中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2069-2084 DOI: 10.7536/PC200804 Previous Articles   Next Articles

• Review •

Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature

Jingchen Tian1,2, Gongde Wu2, Yanjun Liu2, Jie Wan2, Xiaoli Wang2(), Lin Deng1()   

  1. 1 School of Civil Engineering, Southeast University,Nanjing 211189, China
    2 Energy Research Institute, Nanjing Institute of Technology,Nanjing 211167, China
  • Received: Revised: Online: Published:
  • Contact: Xiaoli Wang, Lin Deng
  • Supported by:
    National Natural Science Foundation of China(21203093); Key Research and Development Program of Jiangsu Province(BE2018718); Cooperation Fund of Energy Research Institute, Nanjing Institute of Technology(CXY201911); Cooperation Fund of Energy Research Institute, Nanjing Institute of Technology(CXY201923); Scientific Research Fund of Nanjing Institute of Technology(YKJ2019110); Scientific Research Fund of Nanjing Institute of Technology(YKJ2019111)
Richhtml ( 23 ) PDF ( 495 ) Cited
Export

EndNote

Ris

BibTeX

Formaldehyde is one of the most common volatile organic pollutants in the indoor environment. It has been confirmed that long-term exposure to formaldehyde causes great harm to health. Supported non-noble metal catalysts have shown excellent performance in formaldehyde removal and practical applications, which has attracted great attention of researchers. This article highlights the recent development of formaldehyde removal by supported non-noble metal catalysts at low temperature, including thermal catalysts, photocatalysts and non-thermal plasma assisted catalysts. Moreover, reaction factors that have great effects on formaldehyde removal and mechanisms are reviewed. The results show that reaction conditions, supports types and preparing conditions are the most important factors in the low-temperature catalytic removal of formaldehyde. Supported non-noble metal catalysts exhibit outstanding performance in the photocatalysis and thermal catalysis of formaldehyde. Besides, remarkable formaldehyde removal efficiency was also observed at low temperature or under UV light irradiation. However, catalytic activity improvement of the supported non-noble metal catalysts under visible light and room temperature should be further investigated. It is still the point of future research to reduce by-products and energy consumption in formaldehyde removal process by non-thermal plasma combined with non-noble metal catalysts. Here, this paper also proposes the prospects on the development direction of supported non-noble metal catalysts in formaldehyde removal.

Contents

1 Introduction

2 Supported non-noble metal catalysts and their performances in formaldehyde removal at low-temperature

2.1 Thermal catalytic oxidation of formaldehyde

2.2 Photocatalytic oxidation of formaldehyde

2.3 Formaldehyde oxidation with non-thermal plasma assisted catalysts

3 Factors affecting formaldehyde oxidation

3.1 Effect of reaction conditions

3.2 Effect of support

3.3 Effect of preparing conditions

4 Reaction mechanisms

4.1 Thermal catalytic reaction mechanism of formaldehyde

4.2 Photocatalytic reaction mechanism of formaldehyde

4.3 Plasma synergistic catalytic reaction mechanism of formaldehyde

5 Conclusion and outlook

Table 1 Research on Thermal Catalytic Removal of Formaldehyde by Supported Non-noble Metal Catalysts[25⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~52]
Categories Catalysts Temperature/℃ Reaction conditions HCHO removal/conversion ref
Single non-noble
metal catalysts
MnO2/PET ~25 2 pieces, 4×6 cm, ~200 ppm HCHO 3.5 L static reactor ~84% HCHO removal4 within
60 min
40
MnOx/PET RT1 ~0.6 mg/m3 HCHO, GHSV2 60 000 h-1 >95% removal of HCHO within
240 min
44
MnOx/AC 25 ~10 ppm HCHO, GHSV ~65 000 h-1, RH3~50% 100% HCHO removal within
1000 min
25
MnO2/ACF 25 15 ppm HCHO, GHSV ~60 000 h-1,RH 20%±2% 100% HCHO removal within
500 min
41
MnOx/PG 25 1 ppm HCHO, GHSV 300 000 h-1 >95% HCHO removal within
600 min
28
50~250 1200 ppm HCHO, GHSV 60 000 h-1 100% HCHO conversion5 at 150 ℃
MnO2/PG 25 1 ppm HCHO, 20 vol % O2, GHSV 150 000 h-1 100% HCHO removal efficiency within 1500 min 27
MnOx/Hal 100~300 1500 ppm HCHO, 20 vol % O2, GHSV 60 000 h-1 90% HCHO removal at 90 ℃ 35
MnO2/Cellulose 60~180 100 ppm HCHO, 20 vol % O2, GHSV 50 000 h-1 99.1% HCHO removal at 140 ℃ 50
MnOx/Diatomite 25~250 1 ppm HCHO, GHSV 120 000 h-1 >80% HCHO removal at 25 ℃ within 10 h 26
300 ppm HCHO, GHSV 120 000 h-1 90% HCHO conversion at 128 ℃
MnOx/AC RT 0.5 mg/m3 HCHO, GHSV 120 000 h-1, RH 45%±5% >70% HCHO removal within 80 h 42
5 mg/m3, GHSV 120 000 h-1, RH 45%±5% >70% HCHO removal within 30 h
MnOx/ACS-O 25 2.61 mg/m3, GHSV 80 000 h-1 >95% HCHO removal within
1500 min
30
MnOx@PAN-ACNF 30 10 ppm HCHO, GHSV 50 000 h-1 >95% HCHO removal in 12 h 49
Mn/TiO2 20~150 100 mg/m3, 20 vol % O2, GHSV
300 000 h-1
<20% HCHO removal efficiency at 150 ℃ 51
OMS-2/SiO2 25 100mg, 200 ppm HCHO, RH 50% ± 5%, 1 L static reactor 52.3% HCHO removal within 2 h 32
MnOx/SBA-15 30~180 120 ppm HCHO, 20 vol% O2, GHSV 30 000 h-1 90% HCHO conversion at 121 ℃ 46
MnO2@SiO2-TiO2 25 2 pieces, 10×10 cm, 200 ppm HCHO, RH 40%±5%, 5 L static reactor 100% HCHO removal after 20 min 33
Co@NC RT ~100 ppm HCHO, GHSV 80 000 h-1 >85% HCHO removal within 60 min 34
Multiple non-
noble metals
catalysts
CoxMnyO4/Carbon textile 20~200 50 ppm HCHO, 25 vol.% O2, GHSV 120 000 h-1, RH 50% 100% HCHO removal at 95 ℃ 43
Mn1-xCex/PG 100~180 300 ppm HCHO, GHSV 20 000 h-1 100% HCHO conversion at 160 ℃ 36
Mn/PG 100% HCHO conversion at 180 ℃
CeO2/PG 6.9% HCHO conversion at 180 ℃
CuMn/Pal 150~350 1500 ppm HCHO, 20 vol % O2, 5% H2O, GHSV 32 500 h-1 100% HCHO conversion at 200 ℃ 37
Mn/Pal 90% HCHO conversion at 248 ℃
Cu/Pal 100% HCHO conversion at 276 ℃
Non-noble/noble metal catalysts AgCo/APTES@
MCM-41
30~200 500 ppm HCHO, GHSV 9000 h-1 100% HCHO conversion at 90 ℃ 47
Ag/CeO2/SiO2 100~200 10,000~22,000 ppm HCHO, GHSV 69 000 h-1 100% HCHO removal at 175 ℃ 52
Pt-FeOx/Al2O3 25~100 400 ppm HCHO, 20 vol% O2, RH 30%, GHSV 60 000 h-1 100% HCHO removal at 25 ℃ 45
AuPt/MnO2/Cotton 20~200 460 ppm HCHO, GHSV 20 000 h-1 100% HCHO conversion at 120 ℃ 48
PtNi/Al2O3 30~80 ~30 ppm HCHO, GHSV 24 000 h-1, RH ~35% 100% HCHO removal at 30 ℃ 39
Pt/MnO2-CF 25 100 mg, 200 ppm HCHO, static reactor 90% HCHO removal after 60 min 29
Pt-Fe/Al2O3 25 375 mg/m3, 20 vol % O2, RH 30%, GHSV 60 000 h-1 100% HCHO conversion within 60 h 31
Pt/Fex/α-AlOOH 25~50 200 ppm HCHO, GHSV 95 000 h-1 100% HCHO conversion at 30 ℃ 38
200×200×0.4 mm3, 21.7 g catalysts, 1 ppm HCHO, RH 55%, 3 m3 static reactor <0.08 ppm HCHO concentration after 60 min
Fig.1 Formaldehyde removal over MnOx/Palygorskite[50]. Copyright 2019, Elsevier
Fig. 2 Formaldehyde removal over MnOx/AC(a)[25] and Mn20/DM(b)[26]. Copyright 2018, Elsevier. Copyright 2020, Elsevier
Table 2 Research on photocatalytic removal of formaldehyde by supported non-noble metal catalysts[67,69⇓⇓⇓⇓⇓~75]
Fig. 3 Adsorption-photocatalytic degradation of formaldehyde over TiO2 and TiO2/Diatomite[69]. Copyright 2017, Elsevier
Fig. 4 UV-Vis DRS spectra of sepiolite, TiO2, BiOCl and BiOCl/ TiO2/Sepiolite with different calcination temperatures[70]. Copyright 2020, Elsevier
Table 3 Research on formaldehyde removal by non-thermal plasma assisted supported non-noble metal catalysts.[85⇓⇓~88]
Fig. 5 Effect of Co/Mn on formaldehyde conversion over CoxMn3-xO4/Carbon textile[43]. Copyright 2016, Springer
Fig. 6 Schematic diagram of the mechanism of formaldehyde conversion over OMS-2/SiO2 nanofibers[32]. Copyright 2019, Elsevier
Fig. 7 Photocatalytic process of formaldehyde overTiO2/AAS[67]. Copyright 2014, Elsevier
Fig. 8 Photocatalytic process of formaldehyde over BiOCl/TiO2/sepiolite[70]. Copyright 2020, Elsevier
[1]
Salthammer T, Mentese S, Marutzky R. Chem. Rev., 2010, 110: 2536.

doi: 10.1021/cr800399g pmid: 20067232
[2]
Jiang C J, Li D D, Zhang P Y, Li J, Wang J, Yu J. Build Environ., 2017, 117: 118.

doi: 10.1016/j.buildenv.2017.03.004
[3]
Wolkoff P, Nielsen G D. Environ. Int., 2010, 36: 788.

doi: 10.1016/j.envint.2010.05.012 pmid: 20557934
[4]
Hadei M, Hopke P K, Rafiee M, Rastkari N, Yarahmadi M, Kermani M, Shahsavani A. Environ. Sci. Pollut. Res., 2018, 25: 27423.

doi: 10.1007/s11356-018-2794-4
[5]
Neamtiu I A, Lin S, Chen M, Roba C, Csobod E, Gurzau E S. Environ. Monit. Assess., 2019, 191: 591.

doi: 10.1007/s10661-019-7768-6 pmid: 31446497
[6]
Miao L, Wang J L, Zhang P Y. Appl. Surf. Sci., 2019, 466: 441.

doi: 10.1016/j.apsusc.2018.10.031
[7]
Yan Z X, Xu Z H, Cheng B, Jiang C J. Appl. Surf. Sci, 2017, 404: 426.

doi: 10.1016/j.apsusc.2017.02.010
[8]
Chen M, Wang H H, Chen X Y, Wang F, Qin X X, Zhang C B, He H. Chem. Eng. J., 2020, 390: 1.
[9]
Deng X Q, Liu J L, Li X, Zhu B, Zhu X B, Zhu A M. Catal. Today, 2017, 281: 630.

doi: 10.1016/j.cattod.2016.05.014
[10]
Sang J P, Bae I, Nam I S, Cho B K, Jung S M, Lee J H. Chem. Eng. J., 2012, 195/196: 392.

doi: 10.1016/j.cej.2012.04.028
[11]
Chen B B, Shi C, Crocker M, Wang Y, Zhu A M. Appl. Catal. B, 2013, 132/133: 245.

doi: 10.1016/j.apcatb.2012.11.028
[12]
Huang H, Leung D Y C. ACS Catal., 2011, 1: 348.

doi: 10.1021/cs200023p
[13]
Zhang L, Xie Y Q, Jiang Y, Li Y B, Wang C Y, Han S C, Luan H M, Meng X J, Xiao F S. Appl. Catal. B, 2020, 268: 118461.
[14]
Tan H Y, Wang J, Yu S Z, Zhou K B. Environ. Sci. Technol., 2015, 49: 8675.

doi: 10.1021/acs.est.5b01264
[15]
Wang Y Y, Ye J W, Jiang C J, Le Y G, Cheng B, Yu J G. Environ. Sci. Nano, 2020, 7: 198.

doi: 10.1039/C9EN00652D
[16]
Boyjoo Y, Rochard G, Giraudon J M, Liu J, Lamonier J F. SM&T, 2019, 2: 74.
[17]
Gao H, Zhang J Y, Wang R M, Wang M. Appl. Catal. B, 2015, 172-173: 1.
[18]
Liang X L, Liu P, He H P, Wei G L, Chen T H, Tan W, Tan F D, Zhu J X, Zhu R L. J. Hazard. Mater., 2016, 306: 305.

doi: 10.1016/j.jhazmat.2015.12.035
[19]
Chen Y, Guo Y H, Hu H X, Wang S X, Lin Y, Huang Y C. Inorg. Chem. Commun., 2017, 82: 20.

doi: 10.1016/j.inoche.2017.05.005
[20]
Zhu X B, Chang D L, Li X S, Sun Z G, Deng X Q, Zhu A M. Chem. Eng. J., 2015, 279: 897.

doi: 10.1016/j.cej.2015.05.095
[21]
Liu P, He H P, Wei G L, Liang X L, Qi F H, Tan F D, Tan W, Zhu J X, Zhu R L. Appl. Catal. B, 2016, 182: 476.

doi: 10.1016/j.apcatb.2015.09.055
[22]
Sun M, Zhang B T, Liu H F, He B B, Ye F, Yu L, Sun C Y, Wen H L. RSC Adv., 2017, 7: 3958.

doi: 10.1039/C6RA27700D
[23]
Guo J H, Lin C X, Jiang C J, Zhang P Y. Appl. Surf. Sci., 2019, 475: 237.

doi: 10.1016/j.apsusc.2018.12.238
[24]
Nie L H, Yu J G, Jaroniec M, Tao F F. Catal. Sci. Technol., 2016, 6: 3649.

doi: 10.1039/C6CY00062B
[25]
Fang R, Huang H B, Ji J, He M, Feng Q Y, Zhan Y J, Leung D Y C. Chem. Eng. J., 2018, 334: 2050.

doi: 10.1016/j.cej.2017.11.176
[26]
Han Z Y, Wang C, Zou X H, Chen T H, Dong S W, Zhao Y, Xie J J, Liu H B. Appl. Surf. Sci., 2020, 502: 144201.
[27]
Wang C, Chen T H, Liu H B, Xie J J, Li M X, Han Z Y, Zhao Y, He H Y, Zou X H, Suib S L. Appl. Clay. Sci., 2019, 182: 105289.
[28]
Wang C, Zou X H, Liu H B, Chen T H, Suib S L, Chen D, Xie J J, Li M X, Sun F W. Appl. Surf. Sci., 2019, 486: 420.

doi: 10.1016/j.apsusc.2019.04.257
[29]
Ye J W, Zhou M H, Le Y, Cheng B, Yu J G. Appl. Catal. B, 2020, 267:118689.
[30]
Zhang C M, Wang Y Q, Song W, Zhang H T, Zhang X C, Li R, Fan C M. J. Porous Mater., 2020, 3: 801.
[31]
Cui W Y, Wang S G, Wang L L, Dai J Q, Tan N D. Chem. Ind. & Eng. Pro., 2019, 38: 1427.
(崔维怡, 王圣公, 王琳琳, 戴俊琦, 谭乃迪. 化工进展, 2019, 38: 1427.).
[32]
Su J F, Cheng C L, Guo Y P, Xu H, Ke Q F. J. Hazard. Mater., 2019, 380: 120890.
[33]
Cui F H, Han W D, Si Y, Chen W K, Zhang M, Kim H Y, Ding B. Compos. Commun., 2019, 16: 61.

doi: 10.1016/j.coco.2019.08.002
[34]
Zhu D D, Huang Y, Cao J J, Lee S C, Chen M J, Shen Z X. Appl. Catal. B, 2019, 258: 117981.
[35]
Wei G L, Liu P, Chen D, Chen T H, Liang X L, Chen H L. Appl. Clay. Sci., 2019, 182: 105280.
[36]
Wang C, Liu H B, Chen T H, Qing C S, Zou X H, Xie J J, Zhang X R. Appl. Clay. Sci., 2018, 159: 50.

doi: 10.1016/j.clay.2017.08.023
[37]
Liu P, Wei G L, Liang X L, Chen D, He H P, Chen T H, Xi Y F, Chen H L, Han D H, Zhu J X. Appl. Clay. Sci., 2018, 161: 265.

doi: 10.1016/j.clay.2018.04.032
[38]
Zhang Q, Sun S B, Wang T Y, Liu F, Yang J H, Cheng A. Chem. Eng. Process, 2018, 132: 169.

doi: 10.1016/j.cep.2018.07.003
[39]
Yang T F, Huo Y, Liu Y, Rui Z, Ji H B. Appl. Catal. B, 2017, 200: 543.

doi: 10.1016/j.apcatb.2016.07.041
[40]
Rong S P, Zhang P Y, Wang J L, Liu F, Yang Y J, Yang G L, Liu S. Chem. Eng. J, 2016, 306: 1172.

doi: 10.1016/j.cej.2016.08.059
[41]
Dai Z J, Yu X W, Huang C, Li M, Su J F, Guo Y P, Xu H, Ke Q F. RSC Adv., 2016, 6: 97022.

doi: 10.1039/C6RA15463H
[42]
Li J, Zhang P Y, Wang J L, Wang M X. J. Phys. Chem. C, 2016, 120: 24121.

doi: 10.1021/acs.jpcc.6b07217
[43]
Huang Y C, Ye K H, Li H B, Fan W J, Zhao F Y, Zhang Y M, Ji H B. Nano Res., 2016, 9: 3881.

doi: 10.1007/s12274-016-1257-9
[44]
Wang J L, Yunus R, Li J, Li P L, Zhang P Y, Kim J. Appl. Surf. Sci., 2015, 357: 787.

doi: 10.1016/j.apsusc.2015.09.109
[45]
Cui W, Yuan X, Wu P, Zheng B, Zhang W, Jia M. RSC Adv., 2015, 5: 104330.
[46]
Averlant R, Royer S, Giraudon J, Bellat J, Bezverkhyy I, Weber G, Lamonier J. ChemCatChem., 2014, 6: 152.

doi: 10.1002/cctc.v6.1
[47]
Qu Z P, Chen D, Sun Y H, Wang Y. Appl. Catal. A, 2014, 487: 100.

doi: 10.1016/j.apcata.2014.08.044
[48]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, Dong T X, He Z C. J. Nanopart. Res., 2013, 15: 1.
[49]
Miyawaki J, Lee G, Yeh J, Shiratori N, Shimohara T, Mochida I, Yoon S. Catal. Today, 2012, 185: 278.

doi: 10.1016/j.cattod.2011.09.036
[50]
Zhou L, He J H, Zhang J, He Z C, Hu Y C, Zhang C B, He H. J. Phys. Chem. C, 2011, 115: 16873.

doi: 10.1021/jp2050564
[51]
Peng J X, Wang S D. Appl. Catal. B, 2007, 73: 282.

doi: 10.1016/j.apcatb.2006.12.012
[52]
Kharlamova T, Mamontov G, Salaev M, Zaikovskii V, Popova G, Sobolev V, Knyazev A, Vodyankina O. Appl. Catal. A, 2013, 467: 519.

doi: 10.1016/j.apcata.2013.08.017
[53]
Fang R M, Huang W J, Huang H B, Feng Q Y, He M, Ji J, Liu B Y, Leung D Y C. Appl. Surf. Sci., 2019, 470: 439.

doi: 10.1016/j.apsusc.2018.11.146
[54]
Liu P, He H P, Wei G L, Liu D, Liang X L, Chen T H, Zhu J X, Zhu R L. Microporous Mesoporous Mater., 2017, 239: 101.

doi: 10.1016/j.micromeso.2016.09.053
[55]
Sekine Y. Atmos. Environ., 2002, 36: 5543.

doi: 10.1016/S1352-2310(02)00670-2
[56]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5: 2305.

doi: 10.1039/C4CY01461H
[57]
Yu J G, Li X Y, Xu Z H, Xiao W. Environ. Sci. Technol., 2013, 47: 9928.

doi: 10.1021/es4019892
[58]
Hu M C, Yao Z H, Liu X G, Ma L P, He Z, Wang X Q. J. Taiwan Inst. Chem. Eng., 2018, 85: 91.

doi: 10.1016/j.jtice.2017.12.021
[59]
Li J W, Pan K L, Yu S J, Yan S Y, Chang M B. J. Environ. Sci., 2014, 26: 2546.

doi: 10.1016/j.jes.2014.05.030
[60]
Wang H C, Huang Z W, Jiang Z, Jiang Z, Zhang Y, Zhang Z X, Shangguan W F. ACS Catal., 2018, 8: 3164.

doi: 10.1021/acscatal.8b00309
[61]
Bai B, Arandiyan H, Li J H. Appl. Catal. B, 2013, 142/143: 677.

doi: 10.1016/j.apcatb.2013.05.056
[62]
Li H W, Ho W K, Cao J L, Park D, Lee S C, Huang Y. Environ. Sci. Technol., 2019, 53: 10906.

doi: 10.1021/acs.est.9b03197
[63]
Yan Z X, Xu Z H, Yu J G, Jaroniec M. Appl. Catal. B, 2016, 199: 458.

doi: 10.1016/j.apcatb.2016.06.052
[64]
Shu Y J, Xu Y, Huang H B, Ji J, Liang S M, Wu M Y, Leung D Y C. Chemosphere, 2018, 208: 550.

doi: 10.1016/j.chemosphere.2018.06.011
[65]
Sansotera M, Geran Malek Kheyli S, Baggioli A, Bianchi C L, Pedeferri M P, Diamanti M V, Navarrini W. Chem. Eng. J., 2019, 361: 885.

doi: 10.1016/j.cej.2018.12.136
[66]
Weon S, Choi J, Park T, Choi W. Appl. Catal. B, 2017, 205: 386.

doi: 10.1016/j.apcatb.2016.12.048
[67]
Zhang G, Xiong Q, Xu W, Guo S. Appl. Clay. Sci., 2014, 102: 231.

doi: 10.1016/j.clay.2014.10.001
[68]
Kibanova D, Sleiman M, Cervini-Silva J, Destaillats H. J. Hazard. Mater., 2012, 211/212: 233.

doi: 10.1016/j.jhazmat.2011.12.008
[69]
Zhang G X, Sun Z M, Duan Y W, Ma R X, Zheng S L. Appl. Surf. Sci., 2017, 412: 105.

doi: 10.1016/j.apsusc.2017.03.198
[70]
Hu X L, Li C Q, Sun Z M, Song J Y, Zheng S L. Build Environ., 2020, 168: 106481.
[71]
Liu R F, Li W B, Peng A Y. Appl. Surf. Sci., 2018, 427: 608.
[72]
Huang C, Ding Y P, Chen Y W, Li P W, Zhu S M, Shen S B. J. Environ. Sci.(China), 2017, 60: 61.

doi: 10.1016/j.jes.2017.06.041
[73]
Cui G X, Xin Y, Jiang X, Dong M Q, Li J L, Wang P, Zhai S M, Dong Y C, Jia J B, Yan B. Int. J. Mol. Sci., 2015, 16: 27721.

doi: 10.3390/ijms161126055
[74]
Han Z A, Chang V W, Wang X P, Lim T T, Hildemann L. Chem. Eng. J., 2013, 218: 9.

doi: 10.1016/j.cej.2012.12.025
[75]
Zhang G K, Qin X. Mater. Res. Bull., 2013, 48: 3743.

doi: 10.1016/j.materresbull.2013.05.112
[76]
Liu S H, Lin W X. J. Hazard. Mater., 2019, 368: 468.

doi: 10.1016/j.jhazmat.2019.01.082
[77]
Curcio M S, Oliveira M P, Waldman W R, Sánchez B, Canela M C. Environ. Sci. Pollut. Res., 2015, 22: 800.

doi: 10.1007/s11356-014-2683-4
[78]
Chen W M, Li S, Feizbakhshan M, Amdebrhan B T, Shi S K, Xin W, Nguyen T, Chen M Z, Zhou X Y. Constr. Build Mater., 2018, 161: 381.

doi: 10.1016/j.conbuildmat.2017.11.129
[79]
Yang J L, Shi Q J, Zhang R, Xie M Z, Jiang X, Wang F C, Cheng X W, Han W H. Carbon, 2018, 138: 118.

doi: 10.1016/j.carbon.2018.06.003
[80]
Wu X, Zhao J, Guo S, Wang L, Shi W, Huang H, Liu Y, Kang Z. Nanoscale, 2016, 8: 17314.

doi: 10.1039/C6NR05864G
[81]
Zhang Z M, Jiang X, Mei J F, Li Y X, Han W H, Xie M Z, Wang F C, Xie E. Chem. Eng. J., 2018, 331: 48.

doi: 10.1016/j.cej.2017.08.102
[82]
Wang J Z, Li H L, Yan X R, Qian C, Xing Y J, Yang S T, Kang Z, Han J Y, Gu W X, Yang H Y, Xiao F J. J. Alloys Compd., 2019, 795: 120.

doi: 10.1016/j.jallcom.2019.04.176
[83]
Liu R R, Wang J, Zhang J J, Xie S, Wang X Y, Ji Z J. Microporous Mesoporous Mater., 2017, 248: 234.

doi: 10.1016/j.micromeso.2017.04.029
[84]
Fan X, Zhu T L, Sun Y F, Yan X. J. Hazard. Mater., 2011, 196: 380.

doi: 10.1016/j.jhazmat.2011.09.044
[85]
Dong B Y, Shi Z Y, He J W, Wng H, Zhou H J, Zhang P, Nie Y L. Chem. Ind. & Eng. Pro., 2015, 34: 3337.
(董冰岩, 施志勇, 何俊文, 王晖, 周海金, 张鹏, 聂亚林. 化工进展, 2015, 34: 3337).
[86]
Wan Y J, Fan X, Zhu T L. Chem. Eng. J., 2011, 171: 314.

doi: 10.1016/j.cej.2011.04.011
[87]
Dong B Y, Lan S R. J. Phys. Conf. Ser., 2013, 418: 12121.

doi: 10.1088/1742-6596/418/1/012121
[88]
Zhao D Z, Li X S, Shi C, Fan H Y, Zhu A M. Chem. Eng. J., 2011, 66: 3922.
[89]
Liu F, Rong S P, Zhang P Y, Gao L L. Appl. Catal. B, 2018, 235: 158.

doi: 10.1016/j.apcatb.2018.04.078
[90]
Shayegan Z, Lee C, Haghighat F. Chem. Eng. J., 2018, 334: 2408.

doi: 10.1016/j.cej.2017.09.153
[91]
Qu X G, Liu W X, Ma J, Cao W B. Res. Chem. Intermed., 2009, 35: 313.

doi: 10.1007/s11164-009-0026-8
[92]
Li S, Dang X, Yu X, Abbas G, Zhang Q, Cao L. Chem. Eng. J., 2020, 388: 124275.
[93]
Feng X X, Liu H X, He C, Shen Z X, Wang T B. Catal. Sci. Technol., 2018, 8: 936.

doi: 10.1039/C7CY01934C
[94]
Li H W, Huang T T, Lu Y F, Cui L, Wang Z Y, Zhang C F, Lee S C, Huang Y, Cao J J, Ho W K. Environ. Sci. Nano, 2018, 5: 1130.

doi: 10.1039/C8EN00176F
[95]
Wang J, Li D, Li P, Zhang P, Xu Q, Yu J. RSC Adv., 2015, 5: 100434.
[96]
Liu P, Wei G L, He H P, Liang X L, Chen H L, Xi Y F, Zhu J X. Appl. Surf. Sci., 2019, 464: 287.

doi: 10.1016/j.apsusc.2018.09.070
[97]
Park S M, Jeon S W, Kim S H. Catal. Letters, 2014, 144: 756.

doi: 10.1007/s10562-014-1207-7
[98]
Wang J, Zhang G, Zhang P. J. Mater. Chem. A, 2017: 5719.
[99]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem., Int. Ed., 2012, 51: 9628.

doi: 10.1002/anie.v51.38
[100]
Wang X Y, Rui Z B, Ji H B. Catal. Today, 2018, 347: 124.

doi: 10.1016/j.cattod.2018.06.021
[101]
Li Y B, Zhang C B, He H. Catal. Today, 2017, 281: 412.

doi: 10.1016/j.cattod.2016.05.037
[102]
Wang J L, Zhang P Y, Li J, Jiang C J, Yunus R, Kim J. Environ. Sci. Technol., 2015, 49: 12372.

doi: 10.1021/acs.est.5b02085
[103]
Xu Z H, Yu J G, Liu G, Cheng B, Zhou P, Li X Y. Dalton Trans., 2013, 42: 119.
[104]
Yan Z X, Xu Z H, Yu J G, Jaroniec M. J. Colloid Interface Sci., 2017, 501: 164.

doi: 10.1016/j.jcis.2017.04.050
[105]
Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl. Catal. B, 2012, 125: 331.

doi: 10.1016/j.apcatb.2012.05.036
[106]
Zhu X B, Gao X, Qin R, Zeng Y X, Qu R Y, Zheng C H, Tu X. Appl. Catal. B, 2015, 170/171: 293.

doi: 10.1016/j.apcatb.2015.01.032
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[8] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[9] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[10] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[11] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[12] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[13] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[14] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[15] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.