]
He D P, Rong Y Y, Carta M, Malpass-Evans R, McKeown N B, Marken F. RSC Adv., 2016, 6(11): 9315.

doi: 10.1039/C5RA25320A
[47]
Cheng K, Kou Z K, Zhang J, Jiang M, Wu H, Hu L, Yang X Y, Pan M, Mu S C. J. Mater. Chem. A, 2015, 3(26): 14007.

doi: 10.1039/C5TA02386F
[48]
Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J. Am. Chem. Soc., 2012, 134(32): 13252.

doi: 10.1021/ja306501x
[49]
Liu J, Jiao M G, Mei B B, Tong Y X, Li Y P, Ruan M B, Song P, Sun G Q, Jiang L H, Wang Y, Jiang Z, Gu L, Zhou Z, Xu W L. Angew. Chem. Int. Ed., 2019, 58(4): 1163.

doi: 10.1002/anie.201812423
[50]
Li T F, Liu J J, Song Y, Wang F. ACS Catal., 2018, 8(9): 8450.

doi: 10.1021/acscatal.8b02288
[51]
Yi J D, Xu R, Wu Q, Zhang T, Zang K T, Luo J, Liang Y L, Huang Y B, Cao R. ACS Energy Lett., 2018, 3(4): 883.

doi: 10.1021/acsenergylett.8b00245
[52]
Cheng K, Zhu K, Liu S L, Li M X, Huang J H, Yu L H, Xia Z, Zhu C, Liu X B, Li W H, Lu W T, Wei F, Zhou Y H, Zheng W Q, Mu S C. ACS Appl. Mater. Interfaces, 2018, 10(25): 21306.

doi: 10.1021/acsami.8b03832
[53]
Wang X X, Hwang S, Pan Y T, Chen K T, He Y H, Karakalos S, Zhang H G, Spendelow J S, Su D, Wu G. Nano Lett., 2018, 18(7): 4163.

doi: 10.1021/acs.nanolett.8b00978
[54]
Wang Q, Zhao Z L, Zhang Z, Feng T L, Zhong R Y, Xu H, Pantelides S T, Gu M. Adv. Sci., 2020, 7(2): 1901279.
[55]
Li J R, Sharma S, Liu X M, Pan Y T, Spendelow J S, Chi M F, Jia Y K, Zhang P, Cullen D A, Xi Z, Lin H H, Yin Z Y, Shen B, Muzzio M, Yu C, Kim Y S, Peterson A A, More K L, Sun S H. Joule, 2019, 3(1): 124.

doi: 10.1016/j.joule.2018.09.016
[56]
Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y H, Li Q. Adv. Energy Mater., 2019, 9(17): 1803771.
[57]
Chung D Y, Jun S W, Yoon G, Kwon S G, Shin D Y, Seo P, Yoo J M, Shin H, Chung Y H, Kim H, Mun B S, Lee K S, Lee N S, Yoo S J, Lim D H, Kang K, Sung Y E, Hyeon T. J. Am. Chem. Soc., 2015, 137(49): 15478.

doi: 10.1021/jacs.5b09653
[58]
Zhao T, Luo E G, Li Y, Wang X, Liu C P, Xing W, Ge J J. Sci. China Mater., 2021, 64(7): 1671.

doi: 10.1007/s40843-020-1582-3
[59]
Boone C V, Maia G. Electrochim. Acta, 2019, 303: 192.

doi: 10.1016/j.electacta.2019.02.079
[60]
Fang D H, Wan L, Jiang Q K, Zhang H J, Tang X J, Qin X P, Shao Z G, Wei Z D. Nano Res., 2019, 12(11): 2766.

doi: 10.1007/s12274-019-2511-8
[61]
Yang Z Y, Wang M, Liu G C, Chen M, Ye F, Zhang W B, Yang W, Wang X D. Ionics, 2020, 26(1): 293.

doi: 10.1007/s11581-019-03205-z
[62]
Chen S P, Li M F, Gao M Y, Jin J B, van Spronsen M A, Salmeron M B, Yang P D. Nano Lett., 2020, 20(3): 1974.

doi: 10.1021/acs.nanolett.9b05251
[63]
Vinayan B P, Nagar R, Rajalakshmi N, Ramaprabhu S. Adv. Funct. Mater., 2012, 22(16): 3519.

doi: 10.1002/adfm.201102544
[64]
Li M W, Wu X, Zeng J H, Hou Z H, Liao S J. Electrochim. Acta, 2015, 182: 351.

doi: 10.1016/j.electacta.2015.09.122
[65]
Wang C N, Gao H R, Chen X H, Yuan W Z, Zhang Y M. Electrochim. Acta, 2015, 152: 383.

doi: 10.1016/j.electacta.2014.11.164
[66]
Wang Y, Jin J H, Yang S L, Li G, Jiang J M. Int. J. Hydrog. Energy, 2016, 41(26): 11174.

doi: 10.1016/j.ijhydene.2016.04.235
[67]
Wang X X, Sokolowski J, Liu H, Wu G. Chin. J. Catal., 2020, 41(5): 739.

doi: 10.1016/S1872-2067(19)63407-8
[68]
Liang L H, Jin H H, Zhou H, Liu B S, Hu C X, Chen D, Wang Z, Hu Z Y, Zhao Y F, Li H W, He D P, Mu S C. Nano Energy, 2021, 88: 106221.
[69]
Liang L H, jin H H, Zhou H, Liu B S, Hu C X, Chen D, Zhu J W, Wang Z, Li H W, Liu S L, He D P, Mu S C. J. Energy Chem., 2022, 65: 48.

doi: 10.1016/j.jechem.2021.05.033
[70]
Huang H, Wang X. J. Mater. Chem. A, 2014, 2: 6266.

doi: 10.1039/C3TA14754A
[71]
Ma J G, Tong X, Wang J M, Zhang G X, Lv Y P, Zhu Y C, Sun S H, Yang Y C, Song Y J. Electrochim. Acta, 2019, 299: 80.

doi: 10.1016/j.electacta.2018.12.132
[72]
Wu B H, Liu D Y, Mubeen S, Chuong T T, Moskovits M, Stucky G D. J. Am. Chem. Soc., 2016, 138(4): 1114.

doi: 10.1021/jacs.5b11341
[73]
Kong J, Qin Y H, Wang T L, Wang C W. Int. J. Hydrog. Energy, 2020, 45(3): 1991.

doi: 10.1016/j.ijhydene.2019.11.016
[74]
Wang J Y, Xu M, Zhao J Q, Fang H F, Huang Q Z, Xiao W P, Li T, Wang D L. Appl. Catal. B Environ., 2018, 237: 228.

doi: 10.1016/j.apcatb.2018.05.085
[75]
Komba N, Wei Q L, Zhang G X, Rosei F, Sun S H. Appl. Catal. B Environ., 2019, 243: 373.

doi: 10.1016/j.apcatb.2018.10.070
[76]
Du C, Liu X L, Ye G H, Gao X H, Zhuang Z H, Li P, Xiang D, Li X K, Clayborne A Z, Zhou X G, Chen W. ChemSusChem, 2019, 12(5): 1017.

doi: 10.1002/cssc.201802960
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[6] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[7] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[8] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[9] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[10] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[11] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[12] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[13] Lujie Song, Youping Wu, Jianping Deng. Enantioselective Release of Chiral Drugs [J]. Progress in Chemistry, 2021, 33(9): 1550-1559.
[14] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[15] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.