中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1882-1895 DOI: 10.7536/PC211206 Previous Articles   Next Articles

• Review •

Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications

Keqing Wang1,2, Huimin Xue1, Chenchen Qin1(), Wei Cui1()   

  1. 1 Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 National Museum of China,Beijing 100006, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: cuiwei@iccas.ac.cn(Wei Cui);gracecc1989@163.com(Chenchen Qin)
  • Supported by:
    National Natural Science Foundation of China(21961142022); National Natural Science Foundation of China(21872150); National Natural Science Foundation of China(22072160)
Richhtml ( 50 ) PDF ( 605 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the construction of micro/nano structure assemblies by biological assembly units has been extensively studied in the fields of bio-nanotechnology and other fields. Micro/nano structure assemblies with different morphologies can be obtained by a quick and simple method such as the self-assembly of biomolecules. Diphenylalanine dipeptide and its derivatives, as a biologically active peptide in many peptide-based building blocks, have good biocompatibility and characteristic for chemical modification, biological function and simple preparation. Micro/nano-materials with different structures based on diphenylalanine and its derivatives can be obtained by controllable assembled methods. They also have wide applications in optics, mechanical engineering, electrochemical sensing and detection areas, etc. Controlled assembly of short peptides and its derivatives can be achieved by changing the assembly conditions or introducing of exogenous small molecules. This review summaries and outlooks the controllable assembly of diphenylalanine dipeptide micro/nano structure assemblies and their applications in biomedicine, biosensor, optoelectronic materials, optical waveguides and catalysis.

Contents

1 Introduction

2 Controllable assembly of dipeptide-based assemblies

2.1 Physical factors

2.2 Chemical factors

2.3 Biological factors

3 Application of dipeptide-based assemblies

3.1 Biomedicine

3.2 Biosensors

3.3 Optoelectronic materials

3.4 Optical waveguide

3.5 Catalysis

4 Conclusion and outlook

Fig. 1 Chiral self-assembly of Ferrocene-L-Phe-L-Phe-OH (Fc-FF) into rationally designed chiral nanostructures[36]
Fig. 2 Representation of light-controlled reversible gel-sol transition of non-photosensitive diphenylalanine supramolecular assembly[40]
Fig. 3 Schematic illustration of the metal ion modulated structural transformation of amyloid-derived self-assembled Fmoc-FF from the β-sheet into the superhelix and random coil[15]
Fig. 4 (a) Macroscopic and microscopic characterization of gel formed by Fmoc-FF hydrogelator; (b) Packing model of Fmoc-FF dipeptides in self-assembled hydrogels as proposed by Ulijn et al.[60]
Fig. 5 Use of FF aerogels as hemostasis materials and cryogels as waterproof materials for wound care[77]
Fig. 6 Schematic process of assembling CDP-AuNP hybrid microspheres and fabrication of ChOx/CDP-AuNP/CS/PB biosensor electrodes[88]
Fig. 7 Preparation of FF nanotube piezoelectric materials[90]
Fig. 8 (a) Chemical structures of CDP and genipin and solvent-modulated assembly of CDPG; (b) schematic of the photocurrent measurements with the photoanodes based on nanospheres and nanofibers[94]
Fig. 9 (a~c) CLSM images and (d) bright-field image of rhodamine B doped diphenylalanine branched structure. (e, f) Photoluminescence images of rhodamine B-doped diphenylalanine branched structures excited at the rod position. (g) Photoluminescence image and (h) bright-field image of rhodamine B-doped diphenylalanine branched structures excited at the tips of the branches. All the scale bars represent 20 μm[98]
Fig.10 (A) Highlighted crystal structure of fungus laccase from Trametes versicolor (PDB: 1GYC). (B) Chemical structure of CDPGA, schematic illustration of reversible transformation of nanospheres to nanochains modulating by Cu2+ and H+, and switchable enzyme-like catalytic oxidation of hydroquinone to benzoquinone[33]
[1]
Goor O J G M, Hendrikse S I S, Dankers P Y W, Meijer E W. Chem. Soc. Rev., 2017, 46(21): 6621.

doi: 10.1039/C7CS00564D
[2]
Tao K, Levin A, Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2016, 45(14): 3935.

doi: 10.1039/C5CS00889A
[3]
Makam P, Gazit E. Chem. Soc. Rev., 2018, 47(10): 3406.

doi: 10.1039/C7CS00827A
[4]
Wei G, Su Z Q, Reynolds N P, Arosio P, Hamley I W, Gazit E, Mezzenga R. Chem. Soc. Rev., 2017, 46(15): 4661.

doi: 10.1039/C6CS00542J
[5]
Vestergaard M, Kerman K, Saito M, Nagatani N, Takamura Y, Tamiya E. J. Am. Chem. Soc., 2005, 127(34): 11892.

doi: 10.1021/ja052522q
[6]
Lingenfelder M, Tomba G, Costantini G, Colombi Ciacchi L, De Vita A, Kern K. Angew. Chem., 2007, 119(24): 4576.

doi: 10.1002/ange.200700194
[7]
Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2014, 43(20): 6881.

doi: 10.1039/c4cs00164h pmid: 25099656
[8]
Tao K, Yoskovitz E, Adler-Abramovich L, Gazit E. RSC Adv., 2015, 5(90): 73914.

doi: 10.1039/C5RA16412E
[9]
Wu A L, Guo Y X, Li X B, Xue H M, Fei J B, Li J B. Angew. Chem. Int. Ed., 2021, 60(4): 2099.

doi: 10.1002/anie.202012470
[10]
Wang J B, Chao J, Liu H J, Su S, Wang L H, Huang W, Willner I, Fan C H. Angew. Chem. Int. Ed., 2017, 56(8): 2171.

doi: 10.1002/anie.201610125
[11]
Elsawy M A, Smith A M, Hodson N, Squires A, Miller A F, Saiani A. Langmuir, 2016, 32(19): 4917.

doi: 10.1021/acs.langmuir.5b03841
[12]
Wei G, Reichert J, Jandt K D. Chem. Commun., 2008(33): 3903.
[13]
Dave A C, Loveday S M, Anema S G, Jameson G B, Singh H. Biomacromolecules, 2014, 15(1): 95.

doi: 10.1021/bm401315s
[14]
Wei G, Reichert J, Bossert J, Jandt K D. Biomacromolecules, 2008, 9(11): 3258.

doi: 10.1021/bm800824r
[15]
Ji W, Yuan C Q, Zilberzwige-Tal S, Xing R R, Chakraborty P, Tao K, Gilead S, Yan X H, Gazit E. ACS Nano, 2019, 13(6): 7300.

doi: 10.1021/acsnano.9b03444
[16]
Scanlon S, Aggeli A. Nano Today, 2008, 3(3/4): 22.

doi: 10.1016/S1748-0132(08)70041-0
[17]
Yang Y L, Ulung K, Wang X M, Horii A, Yokoi H, Zhang S G. Nano Today, 2009, 4(2): 193.

doi: 10.1016/j.nantod.2009.02.009
[18]
Baker P A, Goltz M N, Schrand A M, Yoon D Y, Kim D S. Biosens. Bioelectron., 2014, 61: 119.

doi: 10.1016/j.bios.2014.04.010
[19]
Hamley I W. Angew. Chem. Int. Ed., 2014, 53(27): 6866.

doi: 10.1002/anie.201310006 pmid: 24920517
[20]
Lian M L, Chen X, Liu X J, Yi Z C, Yang W S. Sens. Actuat. B Chem., 2017, 251: 86.

doi: 10.1016/j.snb.2017.04.102
[21]
Gao X, Matsui H. Adv. Mater., 2005, 17(17): 2037.

doi: 10.1002/adma.200401849
[22]
Wang J H, Ouyang Z F, Ren Z W, Li J F, Zhang P P, Wei G, Su Z Q. Carbon, 2015, 89: 20.

doi: 10.1016/j.carbon.2015.03.024
[23]
Kim W, ThÉvenot J, Ibarboure E, Lecommandoux S, Chaikof E. Angew. Chem. Int. Ed., 2010, 49(25): 4257.

doi: 10.1002/anie.201001356
[24]
Zou Q L, Abbas M, Zhao L Y, Li S K, Shen G Z, Yan X H. J. Am. Chem. Soc., 2017, 139(5): 1921.

doi: 10.1021/jacs.6b11382
[25]
Zhang Q, Li M X, Zhu C Y, Nurumbetov G, Li Z D, Wilson P, Kempe K, Haddleton D M. J. Am. Chem. Soc., 2015, 137(29): 9344.

doi: 10.1021/jacs.5b04139
[26]
Yang L L, Liu A J, Cao S Q, Putri R M, Jonkheijm P, Cornelissen J J L M. Chem. Eur. J., 2016, 22(44): 15570.

doi: 10.1002/chem.201601943
[27]
Zhang S G. Nat. Biotechnol., 2003, 21(10): 1171.

doi: 10.1038/nbt874
[28]
Hauser C A E, Zhang S G. Nature, 2010, 468(7323): 516.

doi: 10.1038/468516a
[29]
Sun B B, Li Q, Riegler H, Eickelmann S, Dai L R, Yang Y, Perez-Garcia R, Jia Y, Chen G X, Fei J B, Holmberg K, Li J B. ACS Nano, 2017, 11(10): 10489.

doi: 10.1021/acsnano.7b05800
[30]
Puiu M, Bala C. Bioelectrochemistry, 2018, 120: 66.

doi: 10.1016/j.bioelechem.2017.11.009
[31]
Xue H M, Fei J B, Wu A L, Xu X, Li J B. CCS Chem., 2021, 3(11): 8.

doi: 10.31635/ccschem.021.202000601
[32]
Sun B B, Tao K, Jia Y, Yan X H, Zou Q L, Gazit E, Li J B. Chem. Soc. Rev., 2019, 48(16): 4387.

doi: 10.1039/C9CS00085B
[33]
Wang C L, Fei J B, Wang K Q, Li J B. Angew. Chem. Int. Ed., 2020, 59(43): 18960.

doi: 10.1002/anie.202006994
[34]
Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E. Nat. Nanotechnol., 2009, 4(12): 849.

doi: 10.1038/nnano.2009.298 pmid: 19893524
[35]
Liu X C, Fei J B, Wang A H, Cui W, Zhu P L, Li J B. Angew. Chem. Int. Ed., 2017, 56(10): 2660.

doi: 10.1002/anie.201612024
[36]
Wang Y F, Qi W, Huang R L, Yang X J, Wang M F, Su R X, He Z M. J. Am. Chem. Soc., 2015, 137(24): 7869.

doi: 10.1021/jacs.5b03925
[37]
Ma H C, Fei J B, Li Q, Li J B. Small, 2015, 11(15): 1787.

doi: 10.1002/smll.201402140
[38]
Yao X Y, Li T, Wang J, Ma X, Tian H. Adv. Opt. Mater., 2016, 4(9): 1322.

doi: 10.1002/adom.201600281
[39]
Russew M M, Hecht S. Adv. Mater., 2010, 22(31): 3348.

doi: 10.1002/adma.200904102
[40]
Li X B, Fei J B, Xu Y Q, Li D X, Yuan T T, Li G L, Wang C L, Li J B. Angew. Chem. Int. Ed., 2018, 57(7): 1903.

doi: 10.1002/anie.201711547
[41]
Zhao Y S, Yang W S, Yao J N. Phys. Chem. Chem. Phys., 2006, 8(28): 3300.

doi: 10.1039/b604645m
[42]
Wang H Q, Yan X H, Li G L, Pilz-Allen C, Möhwald H, Shchukin D. Adv. Healthcare Mater., 2014, 3(6): 825.

doi: 10.1002/adhm.201300596
[43]
Skorb E V, Möhwald H, Irrgang T, Fery A, Andreeva D V. Chem. Commun., 2010, 46(42): 7897.

doi: 10.1039/c0cc00965b
[44]
Eddleston M D, Jones W. Cryst. Growth Des., 2010, 10(1): 365.

doi: 10.1021/cg900969n
[45]
Li Q, Jia Y, Dai L R, Yang Y, Li J B. ACS Nano, 2015, 9(3): 2689.

doi: 10.1021/acsnano.5b00623
[46]
Li Q, Ma H C, Jia Y, Li J B, Zhu B H. Chem. Commun., 2015, 51(33): 7219.

doi: 10.1039/C5CC01554E
[47]
Na N, Mu X Y, Liu Q L, Wen J Y, Wang F F, Ouyang J. Chem. Commun., 2013, 49(86): 10076.

doi: 10.1039/c3cc45320k
[48]
Zou Q L, Zhang L, Yan X H, Wang A H, Ma G H, Li J B, Möhwald H, Mann S. Angew. Chem. Int. Ed., 2014, 53(9): 2366.

doi: 10.1002/anie.201308792
[49]
Ma H C, Fei J B, Cui Y, Zhao J, Wang A H, Li J B. Chem. Commun., 2013, 49(85): 9956.

doi: 10.1039/c3cc45514a
[50]
Yan X H, Zhu P L, Fei J B, Li J B. Adv. Mater., 2010, 22(11): 1283.

doi: 10.1002/adma.200901889
[51]
Liu X C, Fei J B, Zhu P L, Li J B. Chem. Asian J., 2016, 11(19): 2700.

doi: 10.1002/asia.201600500
[52]
Yuan T T, Fei J B, Xu Y Q, Yang X K, Li J B. Macromol. Rapid Commun., 2017, 38(20): 1700408.

doi: 10.1002/marc.201700408
[53]
Zhang H, Fei J B, Yan X H, Wang A H, Li J B. Adv. Funct. Mater., 2015, 25(8): 1193.

doi: 10.1002/adfm.201403119
[54]
Miller Y, Ma B Y, Nussinov R. Coord. Chem. Rev., 2012, 256(19/20): 2245.

doi: 10.1016/j.ccr.2011.12.022
[55]
Kim J, Han T H, Kim Y I, Park J S, Choi J, Churchill D G, Kim S O, Ihee H. Adv. Mater., 2010, 22(5): 583.

doi: 10.1002/adma.200901973
[56]
Han T H, Kim J, Park J S, Park C B, Ihee H, Kim S O. Adv. Mater., 2007, 19(22): 3924.

doi: 10.1002/adma.2007001839
[57]
Wang J, Liu K, Yan L Y, Wang A H, Bai S, Yan X H. ACS Nano, 2016, 10(2): 2138.

doi: 10.1021/acsnano.5b06567
[58]
Zhang G, Zhang L W, Rao H J, Wang Y F, Li Q, Qi W, Yang X J, Su R X, He Z M. J. Colloid Interface Sci., 2020, 577: 388.

doi: 10.1016/j.jcis.2020.05.087
[59]
Zhu P L, Yan X H, Su Y, Yang Y, Li J B. Chem. Eur. J., 2010, 16(10): 3176.

doi: 10.1002/chem.200902139
[60]
Jayawarna V, Ali M, Jowitt T A, Miller A F, Saiani A, Gough J E, Ulijn R V. Adv. Mater., 2006, 18(5): 611.

doi: 10.1002/adma.200501522
[61]
Kumaraswamy P, Lakshmanan R, Sethuraman S, Krishnan U M. Soft Matter, 2011, 7(6): 2744.

doi: 10.1039/C0SM00897D
[62]
Tang C, Smith A M, Collins R F, Ulijn R V, Saiani A. Langmuir, 2009, 25(16): 9447.

doi: 10.1021/la900653q
[63]
McAulay K, Ucha P A, Wang H, Fuentes-CaparrÓs A M, Thomson L, Maklad O, Khunti N, Cowieson N, Wallace M, Cui H G, Poole R J, Seddon A, Adams D J. Chem. Commun., 2020, 56(29): 4094.

doi: 10.1039/D0CC01252A
[64]
Hughes M, Xu H X, Frederix P W J M, Smith A M, Hunt N T, Tuttle T, Kinloch I A, Ulijn R V. Soft Matter, 2011, 7(21): 10032.

doi: 10.1039/c1sm05981e
[65]
Chronopoulou L, Lorenzoni S, Masci G, Dentini M, Togna A R, Togna G, Bordi F, Palocci C. Soft Matter, 2010, 6(11): 2525.

doi: 10.1039/c001658f
[66]
Zhao J, Huang R L, Qi W, Wang Y F, Su R X, He Z M. Progress in Chemistry, 2014, 26(9): 1445.
( 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 化学进展, 2014, 26(9): 1445.).
[67]
Williams R J, Smith A M, Collins R, Hodson N, Das A K, Ulijn R V. Nat. Nanotechnol., 2009, 4(1): 19.

doi: 10.1038/nnano.2008.378 pmid: 19119277
[68]
Yang Z, Xu B. Adv. Mater., 2006, 18(22): 3043.

doi: 10.1002/adma.200600400
[69]
Yang Z M, Liang G L, Wang L, Xu B. J. Am. Chem. Soc., 2006, 128(9): 3038.

doi: 10.1021/ja057412y
[70]
Li J Y, Gao Y, Kuang Y, Shi J F, Du X W, Zhou J, Wang H M, Yang Z M, Xu B. J. Am. Chem. Soc., 2013, 135(26): 9907.

doi: 10.1021/ja404215g
[71]
Toledano S, Williams R J, Jayawarna V, Ulijn R V. J. Am. Chem. Soc., 2006, 128(4): 1070.

pmid: 16433511
[72]
Das A K, Collins R, Ulijn R V. Small, 2008, 4(2): 279.

doi: 10.1002/smll.200700889
[73]
Xing R R, Zou Q L, Yan X H. Acta Phys. Chim. Sin., 2020, 36(10): 1909048.
( 邢蕊蕊, 邹千里, 闫学海. 物理化学学报, 2020, 36(10): 1909048.).
[74]
Yan X H, Zhu P L, Li J B. Chem. Soc. Rev., 2010, 39(6): 1877.

doi: 10.1039/b915765b
[75]
Fei J B, Li Q, Zhao J, Li J B. Progress in Chemistry, 2019, 31(1): 30.
( 费进波, 李琦, 赵洁, 李峻柏. 化学进展, 2019, 31(1): 30.).

doi: 10.7536/PC181209
[76]
Jia Y, Li Q, Li J B. Chin. Sci. Bull., 2017, 62(6): 469.

doi: 10.1360/N972016-00424
( 贾怡, 李琦, 李峻柏. 科学通报, 2017, 62(6): 469.).
[77]
Li X B, Li Q, Fei J B, Jia Y, Xue H M, Zhao J, Li J B. Angew. Chem. Int. Ed., 2020, 59(29): 11932.

doi: 10.1002/anie.202005575
[78]
Ma K, Xing R R, Jiao T F, Shen G Z, Chen C J, Li J B, Yan X H. ACS Appl. Mater. Interfaces, 2016, 8(45): 30759.

doi: 10.1021/acsami.6b10754
[79]
Sun B B, Chang R, Cao S P, Yuan C Q, Zhao L Y, Yang H W, Li J B, Yan X H, Hest J C M. Angew. Chem. Int. Ed., 2020, 59(46): 20582.

doi: 10.1002/anie.202008708
[80]
Yemini M, Reches M, Rishpon J, Gazit E. Nano Lett., 2005, 5(1): 183.

pmid: 15792436
[81]
Yemini M, Reches M, Gazit E, Rishpon J. Anal. Chem., 2005, 77(16): 5155.

pmid: 16097753
[82]
Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J. Small, 2010, 6(7): 825.

doi: 10.1002/smll.200902186 pmid: 20205204
[83]
Huang Y, Tan J, Cui L J, Zhou Z D, Zhou S F, Zhang Z H, Zheng R, Xue Y W, Zhang M X, Li S S, Zhu N X, Liang J T, Li G Y, Zhong L P, Zhao Y X. Biosens. Bioelectron., 2018, 102: 560.

doi: S0956-5663(17)30766-2 pmid: 29220804
[84]
Gong Y F, Chen X, Lu Y L, Yang W S. Biosens. Bioelectron., 2015, 66: 392.

doi: 10.1016/j.bios.2014.11.029
[85]
Sasso L, Vedarethinam I, EmnÉus J, Svendsen W E, Castillo-LeÓon J. J. Nanosci. Nanotech., 2012, 12(4): 3077.

doi: 10.1166/jnn.2012.4534
[86]
Castillo J J, Svendsen W E, Rozlosnik N, Escobar P, Martínez F, Castillo-LeÓn J. Analyst, 2013, 138(4): 1026.

doi: 10.1039/c2an36121c pmid: 23150875
[87]
Huang S M, Chen G S, Ou R H, Qin S, Wang F X, Zhu F, Ouyang G F. Anal. Chem., 2018, 90(14): 8607.

doi: 10.1021/acs.analchem.8b01855
[88]
Wang K Q, Li Z R, Wang C L, Zhang S, Cui W, Xu Y Q, Zhao J, Xue H M, Li J B. J. Colloid Interface Sci., 2019, 557: 628.

doi: 10.1016/j.jcis.2019.09.033
[89]
Si Y C, Samulski E T. Nano Lett., 2008, 8(6): 1679.

doi: 10.1021/nl080604h
[90]
Lee J H, Heo K, Schulz-Schönhagen K, Lee J H, Desai M S, Jin H E, Lee S W. ACS Nano, 2018, 12(8): 8138.

doi: 10.1021/acsnano.8b03118
[91]
Nguyen V, Zhu R, Jenkins K, Yang R S. Nat. Commun., 2016, 7: 13566.

doi: 10.1038/ncomms13566 pmid: 27857133
[92]
Park I W, Choi J, Kim K Y, Jeong J, Gwak D, Lee Y H, Ahn Y H, Choi Y J, Hong Y J, Chung W J, Lee M, Heo K. Nano Energy, 2019, 57: 737.

doi: 10.1016/j.nanoen.2019.01.008
[93]
Ryu J, Kim S W, Kang K, Park C B. ACS Nano, 2010, 4(1): 159.

doi: 10.1021/nn901156w
[94]
Xue H M, Li X B, Wang K Q, Cui W, Zhao J, Fei J B, Li J B. Chem. Commun., 2019, 55(87): 13136.

doi: 10.1039/C9CC07520H
[95]
Sun B B, Riegler H, Dai L R, Eickelmann S, Li Y, Li G L, Yang Y, Li Q, Fu M F, Fei J B, Li J B. ACS Nano, 2018, 12(2): 1934.

doi: 10.1021/acsnano.7b08925
[96]
Li Q, Ma H C, Wang A H, Jia Y, Dai L R, Li J B. Adv. Opt. Mater., 2015, 3(2): 194.

doi: 10.1002/adom.201400308
[97]
Yan X H, Li J B, Möhwald H. Adv. Mater., 2011, 23(25): 2796.

doi: 10.1002/adma.201100353
[98]
Li Q, Jia Y, Yang X K, Dai L R, Das B, Acharya S, Sun B B, Yang Y, Liu X C, Ariga K, Li J B. ACS Appl. Mater. Interfaces, 2019, 11(1): 31.

doi: 10.1021/acsami.8b18106
[99]
Wang L, Shen G Z, Yan X H. Particuology, 2022, 64: 14.

doi: 10.1016/j.partic.2021.05.007
[100]
Dong J Q, Liu Y, Cui Y. J. Am. Chem. Soc., 2021, 143(42): 17316.

doi: 10.1021/jacs.1c08487
[101]
Han J J, Gong H N, Ren X K, Yan X H. Nano Today, 2021, 41: 101295.

doi: 10.1016/j.nantod.2021.101295
[102]
Chen Y, Yang Y Q, Orr A A, Makam P, Redko B, Haimov E, Wang Y N, Shimon L J W, Rencus-Lazar S, Ju M T, Tamamis P, Dong H, Gazit E. Angew. Chem. Int. Ed., 2021, 60(31): 17164.

doi: 10.1002/anie.202105830 pmid: 34014019
[103]
Li L C, Xie L, Zheng R L, Sun R Q. Front. Chem., 2021, 9: 739791.

doi: 10.3389/fchem.2021.739791
[104]
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn R V. Chem. Rev., 2021, 121(22): 13869.

doi: 10.1021/acs.chemrev.1c00089
[1] Zhaoyong Kang, Xiaoqi Dong, Shengnan Liu, Qingzhi Gao. Strigolactone and Its Novel Derivatives [J]. Progress in Chemistry, 2023, 35(9): 1341-1356.
[2] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[3] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[4] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[5] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[6] Yifeng Chen, Cong Wang, Kefeng Ren, Jian Ji. Droplet Microarrays in Biomedical High-Throughput Research [J]. Progress in Chemistry, 2021, 33(4): 543-554.
[7] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[8] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[9] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[10] Yudong Yang, Jingsong You. Chelation-Assisted C—H/C—H Oxidative Cross-Coupling/Cyclization for the Construction of Fused(Hetero)aromatics [J]. Progress in Chemistry, 2020, 32(11): 1824-1834.
[11] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[12] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[13] Miao Gong, Xiaoying Wang, Xiaoning Wang. Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies [J]. Progress in Chemistry, 2019, 31(6): 894-905.
[14] Jinbo Fei, Qi Li, Jie Zhao, Junbai Li. Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies [J]. Progress in Chemistry, 2019, 31(1): 30-37.
[15] Xiaowei Cao, Shuai Chen, Min Bao, Hongcan Shi, Wei Li. Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields [J]. Progress in Chemistry, 2018, 30(9): 1380-1391.