中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 421-432 DOI: 10.7536/PC221106 Previous Articles   Next Articles

• Review •

Photovoltaic Cells Based on Carbon Nanotubes

Wang Long1,2†, Zhou Qingping2†, Wu Zhaofeng1†, Zhang Yanming2, Ye Xiaowo2, Chen Changxin1,2()   

  1. 1. School of Physics Science and Technology, Xinjiang University,Urumqi 830046, China
    2. National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film Fabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: chen.c.x@sjtu.edu.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China for Excellent Young Scholars(61622404); National Natural Science Foundation of China(62074098); Chang Jiang (Cheung Kong) Scholars Program of Ministry of Education of China(Q2017081); Project from Zhejiang Fulai New Materials Co., Ltd.
Richhtml ( 40 ) PDF ( 613 ) Cited
Export

EndNote

Ris

BibTeX

Carbon nanotubes (CNTs) are ideal materials for building photovoltaic cells due to their unique one-dimensional structure and excellent photoelectric properties. In this paper, we review recent structural design, fabrication method and device performance of CNT-based photovoltaic cells and different functional roles of CNTs in these devices. Firstly, the structure and photoelectric properties of CNTs are introduced. Then, we emphatically discuss the operation principles, the fabrication methods and the advantages and shortage of the photovoltaic cells with CNTs used as the photoelectric conversion materials, conducting electrodes and carrier transport layers in the devices. The applications of carbon nanotubes in Micro photovoltaic cell,carbon nanotube/silicon heterojunction photovoltaic cells, dye sensitized photovoltaic cells, perovskite photovoltaic cells, organic photovoltaic cells and flexible photovoltaic cells are introduced. Finally, the advantages and challenges of CNT-based photovoltaic cells are summarized. This paper will provide new idea and reference for the design and fabrication of novel carbon-based photovoltaic cells.

Contents

1 Introduction

2 Structure and properties of carbon nanotubes

2.1 Structure of carbon nanotubes

2.2 Photoelectric properties of carbon nanotubes

3 Carbon nanotubes act as photoelectric conversion materials

3.1 Photovoltaic cells based on pure carbon nanotubes

3.2 Carbon nanotube/silicon heterojunction photovoltaic cells

3.3 Photovoltaic cells with carbon nanotubes as part of photosensitive materials

4 Carbon nanotubes act as conductive electrodes

4.1 Application in organic photovoltaic cells

4.2 Application in perovskite photovoltaic cells

4.3 Application in dye-sensitized photovoltaic cells

4.4 Application in flexible photovoltaic cells

5 Carbon nanotubes act as carrier transport materials

6 Conclusion and outlook

Fig. 1 (a) Definition of helix vector of CNT; (b) Structure of CNT under chiral change
Fig. 2 Structural schematic diagram (a) and energy band diagram (b) of the CNT photovoltaic cell with asymmetric contact[43]
Fig. 3 Structural schematic diagram and AFM image (a) and energy band diagram (b) of selectively doped single CNT photovoltaic cell[44]
Fig. 4 (a) Typical CNT/silicon heterojunction solar cell structure[45]. (b) Schematic Diagram of gas doping Structure[47]. (c) Tungsten oxide doped CNT/silicon heterojunction photovoltaic cell structure[48]. (d) Schematic diagram of carrier transport paths of CNT/silicon heterojunction photovoltaic cells[48]
Fig. 5 (a) Structural Diagram of CNT:TiO2 Modified PSC. (b) J-V curve of PSC under forward scan (FS) and reverse scan (RS) (w/o without CNT:TiO2; w/with CNT:TiO2) [49]
Fig. 6 (a) Structure diagram of DSSC cell with CNT transparent conductive electrode. (b) Surface topography of electrode layer. (c) J-V curve of DSSC with different electrodes. (d) IPCE curve of DSSC under different pair electrodes[63]
Fig. 7 (a) PV cell structure using Mo2C-CNTs@PEDOT:PSS as HTL. (b) Energy level diagram of perovskite photovoltaic cells using Mo2C-CNTs@PEDOT:PSS as HTL. (c) J-V curve of PSC with 1% (purple), 1.5% (green) and 2.0% (blue) carbon nanotubes. (d) External quantum efficiency (EQE) spectrum of PSC under HTL with different components (no Mo2C-CNTs (black), only Mo2C (red), only CNTs (blue), and Mo2C-CNTs (green) added in HTL) [75]
[1]
Jurasz J, Canales F A, Kies A, Guezgouz M, Beluco A. Sol. Energy, 2020, 195: 703.

doi: 10.1016/j.solener.2019.11.087
[2]
Hayat M B, Ali D, Monyake K C, Alagha L, Ahmed N. Int. J. Energy Res., 2019, 43(3): 1049.

doi: 10.1002/er.v43.3
[3]
Wang J Q, Xie Z M, Yeow J T W. ECS J. Solid State Sci. Technol., 2020, 9(10): 105004.

doi: 10.1149/2162-8777/abc3cd
[4]
Fukuda K, Yu K, Someya T. Adv. Energy Mater., 2020, 10(25): 2000765.
[5]
Ortiz-Cervantes C, Carmona-Monroy P, Solis-Ibarra D. ChemSusChem, 2019, 12(8): 1560.

doi: 10.1002/cssc.201802992 pmid: 30699237
[6]
Yun S N, Qin Y, Uhl A R, Vlachopoulos N, Yin M, Li D D, Han X G, Hagfeldt A. Energy Environ. Sci., 2018, 11(3): 476.

doi: 10.1039/C7EE03165C
[7]
Qiu L B, Deng J, Lu X, Yang Z B, Peng H S. Angew. Chem. Int. Ed., 2014, 53(39): 10425.

doi: 10.1002/anie.201404973
[8]
Kaltenbrunner M, Adam G, Daniel Głowacki E, Drack M, Schwödiauer R, Leonat L, Apaydin D H, Groiss H, Scharber M C, White M S, Sariciftci N S, Bauer S. Nat. Mater., 2015, 14(10): 1032.

doi: 10.1038/nmat4388 pmid: 26301766
[9]
Zhang Y K, Wu Z W, Li P, Ono L K, Qi Y B, Zhou J X, Shen H, Surya C, Zheng Z J. Adv. Energy Mater., 2018, 8(1): 1701569.
[10]
Gu S, Lin R X, Han Q L, Gao Y, Tan H R, Zhu J. Adv. Mater., 2020: 1907392.
[11]
Zhao C C, Wang J X, Zhao X Y, Du Z L, Yang R Q, Tang J G. Nanoscale, 2021, 13(4): 2181.

doi: 10.1039/D0NR07788G
[12]
Urbani M, Ragoussi M E, Nazeeruddin M K, Torres T. Coord. Chem. Rev., 2019, 381: 1.

doi: 10.1016/j.ccr.2018.10.007
[13]
Jalalvand A R, Ghobadi S, Akbari V, Goicoechea H C, Faramarzi E, Mahmoudi M. Sens. Bio Sens. Res., 2019, 25: 100297.
[14]
Zhao X, Park N G. Photonics, 2015, 2(4): 1139.

doi: 10.3390/photonics2041139
[15]
Li W J, Zheng J H, Hu B, Fu H C, Hu M W, Veyssal A, Zhao Y Z, He J H, Leo Liu T, Ho-Baillie A, Jin S. Nat. Mater., 2020, 19(12): 1326.

doi: 10.1038/s41563-020-0720-x
[16]
Abate A, Correa-Baena J P, Saliba M, Su’ait M S, Bella F. Chem. Eur. J., 2018, 24(13): 3083.

doi: 10.1002/chem.201704507
[17]
Tumbul A, Aslan F, Gökta塂 A, Mutlu I H. J. Alloys Compd., 2019, 781: 280.

doi: 10.1016/j.jallcom.2018.12.012
[18]
Fagiolari L, Bella F. Energy Environ. Sci., 2019, 12(12): 3437.

doi: 10.1039/C9EE02115A
[19]
Li D D, Lai W Y, Zhang Y Z, Huang W. Adv. Mater., 2018, 30(10): 1704738.
[20]
Lee S K, Rana K, Ahn J H. J. Phys. Chem. Lett., 2013, 4(5): 831.

doi: 10.1021/jz400005k
[21]
De Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(6119): 535.

doi: 10.1126/science.1222453
[22]
Ma P C, Siddiqui N A, Marom G, Kim J K. Compos. A Appl. Sci. Manuf., 2010, 41(10): 1345.

doi: 10.1016/j.compositesa.2010.07.003
[23]
Wen L, Li F, Cheng H M. Adv. Mater., 2016, 28(22): 4306.

doi: 10.1002/adma.v28.22
[24]
Jung S, Lee J, Seo J, Kim U, Choi Y, Park H. Nano Lett., 2018, 18(2): 1337.

doi: 10.1021/acs.nanolett.7b05026
[25]
Fu X M, Xu L M, Li J X, Sun X M, Peng H S. Carbon, 2018, 139: 1063.

doi: 10.1016/j.carbon.2018.08.017
[26]
Tune D D, Flavel B S. Adv. Energy Mater., 2018, 8(15): 1703241.
[27]
Luo Q, Wu R G, Ma L T, Wang C J, Liu H, Lin H, Wang N, Chen Y, Guo Z H. Adv. Funct. Mater., 2021, 31(6): 2004765.
[28]
Batmunkh M, Biggs M J, Shapter J G. Small, 2015, 11(25): 2963.

doi: 10.1002/smll.v11.25
[29]
Yu L P, Shearer C, Shapter J. Chem. Rev., 2016, 116(22): 13413.

doi: 10.1021/acs.chemrev.6b00179
[30]
Mann D, Javey A, Kong J, Wang Q, Dai H J. Nano Lett., 2003, 3(11): 1541.

doi: 10.1021/nl034700o
[31]
Chen G H, Futaba D N, Sakurai S, Yumura M, Hata K J. Carbon, 2014, 67: 318.

doi: 10.1016/j.carbon.2013.10.001
[32]
in het Panhuis M. J. Mater. Chem., 2006, 16(36): 3598.

doi: 10.1039/b606959b
[33]
Frank S, Poncharal P, Wang Z L, de Heer W A. Science, 1998, 280(5370): 1744.

pmid: 9624050
[34]
Guo J, Lundstrom M, Datta S. Appl. Phys. Lett., 2002, 80(17): 3192.

doi: 10.1063/1.1474604
[35]
Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M, Park H. Nature, 2001, 411(6838): 665.

doi: 10.1038/35079517
[36]
Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T. Nature, 1996, 382(6586): 54.

doi: 10.1038/382054a0
[37]
Odom T W, Huang J L, Kim P, Lieber C M. Nature, 1998, 391(6662): 62.

doi: 10.1038/34145
[38]
Blackburn J L, Barnes T M, Beard M C, Kim Y H, Tenent R C, McDonald T J, To B, Coutts T J, Heben M J. ACS Nano, 2008, 2(6): 1266.

doi: 10.1021/nn800200d pmid: 19206344
[39]
Huang Q J, Zhu Y. Adv. Mater. Technol., 2019, 4(5): 1800546.
[40]
Ferguson V, Silva S R P, Zhang W. Energy Environ. Mater., 2019, 2(2): 107.

doi: 10.1002/eem2.12035
[41]
Wang C Y, Xia K L, Wang H M, Liang X P, Yin Z, Zhang Y Y. Adv. Mater., 2019, 31(9): 1801072.
[42]
Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J, Meyyappan M. Chem. Phys. Lett., 2002, 365(1/2): 69.

doi: 10.1016/S0009-2614(02)01420-3
[43]
Chen C X, Lu Y, Kong E S, Zhang Y F, Lee S T. Small, 2008, 4(9): 1313.

doi: 10.1002/smll.v4:9
[44]
Chen C X, Song C J, Yang J R, Chen D Q, Zhu W H, Liao C H, Dong X S, Liu X D, Wei L M, Hu N T, He R, Zhang Y F. Nano Energy, 2017, 32: 280.

doi: 10.1016/j.nanoen.2016.12.048
[45]
Wei J Q, Jia Y, Shu Q K, Gu Z Y, Wang K L, Zhuang D M, Zhang G, Wang Z C, Luo J B, Cao A Y, Wu D H. Nano Lett., 2007, 7(8): 2317.

doi: 10.1021/nl070961c
[46]
Jia Y, Cao A Y, Bai X, Li Z, Zhang L H, Guo N, Wei J Q, Wang K L, Zhu H W, Wu D H, Ajayan P M. Nano Lett., 2011, 11(5): 1901.

doi: 10.1021/nl2002632 pmid: 21452837
[47]
Zhao X W, Wu H S, Yang L S, Wu Y Z, Sun Y P, Shang Y Y, Cao A Y. Carbon, 2019, 147: 164.

doi: 10.1016/j.carbon.2019.02.078
[48]
Zhao X W, Xu W J, Wu Y Z, Wu H S, Xia Z Y, Xu H Y, Shang Y Y, Wei J Q, Cao A Y. Nano Res., 2022, 15(3): 2497.

doi: 10.1007/s12274-021-3749-5
[49]
Jin M Q, Li H L, Lou Q, Du Q, Huang Q S, Shen Z T, Li F M, Chen C. EcoMat, 2022, 4(2): e12166.
[50]
Muchuweni E, Mombeshora E T, Martincigh B S, Nyamori V O. Front. Chem., 2022, 9: 733552.
[51]
Zhu Y Y, Shu L, Fan Z Y. Chem. Res. Chin. Univ., 2020, 36(3): 366.

doi: 10.1007/s40242-020-0105-3
[52]
Rowell M W, Topinka M A, McGehee M D, Prall H J, Dennler G, Sariciftci N S, Hu L B, Gruner G. Appl. Phys. Lett., 2006, 88(23): 233506.
[53]
Salvatierra R V, Cava C E, Roman L S, Zarbin A J G. Adv. Funct. Mater., 2013, 23(12): 1490.

doi: 10.1002/adfm.v23.12
[54]
Ji T, Tan L C, Bai J X, Hu X T, Xiao S Q, Chen Y W. Carbon, 2016, 98: 15.

doi: 10.1016/j.carbon.2015.10.079
[55]
Zhang Z X, Lv R T, Jia Y, Gan X, Zhu H W, Kang F Y. Appl. Sci., 2018, 8(2): 152.

doi: 10.3390/app8020152
[56]
Yang M K, Lee J K. Electron. Mater. Lett., 2020, 16(6): 573.

doi: 10.1007/s13391-020-00248-7
[57]
Lu L Y, Xu T, Chen W, Lee J M, Luo Z Q, Jung I H, Park H I, Kim S O, Yu L P. Nano Lett., 2013, 13(6): 2365.

doi: 10.1021/nl304533j
[58]
Fan Q X, Zhang Q, Zhou W B, Xia X G, Yang F, Zhang N, Xiao S Q, Li K W, Gu X G, Xiao Z J, Chen H L, Wang Y C, Liu H P, Zhou W Y, Xie S S. Nano Energy, 2017, 33: 436.

doi: 10.1016/j.nanoen.2017.02.003
[59]
Li Z, Kulkarni S A, Boix P P, Shi E Z, Cao A Y, Fu K W, Batabyal S K, Zhang J, Xiong Q H, Wong L H, Mathews N, Mhaisalkar S G. ACS Nano, 2014, 8(7): 6797.

doi: 10.1021/nn501096h
[60]
Aitola K, Sveinbjörnsson K, Correa-Baena J P, Kaskela A, Abate A, Tian Y, Johansson E M J, Grätzel M, Kauppinen E I, Hagfeldt A, Boschloo G. Energy Environ. Sci., 2016, 9(2): 461.

doi: 10.1039/C5EE03394B
[61]
Luo Q, Ma H, Zhang Y, Yin X W, Yao Z B, Wang N, Li J B, Fan S S, Jiang K L, Lin H. J. Mater. Chem. A, 2016, 4(15): 5569.

doi: 10.1039/C6TA01715K
[62]
Amini A, Abdizadeh H, Golobostanfard M R. ACS Appl. Energy Mater., 2020, 3(7): 6195.

doi: 10.1021/acsaem.0c00200
[63]
Lee J H, Jang Y J, Kim D W, Cheruku R, Thogiti S, Ahn K S, Kim J H. Chem. Pap., 2019, 73(11): 2749.

doi: 10.1007/s11696-019-00827-5
[64]
Dou Y Y, Yan N F, Li G R, Gao X P. J. Appl. Electrochem., 2012, 18(4): 301.
[65]
Zheng L, Bao C, Lei S J, Wang J L, Li F X, Sun P P, Huang N, Fang L, Sun X H. Carbon, 2018, 133: 423.

doi: 10.1016/j.carbon.2018.03.062
[66]
Yoon J, Kim U, Yoo Y, Byeon J, Lee S K, Nam J S, Kim K, Zhang Q, Kauppinen E I, Maruyama S, Lee P, Jeon I. Adv. Sci., 2021, 8(7): 2004092.
[67]
Jeon I, Cui K H, Chiba T, Anisimov A, Nasibulin A G, Kauppinen E I, Maruyama S, Matsuo Y. J. Am. Chem. Soc., 2015, 137(25): 7982.

doi: 10.1021/jacs.5b03739 pmid: 26091443
[68]
Yan Y, Li W, Cai J L, Chen M X, Mao Y C, Chen X L, Gurney R S, Liu D, Huang F, Wang T. Mater. Chem. Front., 2018, 2(10): 1859.

doi: 10.1039/C8QM00347E
[69]
Yan W B, He Z X, Jiang J J, Lu D, Gong Y C, Yang W S, Xia R D, Huang W, Xin H. J. Mater. Chem. C, 2020, 8(42): 14773.

doi: 10.1039/D0TC04241B
[70]
Li M Y, Zha W S, Han Y F, Liu B W, Luo Q, Ma C Q. Org. Electron., 2021, 96: 106257.

doi: 10.1016/j.orgel.2021.106257
[71]
Chaudhary J, Gupta S K, Verma A S, Negi C M S. J. Mater. Sci., 2020, 55(10): 4345.

doi: 10.1007/s10853-019-04308-8
[72]
Bai S, Jin Y Z, Liang X Y, Ye Z Z, Wu Z W, Sun B Q, Ma Z F, Tang Z, Wang J P, Würfel U, Gao F, Zhang F L. Adv. Energy Mater., 2015, 5(5): 1401606.
[73]
Yu Z K, Fu W F, Liu W Q, Zhang Z Q, Liu Y J, Yan J L, Ye T, Yang W T, Li H Y, Chen H Z. Chin. Chemical Lett., 2017, 28(1): 13.

doi: 10.1016/j.cclet.2016.06.021
[74]
Hu W, Liu T, Yin X W, Liu H, Zhao X Y, Luo S P, Guo Y, Yao Z B, Wang J S, Wang N, Lin H, Guo Z H. J. Mater. Chem. A, 2017, 5(4): 1434.

doi: 10.1039/C6TA09174A
[75]
Hussain S, Liu H L, Vikraman D, Hussain M, Jaffery S H A, Ali A, Kim H S, Kang J, Jung J. J. Alloys Compd., 2021, 885: 161039.

doi: 10.1016/j.jallcom.2021.161039
[76]
Markose K K, Jasna M, Subha P P, Antony A, Jayaraj M K. Sol. Energy, 2020, 211: 158.

doi: 10.1016/j.solener.2020.09.024
[1] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[2] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[3] Qi-Feng Zhou, Bo Jiang*, Hai-Bo Yang*. Design and Synthesis of Conjugated Aromatic Macrocyclic Rings That Can Serve as Carbon Nanotube Segments [J]. Progress in Chemistry, 2018, 30(5): 628-638.
[4] Luo Jie, Li Chaowei, Lan Zhuyao, Chen Minghai, Yao Yagang, Zhao Yue. The Application of Nano Carbon Based Materials in Electrical Conductive Adhesives [J]. Progress in Chemistry, 2015, 27(9): 1158-1166.
[5] Wan Xiaomei, Zhang Chuan, Yu Dinghua, Huang He, Hu Yi. Enzyme Immobilized on Carbon Nanotubes [J]. Progress in Chemistry, 2015, 27(9): 1251-1259.
[6] Zhu Jin, Lou Zimo, Wang Zhuoxing, Xu Xinhua. Preparation of Iron and Manganese Oxides/Carbon Composite Materials for Arsenic Removal from Aqueous Solution [J]. Progress in Chemistry, 2014, 26(09): 1551-1561.
[7] Kang Yiran, Cai Feng, Chen Hongyuan, Chen Minghai, Zhang Rui, Li Qingwen. Carbon Nanotube/Graphene Hybrid Nanostructures and Their Application in Supercapacitors [J]. Progress in Chemistry, 2014, 26(09): 1562-1569.
[8] Li Yuda, Wang Xunchang, Lv Renliang, Wang Feng. Non-Covalent Separation of Optically Active Single-Walled Carbon Nanotubes [J]. Progress in Chemistry, 2014, 26(08): 1361-1368.
[9] Li Jian, Guan Yibiao, Fu Kai, Su Yuefeng, Bao Liying, Wu Feng. Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries [J]. Progress in Chemistry, 2014, 26(07): 1233-1243.
[10] Xiao Hengyang, Di Feng, Che Jianfei, Xiao Yinghong. Surface Modification and Functionalization of Neural Electrodes [J]. Progress in Chemistry, 2013, 25(11): 1962-1972.
[11] Li Pan, Zhang Jin*. Structure Controlled Growth of Single-Walled Carbon Nanotubes [J]. Progress in Chemistry, 2013, 25(0203): 167-178.
[12] Xiang Cuili, Zou Yongjin, Qiu Shujun, Chu Hailiang, Sun Lixian*, Xu Fen*. Nanocarbon-Based Materials for Hydrogen Sensor [J]. Progress in Chemistry, 2013, 25(0203): 270-275.
[13] Zhang Jinchao*, Yang Kangning, Zhang Haisong, Liang Xingjie*. Application Status and Prospect of Carbon-Based Nanomaterials in Biomedical Field [J]. Progress in Chemistry, 2013, 25(0203): 397-408.
[14] Wang Jinye, Song Chen, Xu Jingkun, Ding Baoquan. Organizing Functional Nanomaterials with DNA Origami [J]. Progress in Chemistry, 2012, (10): 1936-1945.
[15] Wang Juan, Liu Ying, Zhang Weide. Photoelectrochemical Properties and Applications of Carbon Nanotubes/Semiconductor Nanocomposites [J]. Progress in Chemistry, 2011, 23(8): 1583-1590.