中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1337-1347 DOI: 10.7536/PC210701 Previous Articles   Next Articles

• Review •

Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell

Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao()   

  1. The Key Laboratory of Fuel Cells Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Contact: Shijun Liao
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)
Richhtml ( 27 ) PDF ( 499 ) Cited
Export

EndNote

Ris

BibTeX

Proton exchange membrane fuel cell is a green energy technology that can directly, efficiently and environmentally-friendly convert the chemical energy of fuel into electrical energy. Proton exchange membrane fuel cell has high energy conversion efficiency, fast startup, zero or low emissions. It is considered to be one of the most important energy alternative technologies in the post-oil era. Unfortunately, the current electrocatalysts suffer from high platinum loading and insufficient stability. The development of high-performance low-platinum catalysts is of great significance for reducing the cost of proton exchange membrane fuel cells and promoting the large-scale commercial application of proton exchange membrane fuel cells. Pt-based intermetallic compound is a kind of materials with determined stoichiometric ratio and regular atomic arrangement structure. It has been recognized as one of the most promising low-platinum catalysts, due to its much better catalytic activity and stability than corresponding disordered alloy materials and conventional Pt catalysts towards oxygen reduction reaction. In this paper, we have introduced the research progress of Pt-based intermetallic compounds catalysts from the aspects of catalytic mechanism, preparation technology, composition tuning, particle size tuning, morphology tuning and crystal structure in recent years, and the investigations on the application of intermetallic compounds in the oxygen reduction reaction of proton exchange membrane fuel cells. Moreover, the problems and challenges need to be overcome and addressed for the catalysts are pointed out, and a perspective for the research and development ideas and directions in the future is made.

Contents

1 Introduction

2 Catalytic mechanism

3 Preparation technology and its research progress

3.1 High temperature thermal annealing

3.2 Wet chemical method

3.3 Chemical vapor deposition

4 Research progress of composition regulation

4.1 Binary Pt-based intermetallic compounds

4.2 Ternary Pt-based intermetallic compounds

5 Research progress of particle size regulation

5.1 Coating method

5.2 KCl matrix method

5.3 Space confinement method

6 Research progress of morphology regulation

6.1 Core shell structure

6.2 One-dimensional nanowires

6.3 Two-dimensional nanoplates

6.4 Three-dimensional nanoframes

7 Research progress of crystal structure

8 Conclusion and outlook

Fig. 1 Structure diagram of PtM disordered alloy and PtM intermetallic compounds
Fig. 2 Relationship between ORR activity and adsorption energy of Pt-O(ΔEO)[9]
Fig. 3 DFT calculation results showing the impact of subsurface ordering on the ORR activity. (a) Optimized bulk structures of randomly disordered alloy Pt3Co(D-Pt3Co) and ordered fcc intermetallic Pt3Co(O-Pt3Co). (b) Structural models showing Pt-skin monolayers on top of (111) surfaces of D-Pt3Co and O-Pt3Co layers. Red spheres denote highly active sites possessing optimal ΔEO (200~300 meV higher than Pt). (c) Three-fold oxygen binding site (consisting of three Pt atoms) with six subsurface coordinating atoms categorized into either corner or edge atoms. (d) Comparison between ΔEO values from the linear regression and DFT calculations. Blue triangles and red diamonds represent ΔEO values of the D-Pt3Co and O-Pt3Co surfaces, respectively. The R2 value is given in the plot. (e) Population of highly active sites possessing optimal ΔEO on the D-Pt3Co and O-Pt3Co surfaces[23]
Fig. 4 Schematic diagram of KCl matrix method[50]
Fig. 5 Structure diagram of L11 PtCu intermetallic compounds
[1]
Yi B L. Battery Ind., 2003, 8(1): 16
( 衣宝廉. 电池工业, 2003, 8(1): 16.)
[2]
Zhai X, Ding Y. Acta Physico-Chimica Sinica, 2017, 33: 1366.

doi: 10.3866/PKU.WHXB201704173
[3]
Wan C Z, Duan X F, Huang Y. Adv. Energy Mater., 2020, 10(14): 1903815.

doi: 10.1002/aenm.201903815
[4]
Lu C B, Zhang J C, Chen Z Y, Jiang K Y, Li M Q, Zhang F, Tong G S, Zou X X, Su Y Z, Zhuang X D. Nanoscale, 2019, 11(21): 10257.

doi: 10.1039/C9NR01639B
[5]
Jauhar A M, Ma Z, Xiao M L, Jiang G P, Sy S, Li S, Yu A P, Chen Z W. J. Power Sources, 2020, 473: 228607.

doi: 10.1016/j.jpowsour.2020.228607
[6]
Mao L C, Fu K, Jin J H, Yang S L, Li G. Int. J. Hydrog. Energy, 2019, 44(33): 18083.

doi: 10.1016/j.ijhydene.2019.05.058
[7]
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, JÓnsson H. J. Phys. Chem. B, 2004, 108(46): 17886.

doi: 10.1021/jp047349j
[8]
Stamenkovic V, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Nørskov J K. Angew. Chem.Int.ed., 2006, 118(18): 2963.
[9]
Stephens I E L, Bondarenko A S, Grønbjerg U, Rossmeisl J, Chorkendorff I. Energy Environ. Sci., 2012, 5(5): 6744.

doi: 10.1039/c2ee03590a
[10]
Toyoda E, Jinnouchi R, Hatanaka T, Morimoto Y, Mitsuhara K, Visikovskiy A, Kido Y. J. Phys. Chem. C, 2011, 115(43): 21236.

doi: 10.1021/jp206360e
[11]
Stephens I E L, Bondarenko A S, Perez-Alonso F J, Calle-Vallejo F, Bech L, Johansson T P, Jepsen A K, Frydendal R, Knudsen B P, Rossmeisl J, Chorkendorff I. J. Am. Chem. Soc., 2011, 133(14): 5485.

doi: 10.1021/ja111690g pmid: 21417329
[12]
Sun K, Li J, Wang F, He W X, Fei M F, Lu Z D, Zhang H G, Liu J G, Zou Z G. Chem. Commun., 2019, 55(40): 5693.

doi: 10.1039/C9CC02510C
[13]
Mo R C, Zhang X R, Chen Z Y, Huang S L, Li Y J, Liang L Z, Tian Z Q, Shen P K. Int. J. Hydrog. Energy, 2021, 46(29): 15991.

doi: 10.1016/j.ijhydene.2021.02.119
[14]
Liu T, Wang K, Yuan Q, Shen Z, Wang Y, Zhang Q, Wang X. Nanoscale, 2017, 9: 2963.

doi: 10.1039/C7NR00193B
[15]
Choi J, Lee Y H, Kim J, Lee H. J. Power Sources, 2016, 307: 883.

doi: 10.1016/j.jpowsour.2016.01.063
[16]
He C Y, Zhang S K, Tao J Z, Shen P K. J. Catal., 2018, 362: 85.

doi: 10.1016/j.jcat.2018.03.025
[17]
Chen G R, Yang X T, Xie Z X, Zhao F L, Zhou Z Y, Yuan Q. J. Colloid Interface Sci., 2020, 562: 244.

doi: 10.1016/j.jcis.2019.12.020
[18]
Zou L L, Fan J, Zhou Y, Wang C M, Li J, Zou Z Q, Yang H. Nano Res., 2015, 8(8): 2777.

doi: 10.1007/s12274-015-0784-0
[19]
Hodnik N, Jeyabharathi C, Meier J C, Kostka A, Phani K L, Rečnik A, Bele M, Hočevar S, Gaberšček M, Mayrhofer K J J. Phys. Chem. Chem. Phys., 2014, 16(27): 13610.

doi: 10.1039/c4cp00585f pmid: 24777064
[20]
Zou L L, Li J, Yuan T, Zhou Y, Li X M, Yang H. Nanoscale, 2014, 6(18): 10686.

doi: 10.1039/C4NR02799J
[21]
Wang D L, Xin H L, Hovden R, Wang H S, Yu Y C, Muller D A, DiSalvo F J, Abruña H D. Nat. Mater., 2013, 12(1): 81.

doi: 10.1038/nmat3458
[22]
Kim J, Hong Y J, Lee K, Kim J Y. Adv. Energy Mater., 2020, 10(41): 2002049.

doi: 10.1002/aenm.202002049
[23]
Kim H Y, Kim J M, Ha Y, Woo J, Byun A, Shin T J, Park K H, Jeong H Y, Kim H, Kim J Y, Joo S H. ACS Catal., 2019, 9(12): 11242.

doi: 10.1021/acscatal.9b03155
[24]
Stephens I E L, Bondarenko A S, Grønbjerg U, Rossmeisl J, Chorkendorff I. Energy Environ. Sci., 2012, 5(5): 6744.

doi: 10.1039/c2ee03590a
[25]
Wang S H, Xu W, Zhu Y F, Luo Q Y, Zhang C, Tang S L, Du Y W. ACS Appl. Mater. Interfaces, 2021, 13(1): 827.

doi: 10.1021/acsami.0c21348
[26]
Wang Z X, Yao X Z, Kang Y Q, Miao L Q, Xia D S, Gan L. Adv. Funct. Mater., 2019, 29(35): 1902987.

doi: 10.1002/adfm.201902987
[27]
Chen L X, Zhu J, Wang J, Xiao W P, Lei W, Zhao T H, Huang T, Zhu Y, Wang D L. Electrochimica Acta, 2018, 283: 1253.

doi: 10.1016/j.electacta.2018.07.016
[28]
Chen Q L, Zhang J W, Jia Y Y, Jiang Z Y, Xie Z X, Zheng L S. Nanoscale, 2014, 6(12): 7019.

doi: 10.1039/C4NR00313F
[29]
Yan Y C, Du J S, Gilroy K D, Yang D R, Xia Y N, Zhang H. Adv. Mater., 2017, 29(14): 1605997.

doi: 10.1002/adma.201605997
[30]
Bu L Z, Zhang N, Guo S J, Zhang X, Li J, Yao J L, Wu T, Lu G, Ma J Y, Su D, Huang X Q. Science, 2016, 354(6318): 1410.

doi: 10.1126/science.aah6133
[31]
Luo S P, Chen W, Cheng Y, Song X, Wu Q L, Li L X, Wu X T, Wu T H, Li M R, Yang Q, Deng K R, Quan Z W. Adv. Mater., 2019, 31(40): 1903683.

doi: 10.1002/adma.201903683
[32]
Rong H P, Mao J J, Xin P Y, He D S, Chen Y J, Wang D S, Niu Z Q, Wu Y E, Li Y D. Adv. Mater., 2016, 28(13): 2540.

doi: 10.1002/adma.201504831
[33]
Saedy S, Palagin D, Safonova O, van Bokhoven J A, Khodadadi A A, Mortazavi Y. J. Mater. Chem. A, 2017, 5(46): 24396.

doi: 10.1039/C7TA06737B
[34]
Jung C, Lee C, Bang K, Lim J, Lee H, Ryu H J, Cho E, Lee H M. ACS Appl. Mater. Interfaces, 2017, 9(37): 31806.

doi: 10.1021/acsami.7b07648
[35]
Mizutani U. MRS Bull., 2012, 37(2): 169.
[36]
Zou X, Chen S G, Wang Q M, Gao X Y, Li J, Li J, Li L, Ding W, Wei Z D. Nanoscale, 2019, 11(42): 20115.

doi: 10.1039/C9NR06698E
[37]
Zhu J, Yang Y, Chen L X, Xiao W P, Liu H F, Abruña H D, Wang D L. Chem. Mater., 2018, 30(17): 5987.

doi: 10.1021/acs.chemmater.8b02172
[38]
Liang J, Li N, Zhao Z, Ma L, Wang X, Li S, Liu X, Wang T, Du Y, Lu G. Angew. Chem. Int.ed., 2019, 131: 15617.
[39]
Liu M Y, Hu A P, Ma Y N, Wang G L, Zou L L, Chen X H, Yang H. J. Electroanal. Chem., 2020, 871: 114267.

doi: 10.1016/j.jelechem.2020.114267
[40]
Zhao X R, Xi C, Zhang R, Song L, Wang C Y, Spendelow J S, Frenkel A I, Yang J, Xin H L, Sasaki K. ACS Catal., 2020, 10(18): 10637.

doi: 10.1021/acscatal.0c03036
[41]
Bai L C, Wang X, Chen Q, Ye Y F, Zheng H Q, Guo J H, Yin Y D, Gao C B. Angew. Chem. Int. Ed., 2016, 55(50): 15656.

doi: 10.1002/anie.201609663
[42]
Yang F, Deng D H, Pan X L, Fu Q, Bao X H. Natl. Sci. Rev., 2015, 2(2): 183.

doi: 10.1093/nsr/nwv024
[43]
Tritsaris G A, Greeley J, Rossmeisl J, Nørskov J K. Catal. Lett., 2011, 141(7): 909.

doi: 10.1007/s10562-011-0637-8
[44]
Kleis J, Greeley J, Romero N A, Morozov V A, Falsig H, Larsen A H, Lu J, Mortensen J J, Dułak M, Thygesen K S, Nørskov J K, Jacobsen K W. Catal. Lett., 2011, 141(8): 1067.

doi: 10.1007/s10562-011-0632-0
[45]
Gamler J T L, Ashberry H M, Skrabalak S E, Koczkur K M. Adv. Mater., 2018, 30(40): 1801563.

doi: 10.1002/adma.201801563
[46]
Wang Yao, Kang Xia, Gan. Catalysts, 2019, 9(7): 569.

doi: 10.3390/catal9070569
[47]
Kim H Y, Kwon T, Ha Y, Jun M, Baik H, Jeong H Y, Kim H, Lee K, Joo S H. Nano Lett., 2020, 20(10): 7413.

doi: 10.1021/acs.nanolett.0c02812
[48]
Kim J, Lee Y, Sun S H. J. Am. Chem. Soc., 2010, 132(14): 4996.

doi: 10.1021/ja1009629
[49]
Chung D Y, Jun S W, Yoon G, Kwon S G, Shin D Y, Seo P, Yoo J M, Shin H, Chung Y-H, Kim H. Journal of the American Chemical Society, 2015, 137: 15478.
[50]
Chen H, Wang D L, Yu Y C, Newton K A, Muller D A, Abruña H, DiSalvo F J. J. Am. Chem. Soc., 2012, 134(44): 18453.

doi: 10.1021/ja308674b pmid: 23057514
[51]
Cui Z M, Chen H, Zhou W D, Zhao M T, DiSalvo F J. Chem. Mater., 2015, 27(21): 7538.

doi: 10.1021/acs.chemmater.5b03912
[52]
Zhao W Y, Ye Y K, Jiang W J, Li J, Tang H B, Hu J S, Du L, Cui Z M, Liao S J. J. Mater. Chem. A, 2020, 8(31): 15822.

doi: 10.1039/D0TA01437K
[53]
Wang C, Daimon H, Onodera T, Koda T, Sun S H. Angew. Chem., 2008, 120(19): 3644.

doi: 10.1002/ange.200800073
[54]
Gong M X, Deng Z P, Xiao D D, Han L L, Zhao T H, Lu Y, Shen T, Liu X P, Lin R Q, Huang T, Zhou G W, Xin H L, Wang D L. ACS Catal., 2019, 9(5): 4488.

doi: 10.1021/acscatal.9b00603
[55]
Li M, Zhao Z, Cheng T, Fortunelli A, Chen C-Y, Yu R, Zhang Q, Gu L, Merinov B V, Lin Z. Science, 2016, 354: 1414.

doi: 10.1126/science.aaf9050
[56]
Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J M, Lou X W D, Xia B Y. Science, 2019, 366(6467): 850.

doi: 10.1126/science.aaw7493
[57]
Kwon T, Jun M, Kim H Y, Oh A, Park J, Baik H, Joo S H, Lee K. Adv. Funct. Mater., 2018, 28(13): 1706440.

doi: 10.1002/adfm.201706440
[58]
Cheng N, Zhang L, Mi S Y, Jiang H, Hu Y J, Jiang H B, Li C Z. ACS Appl. Mater. Interfaces, 2018, 10(44): 38015.

doi: 10.1021/acsami.8b11764
[59]
Qin Y N, Luo M C, Sun Y J, Li C J, Huang B L, Yang Y, Li Y J, Wang L, Guo S J. ACS Catal., 2018, 8(6): 5581.

doi: 10.1021/acscatal.7b04406
[60]
Zhang D T, Wu F X, Peng M H, Wang X Y, Xia D G, Guo G S. J. Am. Chem. Soc., 2015, 137(19): 6263.

doi: 10.1021/jacs.5b01088
[61]
Guan J Y, Yang S X, Liu T T, Yu Y H, Niu J, Zhang Z P, Wang F. Angew. Chem. Int.Ed., 2021, 133(40): 22070.
[62]
Gong M X, Xiao D D, Deng Z P, Zhang R, Xia W W, Zhao T H, Liu X P, Shen T, Hu Y Z, Lu Y, Zhao X, Xin H L, Wang D L. Appl. Catal. B Environ., 2021, 282: 119617.

doi: 10.1016/j.apcatb.2020.119617
[63]
Li X, Liu Y M, Bi W, Bi J L, Guo R Y, Li R, Wang C Q, Zhan Q, Wang W C, Yang S C, Shi F L, Wu J B, Jin M S. J. Mater. Chem. A, 2020, 8(32): 16477.

doi: 10.1039/D0TA05410K
[64]
Gan L, Cui C H, Rudi S, Strasser P. Top. Catal., 2014, 57(1/4): 236.

doi: 10.1007/s11244-013-0178-z
[65]
Xiong Y, Xiao L, Yang Y, DiSalvo F J, Abruña H D. Chem. Mater., 2018, 30(5): 1532.

doi: 10.1021/acs.chemmater.7b04201
[66]
Li L Y, Liu H Q, Qin C, Liang Z X, Scida A, Yue S Y, Tong X, Adzic R R, Wong S S. ACS Appl. Nano Mater., 2018, 1(3): 1104.

doi: 10.1021/acsanm.7b00289
[67]
Bu L Z, Guo S J, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J L, Guo J, Huang X Q. Nat. Commun., 2016, 7: 11850.

doi: 10.1038/ncomms11850
[68]
Lopes P P, Strmcnik D, Tripkovic D, Connell J G, Stamenkovic V, Markovic N M. ACS Catal., 2016, 6(4): 2536.

doi: 10.1021/acscatal.5b02920
[69]
Feng Y G, Shao Q, Lv F, Bu L Z, Guo J, Guo S J, Huang X Q. Adv. Sci., 2020, 7(1): 1800178.

doi: 10.1002/advs.201800178
[70]
Liu M L, Zhao Z P, Duan X F, Huang Y. Adv. Mater., 2019, 31(6): 1802234.

doi: 10.1002/adma.201802234
[71]
Li Y W, Hart J L, Taheri M L, Snyder J D. ACS Catal., 2017, 7(11): 7995.

doi: 10.1021/acscatal.7b02398
[72]
Chen L X, Zhu J, Xuan C J, Xiao W P, Xia K D, Xia W W, Lai C L, Xin H L, Wang D L. J. Mater. Chem. A, 2018, 6(14): 5848.

doi: 10.1039/C7TA11051K
[73]
Li J R, Xi Z, Pan Y T, Spendelow J S, Duchesne P N, Su D, Li Q, Yu C, Yin Z Y, Shen B, Kim Y S, Zhang P, Sun S H. J. Am. Chem. Soc., 2018, 140(8): 2926.

doi: 10.1021/jacs.7b12829
[74]
Zhao X R, Cheng H, Song L, Han L L, Zhang R, Kwon G, Ma L, Ehrlich S N, Frenkel A I, Yang J, Sasaki K, Xin H L. ACS Catal., 2021, 11(1): 184.

doi: 10.1021/acscatal.0c04021
[75]
Wang X X, Hwang S, Pan Y T, Chen K T, He Y H, Karakalos S, Zhang H G, Spendelow J S, Su D, Wu G. Nano Lett., 2018, 18(7): 4163.

doi: 10.1021/acs.nanolett.8b00978
[1] Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao. M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2021, 33(10): 1693-1705.
[2] Lulu Huang, Kailing Sun, Mingrui Liu, Jing Li, Shijun Liao. Carbon-Based Cathode Materials for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2019, 31(10): 1406-1416.
[3] Miao He, Xue Yejian, Zhou Xufeng, Liu Zhaoping. Graphene-Based Oxygen Reduction Reaction Catalysts for Metal Air Batteries [J]. Progress in Chemistry, 2015, 27(7): 935-944.
[4] Chen Yuanzhi, Zhang Le, Huang Cunxin, Zhang Jian, Tang Dingyuan, Shen Deyuan. TM2+:Ⅱ-Ⅵ Mid-Infrared Materials [J]. Progress in Chemistry, 2015, 27(5): 511-521.
[5] Liu Xu, Wu Juntao, Huo Jiangbei, Meng Xiaoyu, Cui Lishan, Zhou Qiong. Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells [J]. Progress in Chemistry, 2015, 27(4): 395-403.
[6] Zhong Yiliang, Mo Zaiyong, Yang Lijun, Liao Shijun*. Application of Modified Graphene for Cathode Catalysts in Fuel Cells [J]. Progress in Chemistry, 2013, 25(05): 717-725.
[7] Li Peng, Sun Yanping* . Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries [J]. Progress in Chemistry, 2012, 24(12): 2457-2471.
[8] Zhang Dong, Zhang Cunzhong*, Mu Daobin, Wu Borong, Wu Feng . Review on Lithium-Air Batteries [J]. Progress in Chemistry, 2012, 24(12): 2472-2482.
[9] Yuan Xianxia Xia Xiaoyun Zeng Xin Zhang Huijuan Ma Zifeng. Catalysts for Oxygen Electrode of Low Temperature Fuel Cells [J]. Progress in Chemistry, 2010, 22(01): 19-31.
[10] Liu Zhen Wu Qingyin Song Xiaoli Ma Sai. Solid High-Proton Conductors Based on Heteropoly Acids [J]. Progress in Chemistry, 2009, 21(05): 982-989.
[11] Feng Shaoguang1 Xie Xiaofeng1** Shang Yuming1 Jin Hao1 Xu Jingming1 Zhou Qifeng2. Membranes from Sulfonated Block Copolymers for Use in Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2008, 20(01): 117-125.
[12] Cai Yinghua,Hu Jun,Yi Baolian**,Zhang Huamin. Analysis of Different Types of Model for Proton Exchange Membrane Fuel Cell Stacks [J]. Progress in Chemistry, 2005, 17(03): 544-548.
[13] Ma Jianxin,Yi Baolian**,Yu Hongmei,Hou Zhongjun,Zhang Huamin. Review on Preparation Method of Membrane Electrode Assembly (MEA) for PEMFC [J]. Progress in Chemistry, 2004, 16(05): 804-.
[14] Li Chuanfeng,Shao Huaiqi,Zhong Shunhe**. Preparation Technology of Organic-Inorganic Hybrid Membrane* [J]. Progress in Chemistry, 2004, 16(01): 83-.