中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1837-1844 Previous Articles   Next Articles

• Review •

Nanocrystal/Polymer Solar Cell

Fu Honghong, Luan Weiling, Yuan Binxia, Tu Shandong   

  1. The Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received: Revised: Online: Published:
PDF ( 1047 ) Cited
Export

EndNote

Ris

BibTeX

Hybrid solar cells based on nanocrystals and conjugated polymer are emerging as a suitable alternative to classical solar cells. This kind of solar cell has attracted great attentions, because of the absorption spectra tunable by the size, shape and composition of nanocrystals, and their higher electron transfer velocity than that of polymer. This article reviews the status of the nanocrystal/ polymer hybrid solar cells. The factors affecting the solar cell performance are critically examined including the size and morphology of nanocrystals, the capping ligand, and the interfacial charge transportations between nanocrystals and polymer. Several strategies for increasing the overall efficiency of this hybrid solar cell are discussed. Narrow band gap nanocrystals, structure optimizations and analysis of the mechanism of charge transportations are expected as the routes for future development of this solar cell.

CLC Number: 

[1] Venkataraman D, Yurt S, Venkataraman B, Gavvalapalli N. J. Phys. Chem. Lett., 2010, 1: 947-958
[2] He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S, Cao Y. Adv. Mater., 2011, 23: 4636-4643
[3] Huo L, Zhang S Q, Guo X, Xu F, Li Y F, Hou J H. Angew. Chem. Int. Ed., 2011, 50: 9697-9702
[4] Murray C B, Kagan C R, Bawendi M G. Annu. Rev. Mater. Sci., 2000, 30: 545-610
[5] Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S, Zhu X Y. Science, 2010, 328(18): 1543-1547
[6] Eugenia M F, Josep A, Emilio P. J. Phys. Chem. Lett., 2010, 1: 3039-3045
[7] Greenham N C, Peng X, Alivisatos A P. Phys. Rev. B, 1996, 54: 17628-17637
[8] Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59-61
[9] Huynh W U, Dittmer J J, Alivisatos A P. Science, 2002, 295: 2425-2427
[10] Sun B, Marx E, Greenham N C. Nano Lett., 2003, 3: 961-963
[11] Gur I, Fromer N A, Chen C P, Kanaras A G, Alivisatos A P. Nano Lett., 2007, 7: 409-414
[12] Dayal S, Kopidakis N, Olson D C, Ginley D S, Rumbles G. Nano Lett., 2010, 10: 239-242
[13] Yang J, Tang A, Zhou R, Xue J. Sol. Energ. Mat. Sol. C, 2011, 95: 476-482
[14] 刘艳山(Liu Y S), 王藜 (Wang L), 曹镛(Cao Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28: 596-599
[15] 刘冬梅(Liu D M), 覃东欢(Qin D H), 陶洪(Tao H), 韩丽丽(Han L L), 陈军武(Chen J W). 纳米科技(Nano Science and Nanotechnology), 2009, 6: 14-17
[16] Yang H, Luan W, Tu S T, Wang Z M. Lab Chip, 2008, 8: 451-455
[17] Yang H, Luan W, Tu S T, Wang Z M. Cryst. Growth Des., 2009, 9: 1569-1574
[18] Kumar S, Nann T. J. Mater. Res., 2004, 19: 1990-1994
[19] Tsang S W, Fu H, Wang R, Liu J, Yu K, Tao Y. Appl. Phys. Lett., 2009, 95: art. no. 183505
[20] Guenes S, Fritz K P, Neuberger H, Sariciftci N S, Kumar S, Scholes G D. Sol. Energ. Mat. Sol. C, 2007, 91: 420-423
[21] McDonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J D, Levina L, Sargent E H. Nat. Mater., 2005, 4(2): 138-142
[22] Qi D, Fischbein M, Drndic M, Selmic S. Appl. Phys. Lett., 2005, 86(9): art. no. 093103
[23] Chaudhari K R, Sahoo Y, Ohulchansky T Y, Prasad P N. Appl. Phys. Lett., 2005, 87: art. no. 073110
[24] Beek W J E, Wienk M M, Janssen R A J. Adv. Funct. Mater., 2006, 16(8): 1112-1116
[25] 刘俊朋(Liu J P), 曲胜春(Qu S C), 曾湘波(Zeng X B), 许颖(Xu Y), 陈涌海(Chen Y H), 王智杰(Wang Z J), 周慧英(Zhou H Y), 王占国(Wang Z G). 半导体学报(Chinese Journal of Semiconductors), 2007, 28(Z1): 364-368
[26] Beek W J E, Wienk M M, Janssen R A J. Adv. Mater., 2004, 16: 1009-1013
[27] Beek W J E, Wienk M M, Janssen R A J. J. Mater. Chem., 2005, 15: 2985-2988
[28] Das N C, Sokol P E. Renew. Energ., 2010, 35: 2683-2688
[29] Said A J, Poize G, Martini C, Ferry D, Marine W, Giorgio S, Fages F, Hocq J, Boucle J, Nelson J, Durrant J R, Ackermann J. J. Phys. Chem. C, 2010, 114: 11273-11278
[30] Coakley K M, Liu Y, McGehee M D, Stucky G D. Adv. Funct. Mater., 2003, 13: 301-306
[31] Coakley K M, McGehee M D. Appl. Phys. Lett., 2003, 83: 3380-3382
[32] Ravirajan P, Haque S A, Durrant J R, Bradley D D C. Adv. Funct. Mater., 2005, 15: 609-618
[33] Noone K M, Anderson N C, Horwitz N E, Munro A M, Kulkarni A P, Ginger D S. ACS Nano, 2009, 3 (6): 1345-1352
[34] Zhou Y, Li Y, Zhong H, Hou J, Ding Y, Yang C, Li Y. Nanotechnology, 2006, 17: 4041-4047
[35] Irina L, Nikolay R, Florian W, Holger B, Jurgen P, Joanna K O. J. Phys. Chem. C, 2010, 114: 12784-12791
[36] Owen J S, Park J, Trudeau P E, Alivisatos A P. J. Am. Chem. Soc., 2008, 130: 12279-12281
[37] Olson J D, Gray G P, Cater S A. Sol. Energ. Mat. Solar C, 2009, 93: 519-523
[38] Sih B C, Wolf M. J. Phys. Chem. C, 2007, 111: 17184-17192
[39] Aldakov D, Chandezon F, de Bettignies R, Firon M, Reiss P, Pron A. Eur. Phys. J. Appl. Phys., 2006, 36: 261-265
[40] Zhou Y, Frank S R, Ying Y, Schleiermacher H F, Niggemann M, Urban G A, Krüger M. Appl. Phys. Lett., 2010, 96: art. no. 013304
[41] Zutz F, Lokteva I, Radychev N, Olesiak J K, Riedel I, Borchert H, Parisi J. Phys Status Solidi A, 2009, 206(12): 2700-2708
[42] Sun B Q, Greenham N C. Phys. Chem. Chem. Phys., 2006, 8: 3557-3560
[43] Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17: 1636-1644
[44] Huynh W U, Dittmer J J, Libby W C, Whiting G L, Alivisatos A P. Adv. Funct. Mater., 2003, 13: 73-79
[45] Wu Y, Zhang G. Nano Lett., 2010, 10: 1628-1631
[46] Zotti G, Vercelli B, Berlin A, Pasini M, Nelson T L, McCullough R D, Virgili T. Chem. Mater., 2010, 22: 1521-1532
[47] Freitas J N, Grova I R, Akcelrud L C, Arici E, Sariciftci S, Nogueira A F. J. Mater. Chem., 2010, 20: 4845-4853
[48] Fu H H, Choi M, Luan W, Kim Y S, Tu S T. Solid State Electron., 2012, 69: 50-54
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[4] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[5] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[6] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[7] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[8] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[9] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[10] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[11] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[12] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[13] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[14] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[15] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
Viewed
Full text


Abstract

Nanocrystal/Polymer Solar Cell