中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1706-1722 DOI: 10.7536/PC210827 Previous Articles   Next Articles

• Review •

Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells

Senlin Tang, Huan Gao, Ying Peng, Mingguang Li(), Runfeng Chen(), Wei Huang   

  1. State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
  • Received: Revised: Online: Published:
  • Contact: Mingguang Li, Runfeng Chen
  • Supported by:
    This study was supported in part by the National Natural Science Foundation of China(61704089); China Postdoctoral Science Foundation(2019M661899); Jiangsu Planned Projects for Postdoctoral Research Funds(2019K140)
Richhtml ( 59 ) PDF ( 1354 ) Cited
Export

EndNote

Ris

BibTeX

Over the past decades, metal-halide perovskite solar cells (PSCs) have seen rapid development and gained extensive attention because of their excellent advantages of high light absorption coefficient, longer carrier diffusion distance, lower preparation cost, etc. By now, the champion power conversion efficiency (PCE) has reached 25.5% within a few decades. However, the PCE of the device is still lower than the Shockley-Queisser (S-Q) theoretical limit due to the fact that various non-radiative recombination losses usually take place during carrier transport process. In this review, we first introduce the device structure and working principle of PSCs, and then summarize common non-radiative recombination loss pathways, including defect-assisted Shockley-Read-Hall (SRH) recombination, interface-induced recombination, Auger recombination, band-tail recombination processes, etc. These recombination modes are the main reasons leading to low efficiency and poor stability of PSCs, and thus have drawn considerable attention among researchers. Based on the latest research works, we summarize the general regulation strategies to reduce the undesired non-radiative recombination processes for the construction of high-efficiency and stable PSCs. These efficient regulation strategies mainly include reduction of perovskite crystal defects, passivation of grain boundary defects, passivation of interface defects and optimization of energy level structure. Finally, the opportunities and challenges for the development prospects of non-radiative recombination regulation are discussed.

Contents

1 Introduction

2 Non-radiative recombination mechanisms

2.1 Carrier generation and recombination

2.2 Defect-assisted recombination

2.3 Interface-induced recombination

2.4 Other non-radiative recombination

3 Regulation strategies to reduce non-radiative recombination

3.1 Reduction of perovskite crystal defects

3.2 Passivation of grain boundary defects

3.3 Passivation of interface defects

3.4 Optimization of energy level structure

4 Conclusion and outlook

Fig. 1 (a) Crystal structure of metal halide perovskites. (b) Working principle of PSCs[23]
Fig. 2 (a) Radiative recombination. (b) Defect-assisted recombination. EC and EV are the conduction band minimum and valence band maximum, respectively. (c) Diagrams showing the origins of interface-induced recombination losses. The blue arrows represent recombination processes and the red arrows represent charge-carrier back-transfer processes. HOMO is short for highest occupied molecular orbital; LUMO is short for lowest unoccupied molecular orbital
Fig. 3 Illustration of various defects in a PVK crystal lattice (yellow, blue, and purple dots represent the A-, B-, and X-site ions, respectively): (a) perfect lattice, (b) vacancy, (c) interstitial, (d) anti-site substitution, (e) Frenkel defect, (f) Schottky defect, (g) substitutional impurity, (h) interstitial impurity, (i) edge dislocation, (j) grain boundary, (k) precipitate
Fig. 4 (a) Direct and indirect Auger recombination. (b) Band-tail recombination. Ea is the activation energy of the trapped electron
Fig. 5 (a) A schematic process for formation of perovskite films where X indicates Lewis bases. Molecular structure of (b) DMSO and (c) NMP, and corresponding SEM images of resulting perovskite films[52]
Fig. 6 Schematic reaction process from the precursor to monolithic PVK grains[65]
Fig. 7 (a) Schematic illustration of the mechanisms for methylamine(CH3NH2) induced defect-healing strategy. (b) In situ photoluminescence maps of a MAPbI3 film, including raw film, MAPbI3·xCH3NH2 intermediate film, partially degassed film, and healed film[73]
Fig. 8 (a) Growth mechanism of PVK thin single crystals. (b) Photographs of a MAPbI3 thin single crystal. (c) Cross-sectional SEM images of the MAPbI3 thin single crystals[81]
Fig. 9 (a) The band alignments of PbI2 and PVK. (b) The interface of PVK/HTL regulated by PbI2[90]. (c) Schematic illustration of the fabrication process of PVK films with additive HPbI3[93]. (d) Schematic plot of mechanism for Rh3+-induced PVK crystallization[96]
Fig. 10 (a) Poly(bithiophene imide)(PBTI) treated PVK films and the corresponding defects. (b) Time-resolved photoluminescence (TRPL) spectra for chlorobenzene- and PBTI polymer-treated PVK films prepared on NiOx/ITO substrates[113]. (c) Schematic illustration of the interaction between uncoordinated Pb2+ and 4-dimethylaminopyridine (DMAP). (d) Fourier-transform infrared spectroscopy (FTIR) spectra of bare PVK, DMAP-treated PVK, and DMAP powder. (e) X-ray photoelectron spectroscopy (XPS) spectra of bare and 15 mmol/L DMAP-treated PVK[116]. (f) Illustration of the grains and defects passivation by 2-aminoterephthalic acid. (g) Evolution of PCE for unencapsulated devices stored in glove box filled with N2 and the images of contact angles of water droplets on surfaces of pristine and cross-linked PVK films[117]
Fig. 11 (a) Device structure of the PSCs and schematic diagram of the interface passivation mechanism. (b) Stable output current density and PCE measurements[118]. (c) SEM cross-sectional image of the PVK cell. (d) TRPL measurements of PVK, ETL/PVK, ETL/PMMA:PCBM/PVK and ETL/PMMA:PCBM/PVK/PMMA. (e) TRPL measurements of PVK, PVK/HTL and PVK/PMMA/HTL[123]. (f) Schematic interpretation of the surface reorganization of PVK films upon PEAMAPI formation[126]. (g) Schematic illustrations of the crystal structure of 2D-3D PVK films and the device architecture[127]
Fig. 12 (a) Schematic energy-level diagram of the different layers, VL refers to vacuum level[36]. (b) Schematics of band alignment for devices based on mesoporous-TiO2 (mp-TiO2), mp-TiO2/SnO2-nanocrystalline, and mp-TiO2/amorphous-SnO2[141]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2(1): 591.

doi: 10.1038/srep00591
[3]
Yoo J J, Seo G, Chua M R, Park T G, Lu Y L, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulović V, Shin S S, Bawendi M G, Seo J. Nature, 2021, 590(7847): 587.

doi: 10.1038/s41586-021-03285-w
[4]
Nishimura T, Toki S, Sugiura H, Nakada K, Yamada A. Prog. Photovolt.: Res. Appl., 2018, 26(4): 291.

doi: 10.1002/pip.2972
[5]
Dai Z H, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y, Padture N P. Science, 2021, 372(6542): 618.

doi: 10.1126/science.abf5602
[6]
Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X J. Prog. Photovolt.: Res. Appl., 2021, 29: 657.

doi: 10.1002/pip.3444
[7]
Shockley W, Queisser H J. J. Appl. Phys., 1961, 32(3): 510.

doi: 10.1063/1.1736034
[8]
Sutanto A, Caprioglio P, Drigo N, Hofstetter Y, Garcia-Benito I, Queloz V, Neher D, Nazeeruddin M, Stolterfoht M, Vaynzof Y, Grancini G. Chem, 2021, 7: 1903.

doi: 10.1016/j.chempr.2021.04.002
[9]
Lin D X, Xu X, Zhang T K, Pang N N, Wang J M, Li H Y, Shi T T, Chen K, Zhou Y, Wang X, Xu J B, Liu P Y, Xie W G. Nano Energy, 2021, 84: 105893.
[10]
Fu W F, Liu H B, Shi X L, Zuo L J, Li X S, Jen A K Y. Adv. Funct. Mater., 2019, 29(25): 1900221.
[11]
Fan J D, Ma Y P, Zhang C L, Liu C, Li W Z, Schropp R E I, Mai Y H. Adv. Energy Mater., 2018, 8(16): 1703421.
[12]
Koh T M, Shanmugam V, Guo X T, Lim S S, Filonik O, Herzig E M, Müller-Buschbaum P, Swamy V, Chien S T, Mhaisalkar S G, Mathews N. J. Mater. Chem. A, 2018, 6(5): 2122.

doi: 10.1039/C7TA09657G
[13]
Kuo M Y, Spitha N, Hautzinger M P, Hsieh P L, Li J, Pan D X, Zhao Y Z, Chen L J, Huang M H, Jin S, Hsu Y J, Wright J C. J. Am. Chem. Soc., 2021, 143(13): 4969.

doi: 10.1021/jacs.0c10000
[14]
Jeong J, Kim M, Seo J, Lu H Z, Ahlawat P, Mishra A, Yang Y G, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y. Nature, 2021, 592(7854): 381.

doi: 10.1038/s41586-021-03406-5
[15]
Sarritzu V, Sestu N, Marongiu D, Chang X Q, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G. Sci. Rep., 2017, 7(1): 1900221.
[16]
Tang A L, Song W, Xiao B, Guo J, Min J, Ge Z Y, Zhang J Q, Wei Z X, Zhou E J. Chem. Mater., 2019, 31(11): 3941.

doi: 10.1021/acs.chemmater.8b05316
[17]
An N, Cai Y H, Wu H B, Tang A L, Zhang K N, Hao X T, Ma Z F, Guo Q, Ryu H S, Woo H Y, Sun Y M, Zhou E J. Adv. Mater., 2020, 32(39): 2002122.
[18]
Wang B, Li H, Dai Q Q, Zhang M, Zou Z G, Brédas J L, Lin Z Q. Angew. Chem. Int. Ed., 2021, 60(32): 17664.
[19]
Chen J Z, Park N G. Adv. Mater., 2019, 31(47): 1803019.
[20]
de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C. J. Phys. Chem. Lett., 2014, 5(6): 1035.

doi: 10.1021/jz500279b
[21]
Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J. Nat. Mater., 2017, 16(1): 115.

doi: 10.1038/nmat4765 pmid: 27698354
[22]
Wang T Y, Daiber B, Frost J M, Mann S A, Garnett E C, Walsh A, Ehrler B. Energy Environ. Sci., 2017, 10(2): 509.

doi: 10.1039/C6EE03474H
[23]
Gao F, Zhao Y, Zhang X W, You J B. Adv. Energy Mater., 2020, 10(13): 1902650.
[24]
Wei Q, Yin J, Bakr O M, Wang Z, Wang C H, Mohammed O F, Li M J, Xing G C. Angew. Chem. Int. Ed., 2021, 60(19): 10957.
[25]
Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M. Adv. Energy Mater., 2015, 5(3): 1400812.
[26]
Luo D Y, Su R, Zhang W, Gong Q H, Zhu R. Nat. Rev. Mater., 2020, 5(1): 44.

doi: 10.1038/s41578-019-0151-y
[27]
Ball J M, Petrozza A. Nat. Energy, 2016, 1(11): 1.

doi: 10.1038/ng0492-1
[28]
Jones T, Osherov A, Alsari M, Sponseller M, Duck B, Jung Y, Settens C, Niroui F, Brenes R, Stan C. Energy Environ. Sci., 2019, 12: 596.

doi: 10.1039/C8EE02751J
[29]
Yang X Y, Ni Y, Zhang Y Z, Wang Y J, Yang W Q, Luo D Y, Tu Y G, Gong Q H, Yu H F, Zhu R. ACS Energy Lett., 2021, 6(7): 2404.

doi: 10.1021/acsenergylett.1c01039
[30]
Moia D, Maier J. ACS Energy Lett., 2021, 6 (4): 1566.

doi: 10.1021/acsenergylett.1c00227
[31]
Yin W J, Shi T T, Yan Y F. Adv. Mater., 2014, 26(27): 4653.

doi: 10.1002/adma.201306281
[32]
Wu N, Wu Y, Shen H, Walter D, Duong T, Grant D, Barugkin C, Fu X, Peng J, Mulmudi H. Energy Technol., 2017, 5: 1827.

doi: 10.1002/ente.201700374
[33]
Shao Y C, Xiao Z G, Bi C, Yuan Y B, Huang J S. Nat. Commun., 2014, 5(1): 5784.

doi: 10.1038/ncomms6784
[34]
Luo D Y, Li X Y, Dumont A, Yu H Y, Lu Z H. Adv. Mater., 2021, 33(30): 2006004.
[35]
Wang Z Y, Zhu X J, Feng J S, Wang C Y, Zhang C, Ren X D, Priya S, Liu S F, Yang D. Adv. Sci., 2021, 8(13): 2002860.
[36]
Wolff C M, Zu F S, Paulke A, Toro L P, Koch N, Neher D. Adv. Mater., 2017, 29(28): 1700159.
[37]
Wolff C M, Caprioglio P, Stolterfoht M, Neher D. Adv. Mater., 2019, 31(52): 1902762.
[38]
Pazos-Outón L M, Xiao T P, Yablonovitch E. J. Phys. Chem. Lett., 2018, 9(7): 1703.

doi: 10.1021/acs.jpclett.7b03054 pmid: 29537271
[39]
Dequilettes D, Vorpahl S, Stranks S, Nagaoka H, Ginger D. Science, 2015, 348: 683.

doi: 10.1126/science.aaa5333
[40]
Leijtens T, Eperon G E, Barker A J, Grancini G, Zhang W, Ball J M, Kandada A R S, Snaith H J, Petrozza A. Energy Environ. Sci., 2016, 9(11): 3472.

doi: 10.1039/C6EE01729K
[41]
Srimath Kandada A R, Neutzner S, D’Innocenzo V, Tassone F, Gandini M, Akkerman Q A, Prato M, Manna L, Petrozza A, Lanzani G. J. Am. Chem. Soc., 2016, 138(41): 13604.
[42]
Cava R J, Santoro A, Johnson D W, Rhodes W W. Phys. Rev. B, 1987, 35(13): 6716.

pmid: 9940920
[43]
Wright A D, Milot R L, Eperon G E, Snaith H J, Johnston M B, Herz L M. Adv. Funct. Mater., 2017, 27(29): 1700860.
[44]
Rosen M D, Hagelstein P L, Matthews D L, Campbell E M, Hazi A U, Whitten B L, MacGowan B, Turner R E, Lee R W, Charatis G, Busch G E, Shepard C L, Rockett P D, Johnson R R. Phys. Rev. Lett., 1985, 54(8): 853.
[45]
Guo Z, Wu X X, Zhu T, Zhu X Y, Huang L B. ACS Nano, 2016, 10(11): 9992.

doi: 10.1021/acsnano.6b04265
[46]
Motta C, Sanvito S. J. Phys. Chem. C, 2018, 122(2): 1361.

doi: 10.1021/acs.jpcc.7b10163
[47]
Zhang F, Lu H P, Larson B W, Xiao C X, Dunfield S P, Reid O G, Chen X H, Yang M J, Berry J J, Beard M C, Zhu K. Chem, 2021, 7(3): 774.

doi: 10.1016/j.chempr.2020.12.023
[48]
An Q Z, Paulus F, Becker-Koch D, Cho C, Sun Q, Weu A, Bitton S, Tessler N, Vaynzof Y. Matter, 2021, 4(5): 1683.

doi: 10.1016/j.matt.2021.02.020
[49]
Wang M, Cao F R, Deng K M, Li L. Nano Energy, 2019, 63: 103867.
[50]
Zuo C T, Ding L M. Angew. Chem. Int. Ed., 2021, 60(20): 11242.
[51]
Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y. Adv. Mater., 2020, 32(17): 1907769.
[52]
Lee J W, Dai Z H, Lee C, Lee H M, Han T H, de Marco N, Lin O, Choi C S, Dunn B, Koh J, di Carlo D, Ko J H, Maynard H D, Yang Y. J. Am. Chem. Soc., 2018, 140(20): 6317.

doi: 10.1021/jacs.8b01037
[53]
Li L, Chen Y, Fan R, Wang X, Zhou H. Adv. Mater., 2016, 28: 9862.

doi: 10.1002/adma.201603021
[54]
Xu C Y, Liu Z H, Lee E C. J. Mater. Chem. C, 2020, 8(44): 15860.
[55]
Hui W, Chao L F, Lu H, Xia F, Wei Q, Su Z H, Niu T T, Tao L, Du B, Li D L, Wang Y, Dong H, Zuo S W, Li B X, Shi W, Ran X Q, Li P, Zhang H, Wu Z B, Ran C X, Song L, Xing G C, Gao X Y, Zhang J, Xia Y D, Chen Y H, Huang W. Science, 2021, 371(6536): 1359.

doi: 10.1126/science.abf7652 pmid: 33766883
[56]
Wang X J, Ran X Q, Liu X T, Gu H, Zuo S W, Hui W, Lu H, Sun B, Gao X Y, Zhang J, Xia Y D, Chen Y H, Huang W. Angew. Chem. Int. Ed., 2020, 59(32): 13354.
[57]
Haque M A, Troughton J, Baran D. Adv. Energy Mater., 2020, 10(13): 1902762.
[58]
Abdi-Jalebi M, Andaji-Garmaroudi Z, Pearson A, Divitini G, Stranks S. ACS Energy Lett., 2018, 3: 9862.
[59]
Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354(6309): 206.

doi: 10.1126/science.aah5557
[60]
Zhang M M, Zhou W R, Hu W P, Li B R, Qiao Q Q, Yang S F. ACS Appl. Mater. Interfaces, 2020, 12(11): 12696.
[61]
Cao H Q, Dong Z, Qiu Y, Li J Z, Wang Y J, Li Z Y, Yang L Y, Yin S G. ACS Appl. Mater. Interfaces, 2020, 12(37): 41303.
[62]
Kim M, Kim G, Lee T, Choi I, Kim D. Joule, 2019, 3: 2179.

doi: 10.1016/j.joule.2019.06.014
[63]
Qin C J, Matsushima T, Fujihara T, Adachi C. Adv. Mater., 2017, 29(4): 1603808.
[64]
Li H, Wu G, Li W, Zhang Y, Liu S. Adv. Sci., 2019, 6: 1901241.
[65]
Yang Y, Peng H R, Liu C, Arain Z, Ding Y, Ma S, Liu X L, Hayat T, Alsaedi A, Dai S Y. J. Mater. Chem. A, 2019, 7(11): 6450.

doi: 10.1039/c8ta11925b
[66]
Zhu W, Kang L, Yu T, Lv B, Zou Z. ACS Appl. Mater. Interfaces, 2017, 9: 6104.

doi: 10.1021/acsami.6b15563
[67]
Wang Y, Li J W, Li Q, Zhu W D, Yu T, Chen X Y, Yin L A, Zhou Y, Wang X Y, Zou Z G. Chem. Commun., 2017, 53(36): 5032.

doi: 10.1039/C7CC01573A
[68]
Cao X B, Zhi L L, Li Y H, Cui X, Ci L J, Ding K X, Wei J Q. RSC Adv., 2017, 7(77): 49144.
[69]
Cao X B, Zhi L L, Li Y H, Fang F, Cui X, Ci L J, Ding K X, Wei J Q. ACS Appl. Energy Mater., 2018, 1(2): 868.

doi: 10.1021/acsaem.7b00300
[70]
Zhi L L, Li Y Q, Cao X B, Li Y H, Cui X, Ci L J, Wei J Q. J. Energy Chem., 2019, 30: 78.

doi: 10.1016/j.jechem.2018.03.017
[71]
Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P. Nano Energy, 2019, 64: 103914.
[72]
Fu X W, Dong N, Lian G, Lv S, Zhao T, Wang Q L, Cui D L, Wong C P. Nano Lett., 2018, 18(2): 1213.

doi: 10.1021/acs.nanolett.7b04809
[73]
Fan H C, Li F Z, Wang P C, Gu Z K, Huang J H, Jiang K J, Guan B, Yang L M, Zhou X Q, Song Y L. Nat. Commun., 2020, 11(1): 5402.

doi: 10.1038/s41467-020-19199-6
[74]
Zhou Z M, Wang Z W, Zhou Y Y, Pang S P, Wang D, Xu H X, Liu Z H, Padture N P, Cui G L. Angew. Chem., 2015, 127(33): 9841.

doi: 10.1002/ange.201504379
[75]
Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S. Science, 2015, 347(6225): 967.

doi: 10.1126/science.aaa5760
[76]
Liu Y, Dong Q F, Fang Y J, Lin Y Z, Deng Y H, Huang J S. Adv. Funct. Mater., 2019, 29(47): 1807707.
[77]
Gao J, Liang Q B, Li G H, Ji T, Liu Y C, Fan M M, Hao Y Y, Liu S F, Wu Y C, Cui Y X. J. Mater. Chem. C, 2019, 7(27): 8357.

doi: 10.1039/C9TC01309A
[78]
Gong J D, Yu H Y, Zhou X, Wei H H, Ma M X, Han H, Zhang S, Ni Y, Li Y L, Xu W T. Adv. Funct. Mater., 2020, 30(46): 2005413.
[79]
Gong X W, Huang Z R, Sabatini R, Tan C S, Bappi G, Walters G, Proppe A, Saidaminov M I, Voznyy O, Kelley S O, Sargent E H. Nat. Commun., 2019, 10(1): 1591.

doi: 10.1038/s41467-019-09538-7
[80]
Liu Y C, Zhang Y X, Yang Z, Yang D, Ren X D, Pang L Q, Liu S F. Adv. Mater., 2016, 28(41): 9203.

doi: 10.1002/adma.201670290
[81]
Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S. Nat. Commun., 2017, 8(1): 1890.

doi: 10.1038/s41467-017-02039-5
[82]
Chen Z L, Turedi B, Alsalloum A Y, Yang C, Zheng X P, Gereige I, AlSaggaf A, Mohammed O F, Bakr O M. ACS Energy Lett., 2019, 4(6): 1258.

doi: 10.1021/acsenergylett.9b00847
[83]
Alsalloum A Y, Turedi B, Zheng X P, Mitra S, Zhumekenov A A, Lee K J, Maity P, Gereige I, AlSaggaf A, Roqan I S, Mohammed O F, Bakr O M. ACS Energy Lett., 2020, 5(2): 657.

doi: 10.1021/acsenergylett.9b02787
[84]
Yue H L, Sung H H, Chen F C. Adv. Electron. Mater., 2018, 4(7): 1700655.
[85]
Park J S, Walsh A. Annu. Rev. Condens. Matter Phys., 2021, 12(1): 95.

doi: 10.1146/annurev-conmatphys-042020-025347
[86]
Ochoa-Martinez E, Ochoa M, Ortuso R D, Ferdowsi P, Carron R, Tiwari A N, Steiner U, Saliba M. ACS Energy Lett., 2021, 6(7): 2626.

doi: 10.1021/acsenergylett.1c01187
[87]
Wang J T, Jin G Y, Zhen Q Z, He C Y, Duan Y. Adv. Mater. Interfaces, 2021, 8(9): 2002078.
[88]
Shi B, Xin Y, Hou F, Sheng G, Li Y, Wei C, Yi D, Li Y, Ying Z, Zhang X. J. Phys. Chem. C, 2018, 122: 21269.
[89]
Hoque M N F, He R, Warzywoda J, Fan Z Y. ACS Appl. Mater. Interfaces, 2018, 10(36): 30322.
[90]
Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S, Yang Y. Nano Lett., 2014, 14(7): 4158.

doi: 10.1021/nl501838y pmid: 24960309
[91]
Emrul K, Hossain C, Kiyoto M, Ryuji K, Said K, Jae-Joon L, Takeshi N, Ashraful I. ACS Energy Lett., 2018, 3: 1584.

doi: 10.1021/acsenergylett.8b00645
[92]
Jacobsson T J, Correa-Baena J P, Halvani Anaraki E, Philippe B, Stranks S D, Bouduban M E F, Tress W, Schenk K, Teuscher J, Moser J E, Rensmo H, Hagfeldt A. J. Am. Chem. Soc., 2016, 138(32): 10331.
[93]
He Y T, Wang W H, Qi L M. ACS Appl. Mater. Interfaces, 2018, 10(45): 38985.
[94]
Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G. Nat. Energy, 2016, 1(7): 16081.
[95]
Hawash Z, Raga S R, Son D Y, Ono L K, Park N G, Qi Y B. J. Phys. Chem. Lett., 2017, 8(17): 3947.

doi: 10.1021/acs.jpclett.7b01508 pmid: 28767259
[96]
Zhang Y, Zhang C C, Gao C H, Li M, Ma X J, Wang Z K, Liao L S. Sol. RRL, 2019, 3(2): 1604153.
[97]
Zhao W G, Yao Z, Yu F Y, Yang D, Liu S F. Adv. Sci., 2018, 5(2): 1700131.
[98]
Lu J J, Chen S C, Zheng Q D. Sci. China Chem., 2019, 62(8): 1044.

doi: 10.1007/s11426-019-9486-0
[99]
Klug M T, Osherov A, Haghighirad A A, Stranks S D, Brown P R, Bai S, Wang J T W, Dang X N, Bulović V, Snaith H J, Belcher A M. Energy Environ. Sci., 2017, 10(1): 236.

doi: 10.1039/C6EE03201J
[100]
Gong X, Guan L, Pan H P, Sun Q, Zhao X J, Li H, Pan H, Shen Y, Shao Y, Sun L J, Cui Z F, Ding L M, Wang M K. Adv. Funct. Mater., 2018, 28(50): 1804286.
[101]
Xu W Z, Zheng L Y, Zhang X T, Cao Y, Meng T, Wu D Z, Liu L, Hu W P, Gong X. Adv. Energy Mater., 2018, 8(14): 1703178.
[102]
Zhang J, Chen R J, Wu Y Z, Shang M H, Zeng Z B, Zhang Y, Zhu Y J, Han L Y. Adv. Energy Mater., 2018, 8(5): 1701981.
[103]
Wang K, Zheng L Y, Zhu T, Yao X, Yi C, Zhang X T, Cao Y, Liu L, Hu W P, Gong X. Nano Energy, 2019, 61: 352.

doi: 10.1016/j.nanoen.2019.04.073
[104]
Wang Z K, Li M, Yang Y G, Hu Y, Ma H, Gao X Y, Liao L S. Adv. Mater., 2016, 28(31): 6767.

doi: 10.1002/adma.201670217
[105]
Wang J T W, Wang Z P, Pathak S, Zhang W, de Quilettes D W, Wisnivesky-Rocca-rivarola F, Huang J, Nayak P K, Patel J B, Mohd Yusof H A, Vaynzof Y, Zhu R, Ramirez I, Zhang J, Ducati C, Grovenor C, Johnston M B, Ginger D S, Nicholas R J, Snaith H J. Energy Environ. Sci., 2016, 9(9): 2892.

doi: 10.1039/C6EE01969B
[106]
Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W. Nano Micro Lett., 2020, 12(1): 119.

doi: 10.1007/s40820-020-00457-7
[107]
Wang Z W, Tao J L, Shen J L, Kong W G, Yu Z H, Wang A Y, Fu G S, Yang S P. J. Power Sources, 2021, 488: 229449.
[108]
Bai Y, Dong Q F, Shao Y C, Deng Y H, Wang Q, Shen L, Wang D, Wei W, Huang J S. Nat. Commun., 2016, 7(1): 12806.
[109]
Wu Y Z, Yang X D, Chen W, Yue Y F, Cai M L, Xie F X, Bi E B, Islam A, Han L Y. Nat. Energy, 2016, 1(11): 16148.
[110]
Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, Zhao X, Dennis T, Li X, Wang S. Adv. Mater., 2017, 29: 1606806.
[111]
Wang R, Xue J, Meng L, Lee J, Yang Y. Joule, 2019, 3: 1464.

doi: 10.1016/j.joule.2019.04.005
[112]
Wang R, Xue J, Wang K, Wang Z, Yang Y. Science, 2019, 366: 1509.

doi: 10.1126/science.aay9698 pmid: 31857483
[113]
Chen W, Wang Y F, Pang G T, Koh C W, Djurišić A B, Wu Y H, Tu B, Liu F Z, Chen R, Woo H Y, Guo X G, He Z B. Adv. Funct. Mater., 2019, 29: 1808855.
[114]
Yang S, Dai J, Yu Z H, Shao Y C, Zhou Y, Xiao X, Zeng X C, Huang J S. J. Am. Chem. Soc., 2019, 141(14): 5781.

doi: 10.1021/jacs.8b13091
[115]
Li M G, Yu L S, Zhang Y, Gao H, Li P, Chen R F, Huang W. Sol. RRL, 2020, 4(11): 2000481.
[116]
Song S, Park E Y, Ma B S, Kim D J, Park H H, Kim Y Y, Shin S S, Jeon N J, Kim T S, Seo J. Adv. Energy Mater., 2021, 11(10): 2003382.
[117]
Liu Z Z, Cao F R, Wang M, Wang M, Li L. Angew. Chem. Int. Ed., 2020, 59(10): 4161.

doi: 10.1002/anie.201915422
[118]
Wu X, Zhang L, Xu Z, Olthof S, Ren X D, Liu Y C, Yang D, Gao F, Liu S F. J. Mater. Chem. A, 2020, 8(17): 8313.

doi: 10.1039/D0TA02222E
[119]
Xiong J, Dai Z J, Zhan S P, Zhang X W, Xue X G, Liu W Z, Zhang Z L, Huang Y, Dai Q L, Zhang J. Nano Energy, 2021, 84: 105882.
[120]
Kang D H, Kim S Y, Lee J W, Park N G. J. Mater. Chem. A, 2021, 9(6): 3441.

doi: 10.1039/D0TA10581C
[121]
Zhang C C, Wang Z K, Yuan S, Wang R, Li M, Jimoh M F, Liao L S, Yang Y. Adv. Mater., 2019: 1902222.
[122]
Hu X F, Wang H X, Wang M, Zang Z G. Sol. Energy, 2020, 206: 816.

doi: 10.1016/j.solener.2020.06.057
[123]
Peng J, Khan J. Adv. Energy Mater., 2018, 8: 1801208.
[124]
Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulović V, Buonassisi T, Shin S S, Bawendi M G. Energy Environ. Sci., 2019, 12(7): 2192.

doi: 10.1039/C9EE00751B
[125]
Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F. Adv. Mater., 2018, 30(30): 1801401.
[126]
Hu Y H, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Müller-Buschbaum P, Docampo P. ACS Nano, 2016, 10(6): 5999.

doi: 10.1021/acsnano.6b01535
[127]
Chen P, Bai Y, Wang S C, Lyu M Q, Yun J H, Wang L Z. Adv. Funct. Mater., 2018, 28(17): 1706923.
[128]
Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B. Nat. Photonics, 2019, 13(7): 460.

doi: 10.1038/s41566-019-0398-2
[129]
Ahmad S, Fu P, Yu S W, Yang Q, Liu X, Wang X C, Wang X L, Guo X, Li C. Joule, 2019, 3(3): 794.

doi: 10.1016/j.joule.2018.11.026
[130]
Chen P, Bai Y, Lyu M Q, Yun J H, Hao M M, Wang L Z. Sol. RRL, 2018, 2(3): 1700186.
[131]
Stolterfoht M, Caprioglio P, Wolff C M, Márquez J A, Nordmann J, Zhang S S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F S, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D. Energy Environ. Sci., 2019, 12(9): 2778.

doi: 10.1039/C9EE02020A
[132]
Chen P, Bai Y, Wang L Z. Small Struct., 2021, 2(1): 2000050.
[133]
Shao Y C, Yuan Y B, Huang J S. Nat. Energy, 2016, 1(1): 15001.
[134]
Younes E M, Gurung A, Bahrami B, El-Maghraby E M, Qiao Q. Carbon, 2021, 180: 226.

doi: 10.1016/j.carbon.2021.05.008
[135]
Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I. Energy Environ. Sci., 2014, 7(8): 2642.

doi: 10.1039/C4EE01216J
[136]
Ren G H, Han W B, Deng Y Y, Wu W, Li Z W, Guo J X, Bao H C, Liu C Y, Guo W B. J. Mater. Chem. A, 2021, 9(8): 4589.

doi: 10.1039/D0TA11564A
[137]
Jeon N, Na H, Jung E, Yang T, Seo J. Nat. Energy, 2018, 3: 682.

doi: 10.1038/s41560-018-0200-6
[138]
Singh T, Öz S, Sasinska A, Frohnhoven R, Mathur S, Miyasaka T. Adv. Funct. Mater., 2018, 28(14): 1706287.
[139]
Liu C, Yang Y, Ding Y, Xu J, Liu X L, Zhang B, Yao J X, Hayat T, Alsaedi A, Dai S Y. ChemSusChem, 2018, 11(7): 1232.

doi: 10.1002/cssc.201702248
[140]
Peng J, Duong T, Zhou X, Shen H, Wu Y, Mulmudi H, Wan Y, Zhong D, Li J, Tsuzuki T. Adv. Energy Mater., 2017, 7: 1601768.
[141]
Tavakoli M M, Giordano F, Zakeeruddin S M, Grätzel M. Nano Lett., 2018, 18(4): 2428.

doi: 10.1021/acs.nanolett.7b05469
[142]
Chavan R D, Yadav P, Tavakoli M M, Prochowicz D, Nimbalkar A, Bhoite S P, Bhosale P N, Hong C K. Sustain. Energy Fuels, 2020, 4(2): 843.
[143]
Zhou Y Q, Wu B S, Lin G H, Xing Z, Li S H, Deng L L, Chen D C, Yun D Q, Xie S Y. Adv. Energy Mater., 2018, 8(20): 1800399.
[144]
Belisle R A, Jain P, Prasanna R, Leijtens T, McGehee M D. ACS Energy Lett., 2016, 1(3): 556.

doi: 10.1021/acsenergylett.6b00270
[145]
Liang P W, Chueh C C, Williams S T, Jen A K Y. Adv. Energy Mater., 2015, 5(10): 1402321.
[1] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[2] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[3] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[4] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[5] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[6] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[7] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.
[8] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[9] Xiaoyin Li, Chuancong Zhou, Yinghua Wang, Feifei Ding, Huawei Zhou, Xianxi Zhang. Sn-Based Light-Absorbing Materials for Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(6): 882-893.
[10] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[11] Que Yaping, Weng Jian, Hu Linhua, Dai Songyuan. Applications of Titanium Dioxide in Perovskite Solar Cells [J]. Progress in Chemistry, 2016, 28(1): 40-50.
[12] Wei Feng**,Yiyu Feng. The Ordering Microstructure and Carriers Transportation in Activated Layers of Organic Photovoltaic Cell* [J]. Progress in Chemistry, 2006, 18(0203): 182-188.