中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 2063-2080 DOI: 10.7536/PC211022 Previous Articles   Next Articles

• Review •

Two-Dimensional Perovskite Photovoltaic Devices

Chao Ji1,2,3, Tuo Li1,2, Xiaofeng Zou1,2, Lu Zhang1,2, Chunjun Liang3()   

  1. 1 State Key Laboratory of High-End Server & Storage Technology, Jinan 250013, China
    2 Shandong Inspur Artificial Intelligence Research Institute Co., Ltd, Jinan 250013, China
    3 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University,Beijing 100044, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: chjliang@bjtu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(61874008)
Richhtml ( 69 ) PDF ( 1143 ) Cited
Export

EndNote

Ris

BibTeX

Organic-inorganic hybrid halide perovskite solar cells (PSCs) have attracted more attention because of their low cost, simple preparation process and high power conversion efficiency(PCE). It is widely considered as ideal candidates for the next generation semiconductor photovoltaic technology. However, the instability caused by moisture, light and heat is still the main factor restricting the commercialization of PSCs devices. Layered two-dimensional (2D) perovskite has attracted extensive attention because of its good environmental stability. By introducing different kinds of hydrophobic large volume organic ammonium cations, a stable 2D structure can be formed. However, due to the existence of insulating organic spacer cations, its charge transport capacity is blocked and its power conversion efficiency is poor. Therefore, improving the PCE of 2D PSCs on the premise of maintaining excellent stability is the key problem. According to the development process of different kinds of 2D perovskite photovoltaic devices, this paper summarizes the key problems affecting the structure and performance of 2D perovskite, such as vertical orientation, mixed dimensional engineering, quantum well regulation, organic spacer cation replacement engineering and so on. Finally, the future development of 2D PSCs is prospected.

Contents

1 Introduction

2 Crystal structure and physical properties of two-dimensional perovskite

3 RP phase perovskite solar cell

3.1 Low n-value 2D-RP perovskite

3.2 High n-value 2D-RP perovskite

4 DJ phase perovskite solar cell

4.1 Asymmetric diammonium structure

4.2 Symmetrical diammonium structure

5 ACI phase perovskite solar cell

6 Conclusion and Prospect

Fig. 1 (a) Cubic crystal structure of perovskite; (b) Tolerance factor of ideal cubic perovskite structure
Fig. 2 (a) Layered perovskite with different n values with organic spacer cations cut from 3D perovskite <100> plane. (b) Illustration of the 2D perovskite material phase space. Typical n=1 2D layered perovskite structures: (c) monoamine and (d) diamine. (e) Band structure of 2D perovskite with multiple quantum wells
Fig. 3 (a) Optical band gap and (b) photoluminescence spectra of different 2D perovskite; (c) images of 2D perovskite film with different N values (top), crystal orientation diagram of (BA)2(MA)2Pb3I10 (middle) and cross-sectional SEM images (bottom)[31]
Fig. 4 (a) GIWAXS maps for polycrystalline room-temperature-cast (left) and hot-cast (middle) near-single-crystalline (BA)2(MA)3Pb4I13 perovskite films. Schematic representation of the (101) orientation, along with the (111) and (202) planes of a 2D perovskite crystal, consistent with the GIWAXS data (right)[32]. (b) GIWAXS measurements of hot-cast BTA-based RDPs in four different size regimes[33]. (c) Schematic of carrier transfer in the n = 5 perovskite film. The electron transfers from small-n to large-n perovskite phases, and the hole transfers from large-n to small-n perovskite phases, and there is little n = 1 phase in this thin film[34]
Fig. 5 (a) Morphology characterization of the Csx-2D perovskite films (scanning electron microscope). (b) The current density-voltage (J-V) curve of Cs5-2D perovskite devices[38]. (c) Estimated exciton binding energy by absorption spectra. The 2D perovskites show a typical exciton peak and a step-like band-to-band absorption. The exciton binding energy of BA2PbI4 and MA2PbI4 are 502 meV and 153 meV, respectively[39]. (d) GIWAXS patterns of (PPA)2(Cs/FA/MA)n-1Pbn $(I/Br)_{3_{n+1}}$ (n ≤ 4) films[42]
Fig. 6 (a) Schematic crystal structures of the 2D-RP perovskites (MTEA)2(MA)n-1Pbn I 3 n + 1 and (BA)2(MA)n-1Pbn I 3 n + 1 and charge transport diagram of MTEA and BA based 2D perovskite films[43]. (b) Illustrated structures of RP-phase two-dimensional (2DRP) perovskites integrated by different organic spacers (EA-HA) and J-V characteristics of the best 2D-RP PSC (AA2MA3Pb4I13)[44]
Fig. 7 (a) The current density-voltage (J-V) curve of the best-performing FPEA-FA device; the inset is the device structure of the 2D-RPP solar cell. (b) The normalized PCE of unencapsulated FPEA-FA, FPEA-MA, and PEA-MA devices under 30%~70% RH[45]. (c) The J-V curve of the PSCs using GABr post-treatment; the inset is the device structure of the 2D-RPP solar cell. (d) Top-view scanning electron microscopy (SEM) images of the perovskite films treated with various GABr concentrations[46]
Fig. 8 (a) Unit cell structure of (PEA)2(MA)n-1Pbn I 3 n + 1 perovskites with different n values, showing the evolution of dimensionality from 2D (n=1) to 3D (n=∞) (upper). Device performance as a function of n value, which shows that increased performance was achieved with increased n value; however, in the meantime, stability was decreased (lower)[47]. (b) Illustration depicting the orientation of the 3D perovskite phase in the x = 0.09 film, compared with a low-textured x = 0 film, showing a preference for the [h00] direction to align out-of-plane. Note that these squares just schematically illustrate the crystal orientation rather than the crystal grains. (c) Intensity of (100) reflection as a function of time during the perovskite annealing procedure (from room temperature to 175℃) for two different BA concentrations (x = 0 and 0.09)[48]
Fig. 9 (a) Schematics of the device incorporating polycrystalline 3D perovskite film with 2D perovskite at grain boundaries. Current-voltage (I-V) curves measured from the devices at 180 K for (b) Bare FAPbI3 film and (c) FAPbI3 film with 1.67 mol% 2D PEA2PbI4 perovskite[50]
Fig. 10 (a) Definition of axial and equatorial Pb-I-Pb angles and statistics of average axial and equatorial angles of 3AMP and 4 AMP. (b) J-V curves of the 2D perovskite solar cell devices[51]. (c) The side and top view of (3AMPY)(MA)Pb2I7 and (4AMPY)(MA)Pb2I7 and the optical absorption spectra of two perovskites with different n values. (d) J-V curves for the corresponding devices[52]. (e) averaged Pb-I-Pb angles. (f) XRD patterns of (3AMP)(MA1-xFAx)3Pb4I13 (x=0~0.3) films. (g) J-V curves of (3AMP)(MA1-xFAx)3Pb4I13 (x=0~0.3) devices[53]
Fig. 11 (a) Schematic Illustration of RP and DJ Phase 2D Layered Perovskites[55]. (b) The schematic of azimuth angle evolution of (101) crystallographic[57]. (c) Schematic diagram of morphology and charge transport model of the control and target devices (up) and PL occurs distribution of different carrier lifetime for the corresponding films (down)[58]. (d) J-V curves of different devices[59]
Fig. 12 (a) Schematic illustration depicting the microscopic growth mechanism of the 2D perovskite film under the assistance of FACl[61]. (b) J-V curves of the champion devices and thermal stability of the unencapsulated control and target devices aged at 60℃ in the dark[62]. (c) Schematic illustration of preparation process of (BDA)FA4Pb5I16-xBrx with GBD formed via the ion exchange reaction between I- and Br- and energy level diagram of PSCs based on the control and target perovskite films. (d) J-V curves of the champion control and target devices[63]
Fig. 13 (a) View of the unit cells of the (GA)(MA)nPbn I 3 n + 1 (n = 1~3) perovskites along the crystallographic a-axis highlighting the ordered crystal packing of the GA and MA cations between the perovskite layers[64]. (b) Schematic model illustrating the self-assembly of the ACI perovskite[65]. (c) Schematics of the charge carrier localization from small n to large n phases and the charge carrier extraction from the ACI perovskite[66]. (d) Schematic of the band structure for mixed perovskite QWs and carrier transport pathway. (BA)2MA2Pb3I10 film enables a stepped transmission (up), while there is a flat transmission for (BEA)0.5MA3Pb3I10 films (down). (e) J-V curves of B-ACI and LDRP perovskite solar cells with (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 and (BA)2Cs0.1(FA0.83MA0.17)1.9Pb3(I0.83Br0.17)10 as the active layer[67]
Table 1 Photovoltaic performance parameters of different types of 2D PSCs
Type 2D organic spacer cation 2D perovskite Voc(V) Jsc(mA/cm2) FF(%) PCE(%) ref
RP (PEA)2(MA)2Pb3I10 1.18 6.72 60 4.73 13
RP (BA)2(MA)2Pb3I10 0.929 9.42 46 4.02 31
RP (BA)2(MA)3Pb4I13 1.01 16.76 74.13 12.51 32
RP BTA-MAPbI3
PEA-MAPbI3
33
RP PEA2MAn-1PbnI3n+1 34
RP PEA2MA4Pb5I16
(Vacuum polarization treatment)
1.223 17.91 82.4 18.04 35
RP (BA)2(MA0.95Cs0.05)3Pb4I13/(BrB-PEDOT:PSS) 1.11 17.08 72.5 13.74 36
RP BA2MA3Pb4I13
(DMF/DMSO)
1.10 14.2 71 11.1 37
RP (BA)2(MA)3Pb4I13(Cs+ doping) 1.08 19.95 63.47 13.68 38
RP MA2PbI4 1.06 21.00 76 16.92 39
RP (ThFA)2MA2PbnI10 1.05 20.17 79 16.72 41
RP (PPA)2(Cs0.05(FA0.88MA0.12)0.95)3
Pb4(I0.88Br0.12)13
1.14 19.33 67 14.76 42
RP (MTEA)2(MA)4Pb5I16 1.088 21.77 76.27 18.06 43
RP (AA)2MA3Pb4I13 1.13 18.20 76.86 15.78 44
RP (FPEA)2(FA)8Pb9I28 1.07 20.88 72.29 16.15 45
RP (GA)2MA4Pb5I16 1.17 21.9 75 19.3 46
RP PEA2MAn-1PbnI3n+1(n=60) 1.09 19.12 73.7 15.36 47
RP BA0.09(FA0.83Cs0.17)0.91
Pb(I0.6Br0.4)3
1.18 19.8 73 17.2 48
RP (AVA)2PbI4@MAPbI3 1.06 22.3 76 18.0 49
RP PEA2PbI4@FA0.98Cs0.02PbI3 1.126 24.44 76.5 21.06 50
DJ (3AMP)(MA)3Pb4I13 1.06 10.17 67.6 7.32 51
DJ (3AMPY)(MA)3Pb4I13 1.08 14.34 59.58 9.20 52
DJ (3AMP)(MA0.75FA0.25)3Pb4I13 1.09 13.69 81.04 12.04 53
DJ (PDA) (MA)3Pb4I13 0.98 19.50 69 13.3 55
DJ (BzDA)(Cs0.05MA0.15FA0.8)9Pb10(I0.93Br0.07)31 1.02 21.5 71 15.6 56
DJ (BDA)(MA)4Pb5I16
(NH4SCN as additive)
1.11 16.07 81.45 14.53 57
DJ (ThDMA)(MA)4Pb5I16 1.07 19.55 75.46 15.75 58
DJ (PDMA)(MA)3Pb4I13 1.15±0.025 21.10±0.53 62.58±1.5 15.09±0.32 59
DJ (mPDA)MA5Pb6I19 0.82 14.74 51 6.16 60
DJ (PDA)(FA)3Pb4I13
(FACl as additive)
1.10 17.30 72.5 13.8 61
DJ (BDA)FA4Pb5I16
(CDTA as additive)
1.064 19.71 76.6 16.07 62
DJ (BDA)FA4Pb5I16-xBrx 1.107 19.69 76.8 16.75 63
ACI GAMA3Pb3I10 0.974 9.357 79.68 7.26 64
ACI GAMA3Pb3I10 1.15 18.8 67.8 14.69 65
ACI (GA)(MA)3Pb3I10 1.08 20.75 74.52 16.65 66
ACI (BEA)0.5Cs0.15
(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10
1.10 21.89 72.2 17.39 67
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2: 591.

doi: 10.1038/srep00591
[3]
Lee Michael M, Teuscher J, Miyasaka T, Murakami Takurou N, Snaith Henry J. Science, 2012, 338: 643.

doi: 10.1126/science.1228604 pmid: 23042296
[4]
Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y. Science, 2014, 345(6196): 542.

doi: 10.1126/science.1254050
[5]
Leijtens T, Bush K A, Prasanna R, McGehee M D. Nat. Energy, 2018, 3(10): 828.

doi: 10.1038/s41560-018-0190-4
[6]
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I. Science, 2015, 348(6240): 1234.

doi: 10.1126/science.aaa9272
[7]
Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354(6309): 206.

doi: 10.1126/science.aah5557
[8]
Bi D Q, Li X, Milić J V, Kubicki D J, Pellet N, Luo J S, LaGrange T, Mettraux P, Emsley L, Zakeeruddin S M, Grätzel M. Nat. Commun., 2018, 9: 4482.

doi: 10.1038/s41467-018-06709-w
[9]
Hu Y H, Hutter E M, Rieder P, Grill I, Hanisch J, Aygüler M F, Hufnagel A G, Handloser M, Bein T, Hartschuh A, Tvingstedt K, Dyakonov V, Baumann A, Savenije T J, Petrus M L, Docampo P. Adv. Energy Mater., 2018, 8(16): 1870073.

doi: 10.1002/aenm.201870073
[10]
Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S I. Science, 2019, 366(6466): 749.

doi: 10.1126/science.aay7044
[11]
Slavney A H, Smaha R W, Smith I C, Jaffe A, Umeyama D, Karunadasa H I. Inorg. Chem., 2017, 56(1): 46.

doi: 10.1021/acs.inorgchem.6b01336 pmid: 27494338
[12]
Misra R K, Cohen B E, Iagher L, Etgar L. ChemSusChem, 2017, 10(19): 3712.

doi: 10.1002/cssc.201701026 pmid: 28703944
[13]
Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I. Angew. Chem. Int. Ed., 2014, 53(42): 11232.

doi: 10.1002/anie.201406466 pmid: 25196933
[14]
Li X T, Hoffman J M, Kanatzidis M G. Chem. Rev., 2021, 121(4): 2230.

doi: 10.1021/acs.chemrev.0c01006
[15]
Krishna A, Gottis S, Nazeeruddin M K, Sauvage F. Adv. Funct. Mater., 2019, 29(8): 1806482.

doi: 10.1002/adfm.201806482
[16]
Goldschmidt V M. Naturwissenschaften, 1926, 14(21): 477.

doi: 10.1007/BF01507527
[17]
Saparov B, Mitzi D B. Chem. Rev., 2016, 116(7): 4558.

doi: 10.1021/acs.chemrev.5b00715
[18]
Blancon J C, Even J, Stoumpos C C, Kanatzidis M G, Mohite A D. Nat. Nanotechnol., 2020, 15(12): 969.

doi: 10.1038/s41565-020-00811-1
[19]
Mao L L, Stoumpos C C, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(3): 1171.

doi: 10.1021/jacs.8b10851
[20]
Beznosikov B V, Aleksandrov K S. Crystallogr. Rep., 2000, 45(5): 792.

doi: 10.1134/1.1312923
[21]
Ruddlesden S N, Popper P. Acta Crystallogr., 1958, 11(1): 54.

doi: 10.1107/S0365110X58000128
[22]
Cheng Z Y, Lin J. CrystEngComm, 2010, 12(10): 2646.

doi: 10.1039/c001929a
[23]
Ishihara T, Hong X, Ding J, Nurmikko A V. Surf. Sci., 1992, 267(1/3): 323.

doi: 10.1016/0039-6028(92)91147-4
[24]
Hong X, Ishihara T, Nurmikko A V. Phys. Rev. B, 1992, 45(12): 6961.

pmid: 10000465
[25]
Era M, Morimoto S, Tsutsui T, Saito S. Appl. Phys. Lett., 1994, 65(6): 676.

doi: 10.1063/1.112265
[26]
Hattori T, Taira T, Era M, Tsutsui T, Saito S. Chem. Phys. Lett., 1996, 254(1/2): 103.

doi: 10.1016/0009-2614(96)00310-7
[27]
Zou Y, Yuan Z, Bai S, Gao F, Sun B. Mater. Today Nano, 2019, 5: 100028.
[28]
Zhu T, Yang Y R, Gong X. ACS Appl. Mater. Interfaces, 2020, 12(24): 26776.

doi: 10.1021/acsami.0c02575
[29]
Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S. Adv. Energy Mater., 2020, 10(13): 1902584.

doi: 10.1002/aenm.201902584
[30]
Zhu H L, Choy W C H. Sol. RRL, 2018, 2(10): 1800146.

doi: 10.1002/solr.201800146
[31]
Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. J. Am. Chem. Soc., 2015, 137(24): 7843.

doi: 10.1021/jacs.5b03796
[32]
Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. Nature, 2016, 536(7616): 312.

doi: 10.1038/nature18306
[33]
Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z Y, Kelley S O, Amassian A, Toney M F, Sargent E H. Nat. Mater., 2018, 17(10): 900.

doi: 10.1038/s41563-018-0154-x pmid: 30202112
[34]
Shang Q Y, Wang Y N, Zhong Y G, Mi Y, Qin L, Zhao Y F, Qiu X H, Liu X F, Zhang Q. J. Phys. Chem. Lett., 2017, 8(18): 4431.

doi: 10.1021/acs.jpclett.7b01857
[35]
Zhang J, Qin J J, Wang M S, Bai Y J, Zou H, Keum J K, Tao R M, Xu H X, Yu H M, Haacke S, Hu B. Joule, 2019, 3(12): 3061.

doi: 10.1016/j.joule.2019.09.020
[36]
Liu T F, Jiang Y Y, Qin M C, Liu J X, Sun L L, Qin F, Hu L, Xiong S X, Jiang X S, Jiang F Y, Peng P, Jin S Y, Lu X H, Zhou Y H. Nat. Commun., 2019, 10: 878.

doi: 10.1038/s41467-019-08843-5
[37]
Caiazzo A, Datta K, Jiang J K, GÉlvez-Rueda M C, Li J Y, Ollearo R, Vicent-Luna J M, Tao S X, Grozema F C, Wienk M M, Janssen R A J. Adv. Energy Mater., 2021, 11(42): 2102144.

doi: 10.1002/aenm.202102144
[38]
Zhang X, Ren X D, Liu B, Munir R, Zhu X J, Yang D, Li J B, Liu Y C, Smilgies D M, Li R P, Yang Z, Niu T Q, Wang X L, Amassian A, Zhao K, Liu S F. Energy Environ. Sci., 2017, 10(10): 2095.

doi: 10.1039/C7EE01145H
[39]
Zhu X J, Xu Z, Zuo S N, Feng J S, Wang Z Y, Zhang X R, Zhao K, Zhang J, Liu H R, Priya S, Liu S F, Yang D. Energy Environ. Sci., 2018, 11(12): 3349.

doi: 10.1039/C8EE02284D
[40]
Passarelli J V, Mauck C M, Winslow S W, Perkinson C F, Bard J C, Sai H, Williams K W, Narayanan A, Fairfield D J, Hendricks M P, Tisdale W A, Stupp S I. Nat. Chem., 2020, 12(8): 672.

doi: 10.1038/s41557-020-0488-2 pmid: 32632185
[41]
Dong Y X, Lu D, Xu Z Y, Lai H T, Liu Y S. Adv. Energy Mater., 2020, 10(28): 2000694.

doi: 10.1002/aenm.202000694
[42]
Xi J, Spanopoulos I, Bang K, Xu J, Dong H, Yang Y G, Malliakas C D, Hoffman J M, Kanatzidis M G, Wu Z X. J. Am. Chem. Soc., 2020, 142(46): 19705.

doi: 10.1021/jacs.0c09647
[43]
Ren H, Yu S D, Chao L F, Xia Y D, Sun Y H, Zuo S W, Li F, Niu T T, Yang Y G, Ju H X, Li B X, Du H Y, Gao X Y, Zhang J, Wang J P, Zhang L J, Chen Y H, Huang W. Nat. Photonics, 2020, 14(3): 154.

doi: 10.1038/s41566-019-0572-6
[44]
Wu G B, Yang T H, Li X, Ahmad N, Zhang X N, Yue S L, Zhou J, Li Y X, Wang H, Shi X H, Liu S Z, Zhao K, Zhou H Q, Zhang Y. Matter, 2021, 4(2): 582.

doi: 10.1016/j.matt.2020.11.011
[45]
Wei Y, Chen B Q, Zhang F, Tian Y Y, Yang X C, Cai B, Zhao J J. Sol. RRL, 2021, 5(4): 2000661.

doi: 10.1002/solr.202000661
[46]
Huang Y W, Li Y H, Lim E L, Kong T F, Zhang Y, Song J, Hagfeldt A, Bi D Q. J. Am. Chem. Soc., 2021, 143(10): 3911.

doi: 10.1021/jacs.0c13087
[47]
Quan L N, Yuan M J, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H. J. Am. Chem. Soc., 2016, 138(8): 2649.

doi: 10.1021/jacs.5b11740 pmid: 26841130
[48]
Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J. Nat. Energy, 2017, 2(9): 17135.

doi: 10.1038/nenergy.2017.135
[49]
Ye T, Bruno A, Han G F, Koh T M, Li J, Jamaludin N F, Soci C, Mhaisalkar S G, Leong W L. Adv. Funct. Mater., 2018, 28(30): 1801654.

doi: 10.1002/adfm.201801654
[50]
Lee J W, Dai Z H, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H X, Sun P Y, Huang Y, Yang Y. Nat. Commun., 2018, 9: 3021.

doi: 10.1038/s41467-018-05454-4
[51]
Mao L L, Ke W J, Pedesseau L, Wu Y L, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G. J. Am. Chem. Soc., 2018, 140(10): 3775.

doi: 10.1021/jacs.8b00542
[52]
Li X T, Ke W J, TraorÉ B, Guo P J, Hadar I, Kepenekian M, Even J, Katan C, Stoumpos C C, Schaller R D, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(32): 12880.

doi: 10.1021/jacs.9b06398
[53]
Ke W J, Mao L L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G. Adv. Energy Mater., 2019, 9(10): 1803384.

doi: 10.1002/aenm.201803384
[54]
Yin J, Naphade R, Maity P, GutiÉrrez-Arzaluz L, Almalawi D, Roqan I S, BrÉdas J L, Bakr O M, Mohammed O F. Nat. Commun., 2021, 12: 3995.

doi: 10.1038/s41467-021-24258-7
[55]
Ahmad S, Fu P, Yu S W, Yang Q, Liu X, Wang X C, Wang X L, Guo X, Li C. Joule, 2019, 3(3): 794.

doi: 10.1016/j.joule.2018.11.026
[56]
Cohen B E, Li Y M, Meng Q B, Etgar L. Nano Lett., 2019, 19(4): 2588.

doi: 10.1021/acs.nanolett.9b00387
[57]
Li F Z, Zhang J, Jo S, Qin M C, Li Z, Liu T T, Lu X H, Zhu Z L, Jen A K Y. Small Methods, 2020, 4(5): 1900831.

doi: 10.1002/smtd.201900831
[58]
Lu D, Lv G W, Xu Z Y, Dong Y X, Ji X F, Liu Y S. J. Am. Chem. Soc., 2020, 142(25): 11114.

doi: 10.1021/jacs.0c03363
[59]
Zhang X, Yang T H, Ren X D, Zhang L, Zhao K, Liu S F. Adv. Energy Mater., 2021, 11(19): 2002733.

doi: 10.1002/aenm.202002733
[60]
Gao L L, Li X T, TraorÉ B, Zhang Y L, Fang J J, Han Y, Even J, Katan C, Zhao K, Liu S Z, Kanatzidis M G. J. Am. Chem. Soc., 2021, 143(31): 12063.

doi: 10.1021/jacs.1c03687
[61]
Cheng L, Liu Z, Li S D, Zhai Y F, Wang X, Qiao Z, Xu Q F, Meng K, Zhu Z Y, Chen G. Angew. Chem. Int. Ed., 2021, 60(2): 856.

doi: 10.1002/anie.202006970 pmid: 33021033
[62]
Su P Y, Bai L, Bi H, Liu B B, He D M, Wang W Q, Cao X B, Chen S, Lee D, Yang H, Zang Z G, Chen J Z. ACS Appl. Mater. Interfaces, 2021, 13(25): 29567.

doi: 10.1021/acsami.1c05498
[63]
Su P Y, Bai L, Bi H, Liu B B, Chen S, Lee D, Yang H, Chen C, Zang Z G, Chen J Z. J. Power Sources, 2021, 506: 230213.

doi: 10.1016/j.jpowsour.2021.230213
[64]
Soe C M M, Stoumpos C C, Kepenekian M, TraorÉ B, Tsai H, Nie W Y, Wang B H, Katan C, Seshadri R, Mohite A D, Even J, Marks T J, Kanatzidis M G. J. Am. Chem. Soc., 2017, 139(45): 16297.

doi: 10.1021/jacs.7b09096
[65]
Zhang Y L, Wang P J, Tang M C, Barrit D, Ke W J, Liu J X, Luo T, Liu Y C, Niu T Q, Smilgies D M, Yang Z, Liu Z K, Jin S Y, Kanatzidis M G, Amassian A, Liu S F, Zhao K. J. Am. Chem. Soc., 2019, 141(6): 2684.

doi: 10.1021/jacs.8b13104
[66]
Gu H, Liang C, Xia Y D, Wei Q, Liu T H, Yang Y G, Hui W, Chen H R, Niu T T, Chao L F, Wu Z H, Xie X J, Qiu J, Shao G S, Gao X Y, Xing G C, Chen Y H, Huang W. Nano Energy, 2019, 65: 104050.

doi: 10.1016/j.nanoen.2019.104050
[67]
Li P W, Liang C, Liu X L, Li F Y, Zhang Y Q, Liu X T, Gu H, Hu X T, Xing G C, Tao X T, Song Y L. Adv. Mater., 2019, 31(35): 1901966.

doi: 10.1002/adma.201901966
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[5] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[6] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[7] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[8] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[9] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[10] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[11] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[12] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[13] Qiaoxia Lin, Meng Yin, Yan Wei, Jingjing Du, Weiyi Chen, Di Huang. The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys [J]. Progress in Chemistry, 2020, 32(4): 406-416.
[14] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[15] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.