中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2203-2214 DOI: 10.7536/PC201022 Previous Articles   Next Articles

• Review •

Catalysts for Removal of Xylene by Catalytic Oxidation

Xiaojing Li1,2,3, Yonghong Li1,2,3(), Fuhang Yu1,2,3, Weiyan Qi1,2,3, Ye Jiang1,2,3, Qianwen Lu1,2,3   

  1. 1 Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072, China
    2 National Engineering Research Center for Distillation Technology,Tianjin 300072, China
    3 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Contact: Yonghong Li
Richhtml ( 118 ) Cited

Xylene is a toxic volatile organic compound (VOC) and one of the common industrial pollutants. Catalytic oxidation can decompose xylene into CO2 and H2O, effectively preventing harmful gases from being emitted into the atmosphere. The key to the removal of xylene by catalytic oxidation is the low temperature activity and reaction stability of the catalyst. This article introduces the research progress in low-temperature oxidation of xylene with effects of supported noble metal catalysts, non-noble metal oxides and perovskite-type oxide catalysts from the aspects of catalyst preparation methods, structure-activity relationship, interaction between active components and the interaction mechanism with the supports on the catalytic performance. In addition, the catalytic effects on xylene and other VOCs of different catalyst types are compared and analyzed. Finally, the research results of mixed VOCs containing xylene are introduced and suggestions are made on the related issues of future catalyst research.

Contents

1 Introduction

2 Supported noble metal catalyst

2.1 Catalysts with inert carriers

2.2 Catalysts with active carriers

2.3 Catalysts with zeolite carriers

3 Metal oxide catalyst

3.1 Manganese-based catalysts

3.2 Cerium-based catalysts

3.3 Cobalt-based catalysts

3.4 Mixed-metal catalysts

3.5 Perovskite catalysts

4 Catalytic oxidation of VOCs mixtures containing xylene

5 Conclusion and outlook

Fig.1 Conversions of o-xylene as a function of temperature over PdO/MOx.(Pd/MOx-H2 and Pd/MOx-NaBH4 catalysts in the condition of 10 vol% water vapor addition)[31]
Table 1 Comparison of the preparation method of some metal oxide catalysts and the activation energy of catalytic oxidation to o-xylene
Fig.2 Schematic Illustration of Transformation Process from meso-Mn2O3 to meso-γ-MnO2[42]
Fig.3 Rates of o-xylene oxidation as a function of O2 overCeO2 nanocubes. (The reaction rates were measured at 230 ℃. The concentration of O2 was varied in the range of 5~30 vol% and the concentration of o-xylene was 200 ppm. The o-xylene conversion was adjusted to below 15% by varying the space velocity)[49]
Fig.4 CO2 yield over the catalysts. Reaction conditions: o-xylene 500 ppm, 20% O2/N2 balance, total flow rate 50 mL·min-1, W/F = 0.60 g· s· mL-1 [65]
Table 2 Comparison of the preparation method of some metal oxide catalysts and the activation energy of catalytic oxidation to o-xylene
Table 3 Comparison of catalytic oxidation of some mixed metal oxides to xylene
Table 4 Comparison of catalytic oxidation effects of xylene and other VOCs on different catalyst types
[1]
Li Y. Chem. Enterp. Manag., 2015(22): 205. (李阳. 化工管理, 2015,(22): 205.)
[2]
Schottler M, Hottenroth H, Schlüter B, Schmidt M. Chem. Eng. Technol., 2010, 33(4): 638.
[3]
Chang C H, Urban P L. Anal. Chem., 2018, 90(23): 13848.

doi: 10.1021/acs.analchem.8b03511
[4]
Romanías M N, Ourrad H, ThÉvenet F, Riffault V. J. Phys. Chem. A, 2016, 120(8): 1197.

doi: 10.1021/acs.jpca.5b10323 pmid: 26846169
[5]
Liu L N, Zhang Z K, Das S, Kawi S. Appl. Catal. B: Environ., 2019, 250: 250.

doi: 10.1016/j.apcatb.2019.03.039
[6]
Zhang G P, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Appl. Catal. B-Environ., 2019, 250: 313.

doi: 10.1016/j.apcatb.2019.03.055
[7]
Liu X, Wang Y Q, Liu F, Zhao C C, Liu H X, Shi L. Progress in Chemistry, 2019, 31 (8): 1159.
( 刘昕, 王永强, 刘芳, 赵朝成, 刘华欣, 时林. 化学进展, 2019, 31 (8): 1159.)

doi: 10.7536/PC190122
[8]
Feng Z T, Zhang M Y, Ren Q M, Mo S P, Peng R S, Yan D F, Fu M L, Chen L M, Wu J L, Ye D Q. Chem. Eng. J., 2019, 369: 18.

doi: 10.1016/j.cej.2019.03.051
[9]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.

doi: 10.1021/acs.chemrev.8b00408
[10]
Liotta L F. Appl. Catal. B-Environ., 2010, 100(3/4): 403.11.

doi: 10.1016/j.apcatb.2010.08.023
[11]
Sang C K, Wang G S. Appl. Catal. B-Environ., 2009, 92(3/4): 429.

doi: 10.1016/j.apcatb.2009.09.001
[12]
Huang S Y, Zhang C B, He H. Catal. Today, 2008, 1391-2: 15.
[13]
He S, Guo F, Kang G J, Yu J, Ren X F, Xu G W. Chemical Industry and Engineering Society of China, 2019, 70(3): 937.
( 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 化工学报, 2019, 70(3): 937.)
[14]
Huang S Y, Zhang C B, He H. J. Environ. Sci., 2009, 21(7): 985.

doi: 10.1016/S1001-0742(08)62372-4
[15]
Joung H J, Kim J H, Oh J S, You D W, Park H O, Jung K W. Appl. Surf. Sci., 2014, 290: 267.

doi: 10.1016/j.apsusc.2013.11.066
[16]
Maldonado-HÓdar F J, Moreno-Castilla C, PÉrez-Cadenas A F. Appl. Catal. B: Environ., 2004, 54(4): 217.

doi: 10.1016/j.apcatb.2004.07.002
[17]
Kapteijn F, de Deugd R M, Moulijn J A. Catal. Today, 2005, 1053-4: 350.
[18]
PÉrez-Cadenas A F, Kapteijn F, Moulijn J A, Maldonado-HÓdar F J, Carrasco-Marín F, Moreno-Castilla C. Carbon, 2006, 44(12): 2463.

doi: 10.1016/j.carbon.2006.05.006
[19]
da Silva A G M, Fajardo H V, Balzer R, Probst L F D, LovÓn A S P, LovÓn-Quintana J J, Valença G P, Schreine W H, Robles-Dutenhefner P A. J. Power Sources, 2015, 285: 460.

doi: 10.1016/j.jpowsour.2015.03.066
[20]
da Silva A G M, Rodrigues T S, Taguchi L S K, Fajardo H V, Balzer R, Probst L F D, Camargo P H C. J. Mater. Sci., 2016, 51(1): 603.

doi: 10.1007/s10853-015-9315-3
[21]
Qiao N L, Zhang X, He C, Li Y, Zhang Z S, Cheng J, Hao Z P. Frontiers of Environmental Science & Engineering in China, 2016, 10(3): 458.
[22]
Kim S C, Nahm S W, Park Y K. J. Hazard. Mater., 2015, 300: 104.

doi: 10.1016/j.jhazmat.2015.06.059
[23]
Wang Y F, Zhang C B, Liu F D, He H. Appl. Catal. B: Environ., 2013, 142/143: 72.

doi: 10.1016/j.apcatb.2013.05.003
[24]
Shen F X, Li K, Zhao X T, Li X B, Chen T, Zhan R, Zhao T B, Lin H. Catal. Lett., 2021, 151(1): 67.

doi: 10.1007/s10562-020-03230-y
[25]
Xia Y, Wang Z W, Feng Y, Xie S H, Liu Y X, Dai H X, Deng J G. Catal. Today, 2020, 351: 30.

doi: 10.1016/j.cattod.2019.01.076
[26]
Jamalzadeh Z, Haghighi M, Asgari N. Front. Environ. Sci. Eng., 2013, 7(3): 365.

doi: 10.1007/s11783-013-0520-5
[27]
Abbasi Z, Haghighi M, Fatehifar E, Saedy S. J. Hazard. Mater., 2011, 1862-3: 1445.
[28]
Yue W B, Zhou W Z. Prog. Nat. Sci., 2008, 18(11): 1329.

doi: 10.1016/j.pnsc.2008.05.010
[29]
Liu Y X, Dai H X, Deng J G, Xie S H, Yang H G, Tan W, Han W, Jiang Y, Guo G S. J. Catal., 2014, 309: 408.

doi: 10.1016/j.jcat.2013.10.019
[30]
Xie S H, Liu Y X, Deng J G, Xie S H, Yang H G, Tan W, Han W, Jiang Y, Guo G S. Catal. Sci. Technol., 2018, 8(3): 806.

doi: 10.1039/C7CY02007D
[31]
Wang Y F, Zhang C B, He H. ChemCatChem, 2018, 10(5): 998.

doi: 10.1002/cctc.201701547
[32]
Wu Y S, Shi S, Yuan S S, Bai T, Xing S T. Appl. Surf. Sci., 2019, 479: 1262.

doi: 10.1016/j.apsusc.2019.01.134
[33]
Chen G, Zhao Y, Fu G, Duchesne P N, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao C W, Lee J F, Zheng N. Science, 2014, 344(6183): 495.

doi: 10.1126/science.1252553
[34]
Xie S H, Liu Y X, Deng J G, Zhao X T, Yang J, Zhang K F, Han Z, Arandiyan H, Dai H X. Appl. Catal. B: Environ., 2017, 206: 221.
[35]
Chen M Q, Wang Y, Yang D Y, Wu H J, Guo L M. J. Inorg. Mater., 2019, 34(2): 173.

doi: 10.15541/jim20180146
( 陈孟秋, 王钰, 杨登尧, 邬红娟, 郭利民. 无机材料学报, 2019, 34(2): 173.)

doi: 10.15541/jim20180146
[36]
Wang Y, Yang D Y, Li S Z, Chen M Q, Guo L M, Zhou J. Microporous Mesoporous Mater., 2018, 258: 17.

doi: 10.1016/j.micromeso.2017.08.052
[37]
Alifanti M, Florea M, Pârvulescu V I. Appl. Catal. B: Environ., 2007, 70(1/4): 400.

doi: 10.1016/j.apcatb.2005.10.037
[38]
Kitchaev D A, Dacek S T, Sun W H, Ceder G. J. Am. Chem. Soc., 2017, 139(7): 2672.

doi: 10.1021/jacs.6b11301 pmid: 28140575
[39]
Liu Z, Zhang X L, Cai T, Yuan J, Zhao K F, He D N. Progress in Chemistry, 2019, 31(2/3): 311.
( 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 化学进展, 2019, 31(2/3): 311.
[40]
Zhang Q, Xiao Z D, Feng X H, Tan W F, Qiu G H, Liu F. Mater. Chem. Phys., 2011, 125(3): 678.

doi: 10.1016/j.matchemphys.2010.09.073
[41]
Wu Y S, Liu X X, Huang X Q, Xing S T, Ma Z C, Feng L. Mater. Lett., 2015, 139: 157.

doi: 10.1016/j.matlet.2014.10.059
[42]
Wu Y S, Lu Y, Song C J, Ma Z C, Xing S T, Gao Y Z. Catal. Today, 2013, 201: 32.

doi: 10.1016/j.cattod.2012.04.032
[43]
Zhou G L, Lan H, Wang H, Xie H M, Zhang G Z, Zheng X X. J. Mol. Catal. A: Chem., 2014, 393: 279.

doi: 10.1016/j.molcata.2014.06.028
[44]
Zeng X H, Cheng G, Liu Q, Yu W X, Yang R N, Wu H J, Li Y F, Sun M, Zhang C Y, Yu L. Ind. Eng. Chem. Res., 2019, 58(31): 13926.

doi: 10.1021/acs.iecr.9b02087
[45]
Jung S C, Park Y K, Jung H Y, Kang U I, Nah J W, Kim S C. Res. Chem. Intermed., 2016, 42(1): 185.

doi: 10.1007/s11164-015-2333-6
[46]
Trovarelli A, Llorca J. ACS Catal., 2017, 7(7): 4716.

doi: 10.1021/acscatal.7b01246
[47]
da Silva A G M, Fajardo H V, Balzer R, Probst L F D, Prado N T, Camargo P H C, Robles-Dutenhefner P A. Chem. Eng. J., 2016, 286: 369.

doi: 10.1016/j.cej.2015.10.097
[48]
Wang L, Wang Y F, Zhang Y, Yu Y B, He H, Qin X B, Wang B Y. Catal. Sci. Technol., 2016, 6(13): 4840.

doi: 10.1039/C6CY00180G
[49]
Wang L, Yu Y B, He H, Zhang Y, Qin X B, Wang B Y. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x
[50]
Paier J, Penschke C, Sauer J. Chem. Rev., 2013, 113(6): 3949.

doi: 10.1021/cr3004949
[51]
Chen K, Bai S L, Li H Y, Xue Y J, Zhang X Y, Liu M C, Jia J B. Appl. Catal. A: Gen., 2020, 599: 117614.

doi: 10.1016/j.apcata.2020.117614
[52]
Xia Y S, Dai H X, Jiang H Y, Zhang L. Catal. Commun., 2010, 11(15): 1171.

doi: 10.1016/j.catcom.2010.07.005
[53]
Liu S S, Luo D M, Yang X, Tong C X, Tao L G, Ding H P, Zhang J. Int. J. Environ. Sci. Technol., 2020, 17(5): 3055.

doi: 10.1007/s13762-020-02659-3
[54]
Xie S H, Liu Y X, Deng J G, Yang J, Zhao X T, Han Z, Zhang K F, Dai H X. J. Catal., 2017, 352: 282.

doi: 10.1016/j.jcat.2017.05.016
[55]
Xu W C, Xiao K B, Lai S F, Liang J Z, Jiang X D, Liu Z, Li F H, Zhang Y, Wu X L, Zhou X W. Catal. Commun., 2020, 140: 106005.

doi: 10.1016/j.catcom.2020.106005
[56]
Liu W, Liu R, Zhang X J. Appl. Surf. Sci., 2020, 507: 145174.

doi: 10.1016/j.apsusc.2019.145174
[57]
Ren Q M, Mo S P, Peng R S, Feng Z T, Zhang M Y, Chen L M, Fu M L, Wu J L, Ye D Q. J. Mater. Chem. A, 2018, 6(2): 498.

doi: 10.1039/C7TA09149D
[58]
Mo S P, Li S D, Li J Q, Deng Y Z, Peng S P, Chen J Y, Chen Y F. Nanoscale, 2016, 8(34): 15763.

doi: 10.1039/C6NR04902H
[59]
Wang Q Y, Li Z M, Bañares M A, Weng L T, Gu Q F, Price J, Han W, Yeung K L. Small, 2019, 15(42): 1903525.

doi: 10.1002/smll.v15.42
[60]
Carabineiro S A C, Chen X, Konsolakis M, Psarras A C, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Catal. Today, 2015, 244: 161.

doi: 10.1016/j.cattod.2014.06.018
[61]
Konsolakis M, Carabineiro S A C, Marnellos G E, Asad M F, Soares O S G P, Pereira M F R, Órfão J J M, Figueiredo J L. J. Colloid Interface Sci., 2017, 496: 141.

doi: 10.1016/j.jcis.2017.02.014
[62]
Chen X, Carabineiro S A C, Bastos S S T, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Appl. Catal. A: Gen., 2014, 472: 101.

doi: 10.1016/j.apcata.2013.11.043
[63]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B: Environ., 2020, 275: 119121.

doi: 10.1016/j.apcatb.2020.119121
[64]
Chen J, Chen X, Chen X, Xu W J, Xu Z, Jia H P, Chen J,. Appl. Catal. B: Environ., 2018, 224: 825.

doi: 10.1016/j.apcatb.2017.11.036
[65]
Wu Y S, Yuan S S, Feng R, Ma Z C, Gao Y Z, Xing S T. Mol. Catal., 2017, 442: 164.
[66]
Han Z, Liu Y X, Deng J G, Xie S H, Zhao X T, Yang J, Zhang K F, Dai H X. Catal. Today, 2019, 327: 246.

doi: 10.1016/j.cattod.2018.04.042
[67]
Zhang X, Wu D F. Ceram. Int., 2016, 42: 16563.

doi: 10.1016/j.ceramint.2016.07.076
[68]
Wu Y S, Zhang Y X, Liu M, Ma Z C. Catal. Today, 2010, 1533-4: 170.
[69]
Wu Y S, Feng R, Song C J, Xing S T, Gao Y Z, Ma Z C. Catal. Today, 2017, 281: 500.

doi: 10.1016/j.cattod.2016.05.024
[70]
Xie H M, Du Q X, Li H, Zhou G L, Chen S M, Jiao Z J, Ren J M. Korean J. Chem. Eng., 2017, 34(7): 1944.

doi: 10.1007/s11814-017-0111-4
[71]
Rostami R, Jafari A J. J. Environ. Health Sci., 2014, 12(1): 89.
[72]
Zhang C H, Wang C, Hua W C, Guo Y L, Lu G Z, Gil S, Giroir-Fendler A. Appl. Catal. B: Environ., 2016, 186: 173.

doi: 10.1016/j.apcatb.2015.12.052
[73]
Li X W, Dai H X, Deng J G, Liu Y X, Zhao Z X, Wang Y, Yang H G, Au C T. Appl. Catal. A: Gen., 2013, 458: 11.

doi: 10.1016/j.apcata.2013.03.022
[74]
Zhao Q, Ge Y L, Ji N, Song C F, Ma D G, Liu Q L. Progress in Chemistry, 2016, 28(12): 1847.

doi: 10.7536/PC160402
( 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭, 化学进展, 2016, 28(12): 1847.)

doi: 10.7536/PC160402
[75]
Zhu X B, Tu X, Chen M H, Yang Y, Zheng C H, Zhou J S, Gao X. Catal. Commun., 2017, 92: 35.

doi: 10.1016/j.catcom.2016.12.013
[76]
Gholizadeh A. J. Mater. Res. Technol., 2019, 8(1): 457.

doi: 10.1016/j.jmrt.2017.12.006
[77]
Liu L Z, Zhang H B, Jia J P, Sun T H, Sun M M. Inorg. Chem., 2018, 57(14): 8451.

doi: 10.1021/acs.inorgchem.8b01125
[78]
Liu Y X, Dai H X, Deng J G, Du Y C, Li X W, Zhao Z X, Wang Y, Gao B Z, Yang H G, Guo G S. Appl. Catal. B: Environ., 2013, 140/141: 493.

doi: 10.1016/j.apcatb.2013.04.051
[79]
Chen H W, Cui W, Li D F, Tian Q Q, He J J, Liu Q, Chen X, Cui M F, Qiao X, Zhang Z X, Tang J H, Fei Z Y. Ind. Eng. Chem. Res., 2020, 59(23): 10804.

doi: 10.1021/acs.iecr.0c01182
[80]
Liu L Z, Li J X, Zhang H B, Li L, Zhou P, Meng X L, Guo M M, Jia J P, Sun T H. J. Hazard. Mater., 2019, 362: 178.

doi: 10.1016/j.jhazmat.2018.09.012
[81]
Sun X W, Wu D F. ChemistrySelect, 2019, 4(19): 5503.

doi: 10.1002/slct.v4.19
[82]
Wang Z W, Liu Y X, Yang T, Deng J G, Xie S H, Dai H X. Chinese Journal of Catalysis, 2017, 38(2): 207.

doi: 10.1016/S1872-2067(16)62569-X
( 王治伟, 刘雨溪, 杨涛, 邓积光, 谢少华, 戴洪兴. 催化学报, 2017, 38(2): 207.)
[83]
Genuino H C, Dharmarathna S, Njagi E C, Mei M C, Suib S L. J. Phys. Chem. C, 2012, 116(22): 12066.

doi: 10.1021/jp301342f
[84]
Wu H J, Wang L D, Shen Z Y, Zhao J H. J. Mol. Catal. A: Chem., 2011, 351: 188.

doi: 10.1016/j.molcata.2011.10.005
[85]
Beauchet R, Mijoin J, Batonneau-Gener I, Magnoux P. Appl. Catal. B: Environ., 2010, 100(1/2): 91.

doi: 10.1016/j.apcatb.2010.07.017
[86]
Barakat T, Rooke J C, Cousin R, Magnoux P. New J. Chem., 2014, 38: 2066.

doi: 10.1039/C3NJ01190A
[87]
Soares O S G P, Órfão J J M, Figueiredo J L, Pereira M F R. Environ. Prog. Sustainable Energy, 2016, 35(5): 1324.

doi: 10.1002/ep.v35.5
[88]
Xia Y S, Xia L, Liu Y X, Yang T, Deng J G, Dai H X. J. Environ. Sci., 2018, 064(002): 276.

doi: 10.1016/j.jes.2017.06.025
[89]
Guan Y L, Deng G F, Cheng Y, Wang Z C, Li Z H, Yang K, Yang Y X. Chem. Phys. Lett., 2020, 754: 137508.

doi: 10.1016/j.cplett.2020.137508
[90]
Kamal M S, Razzak S A, Hossain M M. Atmos. Environ., 2016, 140: 117.

doi: 10.1016/j.atmosenv.2016.05.031
[1] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[2] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[3] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[4] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[5] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[6] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[7] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[8] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[9] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[10] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[11] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[12] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[13] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[14] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[15] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
Viewed
Full text


Abstract