中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1809-1814 DOI: 10.7536/PC210922 Previous Articles   Next Articles

• Review •

Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials

Qianqian Fan1,2,3(), Lu Wen2,3, Jianzhong Ma1,2,3()   

  1. 1 Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology,Xi’an 710021, China
    2 College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
    3 Xi’an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
  • Received: Revised: Online: Published:
  • Contact: Qianqian Fan, Jianzhong Ma
  • Supported by:
    National Natural Science Foundation of China (No. 52103088). Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry open fund(KFKT2020-08); China Postdoctoral Science Foundation project(2020M683667XB)
Richhtml ( 23 ) PDF ( 451 ) Cited
Export

EndNote

Ris

BibTeX

TiO2 based photocatalytic technology is of wide application in the fields of pollutant degradation, CO2 reduction, hydrogen production, etc. owing to its set of intriguing properties, including fast reaction speed, high visible light utilization efficiency, and no secondary pollution. However, the low utilization rate of visible light for TiO2 materials limits it further use. In recent years, lead-free halide perovskite nanocrystals are of great interest in the field of photocatalysis due to their notable advantages such as tunable band gap and high visible light absorption. Relevant studies show that lead-free halide perovskite nanocrystals can be successfully applied in the fields of CO2 reduction and organic pollutant degradation, with significant effects. This review describes the preparation methods of lead-free halide perovskite nanocrystals, and summarizes its applications in the fields of CO2 reduction, hydrogen production, pollutant degradation and NO removal systematically. Finally, the current issues of lead-free halide perovskite nanocrystals as photocatalytic materials and the outlook for the future directions are discussed and prospected.

Contents

1 Introduction

2 Preparation methods of lead-free halide perovskite nanocrystal

2.1 Ligand-assisted reprecipitation

2.2 Heat injection

2.3 Other methods

3 Application of lead-free halide perovskite nanocrystals in the field of photocatalysis

3.1 CO2 reduction

3.2 Hydrogen production

3.3 Degradation of organic pollutants

3.4 NO removal

4 Conclusion and outlook

Fig. 1 Schematic diagram of the preparation process of MA3Bi2Br9 nanocrystals by LARP method
Fig. 2 Schematic diagram of the process of preparing CsSnX3 (X=I/Br/Cl) nanocrystals by hot injection method
Fig. 3 Schematic diagram of the process of preparing Cs2NaVCl3 nanocrystals by hydrothermal method
Table 1 Photocatalytic properties and application fields of lead-free halide perovskite nanocrystals
[1]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0
[2]
Wang Z J, Hong J J, Ng S F, Liu W, Huang J J, Chen P F, Ong W J. Acta Physico-Chimica Sinica, 2021, 37(6):76.
王则鉴, 洪佳佳, Ng Sue-Faye, 刘雯, 黄俊杰, 陈鹏飞, Ong Wee-Jun. 物理化学学报, 2021, 37(6): 76.).
[3]
Wang J J, Teng J, Pu L Z, Huang J, Wang Y, Li Q X. Int. J. Quantum Chem., 2019, 119(14): e25930.
[4]
Wang X, Hisatomi T, Wang Z, Song J, Qu J L, Takata T, Domen K. Angew. Chem., 2019, 131(31): 10776.
[5]
Zhang G, Sun S, Jiang W, Xiang M, Sun Z. Adv. Energy Mater., 2017, 7: 1600932.
[6]
Liu Y L, Zhang M F, Tung C H, Wang Y F. ACS Catal., 2016, 6(12): 8389.

doi: 10.1021/acscatal.6b03076
[7]
Ong C B, Ng L Y, Mohammad A W. Renew. Sustain. Energy Rev., 2018, 81: 536.

doi: 10.1016/j.rser.2017.08.020
[8]
Su Y, Li H F, Ma H B, Robertson J, Nathan A. ACS Appl. Mater. Interfaces, 2017, 9(9): 8100.

doi: 10.1021/acsami.6b15648
[9]
Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. J. Catal., 2012, 290: 151.

doi: 10.1016/j.jcat.2012.03.008
[10]
Yu S, Fan X B, Wang X, Li J G, Zhang Q, Xia A D, Wei S Q, Wu L Z, Zhou Y, Patzke G R. Nat. Commun., 2018, 9: 4009.

doi: 10.1038/s41467-018-06294-y
[11]
Li X, Zhang T Y, Wang T, Zhao Y X. Acta Chimica Sin., 2019, 77(11): 1075.
李鑫, 张太阳, 王甜, 赵一新. 化学学报, 2019, 77(11): 1075.).

doi: 10.6023/A19080292
[12]
He R A, Cao S W, Zhou P, Yu J G. Chin. J. Catal., 2014, 35(7): 989.

doi: 10.1016/S1872-2067(14)60075-9
[13]
Ge M Z, Li Q S, Cao C Y, Huang J Y, Li S H, Zhang S N, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y K. Adv. Sci., 2017, 4(1): 1600152.
[14]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.

doi: 10.1016/j.apsusc.2016.07.030
[15]
Li X Y, Zhou C C, Wang Y H, Ding F F, Zhou H W, Zhang X X. Progress in Chemistry, 2019, 31(6): 882.
李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 化学进展, 2019, 31(6): 882.).

doi: 10.7536/PC181103
[16]
Stranks S D, Snaith H J. Nat. Nanotechnol., 2015, 10(5): 391.

doi: 10.1038/nnano.2015.90 pmid: 25947963
[17]
Huang H, Zhao W R, Li Y, Luo L. Chin. J. Lumin., 2020, 41(9): 1058.
黄浩, 赵韦人, 李杨, 罗莉. 发光学报, 2020, 41(9): 1058.).
[18]
Zhou L, Xu Y F, Chen B X, Kuang D B, Su C Y. Small, 2018, 14(11): 1703762.
[19]
Bresolin B M, Hammouda S B, Sillanpää M. J. Photochem. Photobiol. A Chem., 2019, 376: 116.

doi: 10.1016/j.jphotochem.2019.03.009
[20]
Zhang Z Z, Liang Y Q, Huang H L, Liu X Y, Li Q, Chen L X, Xu D S. Angew. Chem. Int. Ed., 2019, 58(22): 7263.

doi: 10.1002/anie.201900658
[21]
Lyu B, Guo X, Gao D, Kou M, Bao X. J. Hazard. Mater., 2021, 403(1): 123967.
[22]
Fan Q Q. Doctoral Dissertation of Shaanxi University of Science and Technology, 2019.
范倩倩. 陕西科技大学博士论文, 2019.).
[23]
Kulkarni S A, Mhaisalkar S G, Mathews N, Boix P P. Small Methods, 2019, 3(1): 1800231.
[24]
Shamsi J, Urban A S, Imran M, de Trizio L, Manna L. Chem. Rev., 2019, 119(5): 3296.

doi: 10.1021/acs.chemrev.8b00644 pmid: 30758194
[25]
Leng M Y, Chen Z W, Yang Y, Li Z, Zeng K, Li K H, Niu G D, He Y S, Zhou Q C, Tang J. Angew. Chem. Int. Ed., 2016, 55(48): 15012.
[26]
Yang B, Chen J S, Hong F, Mao X, Zheng K B, Yang S Q, Li Y J, Pullerits T, Deng W Q, Han K L. Angew. Chem. Int. Ed., 2017, 56(41): 12471.
[27]
Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Böhm M L. J. Am. Chem. Soc., 2016, 138(9): 2941.

doi: 10.1021/jacs.5b13470 pmid: 26901659
[28]
Pal J, Manna S M, Mondal A, Das S, Adarsh K V, Nag A. Angew. Chem. Int. Ed., 2017, 56(45): 14187.
[29]
Bhosale S S, Kharade A K, Jokar E, Fathi A, Chang S M, Diau E W G. J. Am. Chem. Soc., 2019, 141(51): 20434.
[30]
Cao X R, Kang L, Guo S X, Zhang M G, Lin Z S, Gao J H. ACS Appl. Mater. Interfaces, 2019, 11(42): 38648.
[31]
Lu C, Itanze D S, Aragon A G, Ma X, Li H, Ucer K B, Hewitt C, Carroll D L, Williams R T, Qiu Y J, Geyer S M. Nanoscale, 2020, 12(5): 2987.

doi: 10.1039/C9NR07722G
[32]
Wang Y Y, Huang H L, Zhang Z Z, Wang C, Yang Y Y, Li Q, Xu D S. Appl. Catal. B Environ., 2021, 282: 119570.
[33]
Guo Y M, Liu G N, Li Z X, Lou Y B, Chen J X, Zhao Y X. ACS Sustainable Chem. Eng., 2019, 7(17): 15080.
[34]
Wang T, Yue D T, Li X, Zhao Y X. Appl. Catal. B Environ., 2020, 268: 118399.
[35]
Romani L, Speltini A, Ambrosio F, Mosconi E, Profumo A, Marelli M, Margadonna S, Milella A, Fracassi F, Listorti A, de Angelis F, Malavasi L. Angew. Chem. Int. Ed., 2021, 60(7): 3611.

doi: 10.1002/anie.202007584 pmid: 33047446
[36]
Li K K, Li S, Zhang W L, Shi Z F, Wu D, Chen X, Lin P, Tian Y T, Li X J. J. Colloid Interface Sci., 2021, 596: 376.

doi: 10.1016/j.jcis.2021.03.144
[37]
Zhang W N, Zhao Q G, Wang X H, Yan X X, Xu J Q, Zeng Z G. Catal. Sci. Technol., 2017, 7(13): 2753.

doi: 10.1039/C7CY00389G
[38]
Gao G, Xi Q Y, Zhou H, Zhao Y X, Wu C Q, Wang L D, Guo P R, Xu J W. Nanoscale, 2017, 9(33): 12032.
[39]
Araña J, Sousa D G, Díaz O G, Melián E P, Rodríguez J M D. Appl. Catal., B, 2019, 244: 660.

doi: 10.1016/j.apcatb.2018.12.005
[40]
Huo B, Yang J, Bian Y, Wu D, Tang X. Chem. Eng. J., 2021, 406: 126740.
[41]
Wu D, Tao Y, Huang Y, Huo B, Tang X. J. Catal., 2021, 397: 27.

doi: 10.1016/j.jcat.2021.03.007
[42]
Águia C, Ângelo J, Madeira L M, Mendes A. Polym. Degrad. Stab., 2011, 96(5): 898.

doi: 10.1016/j.polymdegradstab.2011.01.032
[1] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[2] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[3] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[4] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[5] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[6] Shiliang Zhang, Qilu Yao, Zhanghui Lu*. Synthesis and Dehydrogenation of Hydrazine Borane [J]. Progress in Chemistry, 2017, 29(4): 426-434.
[7] Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*. 2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion [J]. Progress in Chemistry, 2016, 28(10): 1528-1540.
[8] Wang Dongdong, Dong Hua, Lei Xiaoli, Yu Yue, Jiao Bo, Wu Zhaoxin. Iridium Complexes for Triplet Photosensitizer [J]. Progress in Chemistry, 2015, 27(5): 492-502.
[9] Zhai Kang, Li Kongzhai, Zhu Xing, Wei Yonggang. Oxygen Exchange Materials Used in Two-Steps Thermochemical Water Splitting for Hydrogen Production [J]. Progress in Chemistry, 2015, 27(10): 1481-1499.
[10] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[11] Zhang Chao, Yin Xiuli, Wu Chuangzhi. Reactors for Hydrogen Production by Bio-Ethanol Reforming [J]. Progress in Chemistry, 2011, 23(4): 810-818.
[12] Xu Chenhong, Han You, Chi Mingyang. Cu2O-Based Photocatalysis [J]. Progress in Chemistry, 2010, 22(12): 2290-2297.
[13] . Steam Reforming of Bio-Oil or Its Model Compounds for Hydrogen Production [J]. Progress in Chemistry, 2010, 22(09): 1687-1700.
[14] . Hydrogen Production by Microbial Electrolysis Cells [J]. Progress in Chemistry, 2010, 22(04): 748-753.
[15] Qian Dongjin Liu An. Fabrication of Hydrogenase Molecular Assemblies for BioHydrogen Production [J]. Progress in Chemistry, 2009, 21(10): 2009-2016.