中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 303-317 DOI: 10.7536/PC200524 Previous Articles   Next Articles

• Review •

Lignin: A Potential Source of Biomass-Based Catalysts

Xiangyun Chen1, Bing Yuan1,*(), Fengli Yu1, Congxia Xie1, Shitao Yu2   

  1. 1 State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology,Qingdao 266042, China
    2 College of Chemical Engineering, Qingdao University of Science and Technology,Qingdao 266042, China
  • Received: Revised: Online: Published:
  • Contact: Bing Yuan
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(31870554); National Natural Science Foundation of China(31470595); Shandong Key R&D Plan(Public Welfare Special Project)(2017GGX40105); Taishan Scholars Projects of Shandong(ts201511033)
Richhtml ( 56 ) PDF ( 1182 ) Cited
Export

EndNote

Ris

BibTeX

Lignin is one of the richest natural biomass, and more importantly, it is the only renewable resource containing aromatic structures in nature reserves. However, a large part of this resource are abandoned by far due to the complex structure, which makes the effective utilization of lignin quite difficult. It is well known that lignin can be transformed into a series of substitutes for petrochemical products via some redox processes. Beyond that, not only the oxygen-rich functional groups in lignin structure, but also the sulfur element introduced during the pulping process can provide effective active sites, making lignin resource a promising substrate of various catalysts. In this paper, following a brief summary of the species and structural characteristics of lignin resource, the applications of lignin-based catalysts in acid-base catalytic reactions, such as hydrolysis of biomass platform compounds, electrocatalysis reactions,oxidation-reduction reactions catalyzed by supported metal nanoparticles are summarized according to the catalytic mechanism and modification methods of lignin. The effects of lignin types, preparation or activation conditions on the performance of lignin-based catalytic materials are also discussed in detail. Besides, the current problems and future develop prospects of the development of lignin-based catalysts are also indicated.

Contents

1 Introduction

2 Application of lignin-based catalysts in acid-base catalytic systems

2.1 Lignosulfonic acid and its salts catalysts

2.2 Lignin-based acidic catalysts with hydroxyl groups as active groups

2.3 Lignin-based acidic resin catalysts

2.4 Lignin carbon-based acidic catalysts

2.5 Lignin-based acid-base synergistic catalysts

3 Application of lignin-based catalysts in redox catalytic systems

3.1 Lignin-based redox catalysts with quinone/ hydroquinone(Q/HQ) groups as active groups

3.2 Lignin supporting or stable redox catalysts

3.3 Lignin carbon-based redox catalysts

4 Conclusion and outlook

Fig. 1 Schematic illustration of source and structural unit of natural lignin
Fig. 2 A craft summary for separation of lignin from lignocellulose
Table 1 Application of lignin-based acid catalyst prepared by ion exchange method
Fig. 3 Solid catalysts prepared from lignosulfonate by ion exchange[58]
Table 2 Catalytic applications of lignin carbon-based solid acids
Raw
materials
Synthesis conditions BET surface
area, m2·g-1
Acid density, mmol·g-1 Reactions ref
Total acid —SO3H —COOH —OH
Enzymatic hydrolyzed residues(EHR) Pyrolysis carbonization:
N2, 400 ℃, 2 h
Sulfonation: H2SO4, 150 ℃, 10 h
1.88 4.62 0.62 - - Transformation of cellulose into nanofibers and platform chemicals 66
Residual lignin Sulfonation: N2, H2SO4,
150 ℃, 1 h
4.7 1.71 0.68 - - Esterification of
acidified soybean soapstocks
67
SLS Sulfonation: H2SO4,
150~175 ℃, 0.5 h
(Sulfonation: 20% fuming H2SO4, 150~175 ℃, 12 h)
3.19
(2.18)
4.64
(5.90)
0.96
(1.24)
3.36
(3.66)
0.92
(1.04)
Esterification of
cyclohexanecarboxylic acid with anhydrous ethanol
68
SLS Pyrolysis carbonization:
N2, 250 ℃, 6 h
Sulfonation: H2SO4, 130 ℃, 10 h
Oxidation: H2O2, 50 ℃, 1.5 h
- 4.78 0.68 - - Hydrolysis of
hemicellulose in
corncob
69
AL Pyrolysis carbonization:
Ar, 450 ℃, 1 h
- 0.13 0.08 0.02 0.02 Hydrolysis of cellulose and woody biomass 70
Dealkali lignin(DAL) Hydrothermal carbonization: 265 ℃
Sulfonation: H2SO4, 150 ℃, 1 h
- 1.15 0.74 0.27 0.83 Dehydration of inulin into HMF 71,72
DAL Carbonization:
supercritical ethanol,
260 ℃, 8.4 MPa, 20 h
Sulfonation: H2SO4, 150 ℃, 10 h
113.1 5.05 1.41 - - Esterification of oleic acid, esterification and transesterification of plantoils 73
Kraft lignin Chemical activation: H3PO4, 1 h
Pyrolysis carbonization:
N2, 400 ℃, 1 h
Sulfonation: H2SO4, 200 ℃, 2 h
54.8 1.30 - - - Esterification of oleic acid and conversion of non-pretreated Jatropha oil to biodiesel 74
AL Electrospun: NaOH
Pyrolysis carbonization:
N2, 900 ℃, 0.5 h
Sulfonation: H2SO4, 150 ℃, 20 h
Hydrothermal treated:
150 ℃, 5 atm
475 0.88 0.56 - - Hydrolysis of highly crystalline rice straw cellulose 75
AL Impregnation: KOH
Pyrolysis carbonization:N2, 400 ℃, 1 h; 600 ℃, 2 h
Sulfonation: N2, H2SO4,
150 ℃, 10 h
524.9 - 0.40 - - Hydrolysis of
pretreated rice straw
76
Enzymatic hydrolysis lignin residue Impregnation: FeCl3, 5 h
Pyrolysis carbonization:
N2, 400 ℃, 1 h
Sulfonation: N2, H2SO4,
150 ℃, 10 h
234.61
5.65(without impregnation)
1.95
1.42(without impregnation)
0.77
0.65(without impregnation)
- - Dehydration of fructose into
5-HMF
77
SLS Pretreatment: ice-templating
Pyrolysis carbonization:N2, 450 ℃,
1 hIon exchange: H2SO4
122 3.49 1.21 - - Acetalization of
glycerol to bio-additives
78
AL Polymerization and dispersion(F123 as template agent);Pyrolysis carbonization:N2, 900 ℃, 3 h
Sulfonation: H2SO4, 180 ℃, 12 h
156 - 1.82 - - Hydrolysis of bagasse cellulose 79
Kraft lignin Impregnation: NaOH, F123 Pyrolysis carbonization: N2, 900 ℃, 3 h;Sulfonation: H2SO4, 180 ℃, 12 h 262 - 0.65 - - Fructose dehydration to 5-HMF 80
Fig. 4 dTG-MS spectra of SLS[88]
Fig. 5 (a) Possible schematic diagram of sulfonated carbonaceous solid acids decomposition[90];(b) Deactivation of sulfonated carbonaceous solid acids by adsorbed alcohols[91]
Fig. 6 Chemical structure of activated carbons[84]
Fig. 7 Reasonable structure of Hf-LigS and possible mechanism of 5-HMF reduction catalyzed by Hf-LigS[103]
Table 3 Lignin modified electrode for electrocatalytic reaction
Scheme 1 Electrochemical activity of lignin and lignin-derived ruthenium mediated reduction of acidic nitrite[50,107]
Fig. 8 Lignin cross-links to prepare effective carriers and couple active centers[123?~125]
Scheme 2 Mechanism of preparation of metal NPs by lignin
Table 4 Preparation and application of lignin carbon-based redox catalyst
Raw
materials
Catalysts Activator/dopant Processing
temperature,℃
BET surface
area, m2·g-1
Reactions ref
AL N-S-C 900 - 900 486 Oxygen reduction reaction(ORR) 151
Lignin Lignin derived multi-doped(N, S, Cl) carbon materials NaCl/ZnCl2 1000 1289 ORR 152
Low-sulfur lignin Sulfur-nitrogen co-doped porous biocarbon catalyst NaCl/ZnCl2 1000 1218.68 Electrochemical CO2 reduction
reaction(ECRR)
153
Lignin Pt/Lg-CDs-800 - 800 - Methanol electro-oxidation reaction(MOR) 154
Kraft lignin Pd-activated carbon catalysts H3PO4 900 1248 Suzuki-Miyaura cross-coupling
reaction and hydrogenation
155
Eucalyptus lignin High-Performance Magnetic Activated Carbon KOH 800 2875 Magnetic activated carbons(MACE) 156
MACE High-Performance Magnetic Activated Carbon-NiMo Supports KOH 800 2875 Hydrodeoxygenation(HDO) 157
SLS Co3S4/C
NiS/C
MoS2/C
Co3Mo6S/C
NiMoS3/C
S/C
Mg(OH)2 700 379
560
630
485
412
571
HDO 158
DAL Mo-DAL - 800 19.7 Hydrogen production from formic acid 159
Lignin A single-atom cobalt over nitrogen-doped carbon(Co SAs/N@C) Zn(OAC)2·2H2O 900 - Transformation of 5-HMF and furfural into the carboxylic acids. 160
AL Co-Mn/N@C Dicyandiamide 800 - Aerobic oxidation of 5-
hydroxymethylfurfural to 2,5-
furandicarboxylic acid
161
AL M SAs-N@C, M=Fe, Co, Ni, Cu Dicyandiamide
Zn(OAC)2·2H2O
1000 - Oxidative esterification of primary alcohols 162
SLS N,S-doped hierarchical porous catalysts(Co-Nx/Sy-C) Thiourea 900 314 Peroxymonosulfate-based oxidative
degradation and borohydride-
mediated reductive amination of
several pollutants
163
Fig. 9 Coordination directed assembly of metal-lignin complexes: Bottom-up strategy to synthesize atom-dispersed Co SAs/N@C catalyst and its use for 2,5-furandicarboxylic acid(FDCA) conversion[160]
[1]
Zimmerman J B, Anastas P T, Erythropel H C, Leitner W. Science, 2020, 367:397.

pmid: 31974246
[2]
Armand M, Tarascon J M. Nature, 2008, 451:652.

pmid: 18256660
[3]
Zhang Z R, Song J L, Han B X. Chem. Rev., 2017, 117:6834.

doi: 10.1021/acs.chemrev.6b00457 pmid: 28535680
[4]
Huber G W, Chheda J N, Barrett C J, Dumesic J A. Science, 2005, 308(5727):1446.
[5]
Achyuthan K E, Achyuthan A M, Adams P D, Dirk S M, Harper J C, Simmons B A, Singh A K. Molecules, 2010, 15:8641.

pmid: 21116223
[6]
Hu L H, Pan H, Zhou Y H, Zhang M. BioResources, 2011, 6:3515.
[7]
Boerjan W, Ralph J, Baucher M. Annu. Rev. Plant Biol., 2003, 54:519.
[8]
Tuck C O, Perez E, Horvath I T, Sheldon R A, Poliakoff M. Science, 2012, 337:695.

pmid: 22879509
[9]
Gosselink R J A, de Jong E, Guran B, Abächerli A. Ind. Crop. Prod., 2004, 20:121.
[10]
Doherty W O S, Mousavioun P, Fellows C M. Ind. Crop. Prod., 2011, 33:259.
[11]
Stewart D. Ind. Crop. Prod., 2008, 27:202.
[12]
Calvo-Flores F G, Dobado J A. ChemSusChem, 2010, 3:1227.

doi: 10.1002/cssc.201000157 pmid: 20839280
[13]
Wang H, Qiu X Q, Liu W F, Fu F B, Yang D J. Ind. Eng. Chem. Res., 2017, 56:11133.
[14]
Liu R, Dai L, Hu L Q, Zhou W Q, Si C L. Mater. Sci. Eng., C, 2017, 80:397.
[15]
Xu F, Zhu T T, Rao Q Q, Shui S W, Li W W, He H B, Yao R S. J. Environ. Sci., 2017, 53:132.
[16]
Luo X G, Liu C, Yuan J, Zhu X R, Liu S L. ACS Sustainable Chem. Eng., 2017, 5:6539.

doi: 10.1021/acssuschemeng.7b00674
[17]
Hu L Q, Dai L, Liu R, Si C L. J. Mater. Sci., 2017, 52:13689.
[18]
Zhao S, Abu-Omar M M. Biomacromolecules, 2015, 16:2025.
[19]
Sen S, Patil S, Argyropoulos D S. Green Chem., 2015, 17:4862.
[20]
Ten E, Vermerris W. J. Appl. Polym. Sci., 2015, 132:42069.
[21]
Thakur V K, Thakur M K, Raghavan P, Kessler M R. ACS Sustainable Chem. Eng., 2014, 2:1072.
[22]
Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110:3552.

pmid: 20218547
[23]
Upton B M, Kasko A M. Chem. Rev., 2016, 116:2275.

pmid: 26654678
[24]
Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115:11559.
[25]
Chakar F S, Ragauskas A J. Ind. Crop. Prod., 2004, 20:131.
[26]
Holmgren A, Brunow G, Henriksson G, Zhang L M, Ralph J. Org. Biomol. Chem., 2006, 4:3456.
[27]
Akiyama T, Goto H, Nawawi D S, Syafii W, Matsumoto Y, Meshitsuka G. Holzforschung, 2005, 59:276.
[28]
Crestini C, D’Auria M. Tetrahedron, 1997, 53:7877.
[29]
Xie X F, Goodell B, Zhang D J, Nagle D C, Qian Y H, Peterson M L, Jellison J. Bioresour. Technol., 2009, 100:1797.

pmid: 19027291
[30]
Beste A, Buchanan A C. J. Org. Chem., 2009, 74:2837.
[31]
Freudenberg K. Nature, 1959, 183:1152.

pmid: 13657039
[32]
Jiang T D. Lignin. Beijing: Chemical Industry Press, 2009.
( 蒋挺大. 木质素. 北京: 化学工业出版社, 2009.).
[33]
Aro T, Fatehi P. ChemSusChem, 2017, 10:1861.
[34]
Hu J J, Zhang Q G, Lee D J. Bioresour. Technol., 2018, 247:1181.
[35]
Strassberger Z, Tanase S, Rothenberg G. RSC Adv., 2014, 4:25310.
[36]
Galkin M V, Samec J S M. ChemSusChem, 2016, 9:1544.

pmid: 27273230
[37]
Sluiter J B, Ruiz R O, Scarlata C J, Sluiter A D, Templeton D W. J. Agric. Food Chem., 2010, 58:9043.
[38]
Beño E, GÓra R, Hutta M. J. Sep. Sci., 2018, 41:3195.

doi: 10.1002/jssc.201800361 pmid: 29923300
[39]
Björkman A. Nature, 1954, 174:1057.
[40]
Lu Y, Wei X Y, Zong Z M, Lu Y C, Zhao W, Cao J P. Prog. Chem., 2013, 25:838.
路瑶, 魏贤勇, 宗志敏, 陆永超, 赵炜, 曹景沛. 化学进展, 2013, 25:838.
[41]
Jiang B, Cao T Y, Gu F, Wu W J, Jin Y C. ACS Sustainable Chem. Eng., 2017, 5:342.
[42]
Wang H M, Wang B, Wen J L, Yuan T Q, Sun R C. ACS Sustainable Chem. Eng., 2017, 5:11618.
[43]
Wu S B, Argyropoulos D S. Journal of Tianjing University of Science & Technology, 2004, 19(a02):108.
[44]
Yuan T Q, Sun S N, Xu F, Sun R C. J. Agric. Food Chem., 2011, 59:10604.

doi: 10.1021/jf2031549 pmid: 21879769
[45]
Asawaworarit P, Daorattanachai P, Laosiripojana W, Sakdaronnarong C, Shotipruk A, Laosiripojana N. Chem. Eng. J., 2019, 356:461.
[46]
Vishtal A, Kraslawski A. BioRes., 2011, 6(3):3547.
[47]
Clark J H, Deswarte F E I, Farmer T J. Biofuels, Bioprod. Bioref., 2009, 3:72.
[48]
da Costa Lopes A M, Brenner M, FalÉ P, Roseiro L B, Bogel-Łukasik R. ACS Sustainable Chem. Eng., 2016, 4:3357.
[49]
Yu X, Peng L C, Gao X Y, He L, Chen K L. RSC Adv., 2018, 8:15762.
[50]
Milczarek G. Langmuir, 2009, 25:10345.

doi: 10.1021/la9008575 pmid: 19456182
[51]
Zhang X, Glusen A, Garciavalls R. J. Membr. Sci., 2006, 276:301.
[52]
Chen W, Peng X W, Zhong L X, Li Y, Sun R C. ACS Sustainable Chem. Eng., 2015, 3:1366.
[53]
Wu C Y, Chen W, Zhong L X, Peng X W, Sun R C, Fang J J, Zheng S B. J. Agric. Food Chem., 2014, 62:7430.
[54]
Xie H B, Zhao Z K, Wang Q. ChemSusChem, 2012, 5:901.
[55]
Chen Q, Huang W, Chen P, Peng C, Xie H B, Zhao Z K, Sohail M, Bao M. ChemCatChem, 2015, 7:1083.
[56]
Liang F B, Song Y L, Huang C P, Zhang J, Chen B H. Catal. Commun., 2013, 40:93.
[57]
Yao M M, Yang Y Q, Song J L, Yu Y, Jin Y C. Ind. Crop. Prod., 2017, 107:38.
[58]
Sun S H, Bai R X, Gu Y L. Chem. Eur. J., 2014, 20:549.

pmid: 24307475
[59]
Wu Z L, Xie H B, Yu X, Liu E H. ChemCatChem, 2013, 5:1328.

doi: 10.1002/cctc.v5.6
[60]
Guo L, Dou R, Wu Y Q, Zhang R, Wang L, Wang Y, Gong Z C, Chen J L, Wu X Q. ACS Sustainable Chem. Eng., 2019, 7:16585.
[61]
Xiong X Q, Zhang H, Lai S L, Gao J B, Gao L Z. React. Funct. Polym., 2020, 149:104502.
[62]
Zhang X C, Zhang Z, Wang F, Wang Y H, Song Q, Xu J. J. Mol. Catal. A: Chem., 2013, 377:102.
[63]
Li S S, Li N, Li G Y, Li L, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2015, 17:3644.
[64]
Kumar H, AlÉn R. Energy Fuels, 2016, 30:9451.
[65]
Tang H, Li N, Li G Y, Wang W T, Wang A Q, Cong Y, Wang X D. ACS Sustainable Chem. Eng., 2018, 6:5645.
[66]
Zhu S Y, Xu J, Cheng Z, Kuang Y S, Wu Q Q, Wang B, Gao W H, Zeng J S, Li J, Chen K F. Appl. Catal. B: Environ., 2020, 268:118732.
[67]
Guo F, Xiu Z L, Liang Z X. Appl. Energy, 2012, 98:47.
[68]
Lee D. Molecules, 2013, 18:8168.

pmid: 23846757
[69]
Li X, Shu F Y, He C, Liu S N, Leksawasdi N, Wang Q, Qi W, Alam M A, Yuan Z H, Gao Y. RSC Adv., 2018, 8:10922.
[70]
Kurnia I, Yoshida A, Chaihad N, Bayu A, Kasai Y, Abudula A, Guan G Q. Fuel Process. Technol., 2019, 196:106175.
[71]
Kang S M, Li X L, Fan J, Chang J. Ind. Eng. Chem. Res., 2012, 51:9023.
[72]
Kang S M, Ye J, Zhang Y, Chang J. RSC Adv., 2013, 3:7360.
[73]
Huang M, Luo J, Fang Z, Li H. Appl. Catal. B: Environ., 2016, 190:103.
[74]
Pua F L, Fang Z, Zakaria S, Guo F, Chia C H. Biotechnol. Biofuels, 2011, 4:56.
[75]
Hu S X, Jiang F, Hsieh Y L. ACS Sustainable Chem. Eng., 2015, 3:2566.
[76]
Bai C X, Zhu L F, Shen F, Qi X H. Bioresour. Technol., 2016, 220:656.
[77]
Hu L, Tang X, Wu Z, Lin L, Xu J X, Xu N, Dai B L. Chem. Eng. J., 2015, 263:299.
[78]
Konwar L J, Samikannu A, Mäki-Arvela P, Boström D, Mikkola J P. Appl. Catal. B: Environ., 2018, 220:314.
[79]
Wang S, Zhang L Q, Sima G B, Cui Y, Gan L H. Chem. Phys. Lett., 2019, 736:136808.
[80]
Wang S, Lyu L, Sima G B, Cui Y, Li B X, Zhang X Q, Gan L H. Korean J. Chem. Eng., 2019, 36:1042.
[81]
Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Domen K. Angew. Chem. Int. Ed., 2004, 43:2955.
[82]
Lu E T, Love S G. Nature, 2005, 438:177.

doi: 10.1038/438177a pmid: 16281025
[83]
Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J. Am. Chem. Soc., 2008, 130:12787.

doi: 10.1021/ja803983h pmid: 18759399
[84]
Konwar L J, Mäki-Arvela P, Mikkola J P. Chem. Rev., 2019, 119:11576.

pmid: 31589024
[85]
Tenhaeff W E, Rios O, More K, McGuire M A. Adv. Funct. Mater., 2014, 24:86.
[86]
Lee H W, Lee H, Kim Y M, Park R S, Park Y K. Chin. Chem. Lett., 2019, 30:2147.
[87]
Yu X, Peng L C, Pu Q Y, Tao R L, Gao X Y, He L, Zhang J H. Res. Chem. Intermed., 2020, 46:1469.
[88]
Deng T S, Li J G, Yang Q Q, Yang Y X, Lv G, Yao Y, Qin L M, Zhao X L, Cui X J, Hou X L. RSC Adv., 2016, 6:30160.
[89]
Mo X, Lopez D, Suwannakarn K, Liu Y, Lotero E, Goodwinjr J, Lu C. J. Catal., 2008, 254:332.
[90]
Chen G Z, Wang X C, Jiang Y J, Mu X D, Liu H C. Catal. Today, 2019, 319:25.
[91]
Fraile J M, García-BordejÉ E, Roldán L. J. Catal., 2012, 289:73.
[92]
Anderson J M, Johnson R L, Schmidt-Rohr K, Shanks B H. Carbon, 2014, 74:333.
[93]
Li R Q, Li J F, Zhou Z Y, Guo Y, Zhang T T, Tao F F, Hu X F, Liu W H. J. Biobased Mater. Bioenergy, 2018, 12:184.
[94]
Zhu J D, Gan L H, Li B X, Yang X. Korean J. Chem. Eng., 2017, 34:110.
[95]
Xie J K, Han Q N, Feng B, Liu Z G. BioResoures, 2019, 14(2):4284.
[96]
Li M F, Zhang Q T, Luo B, Chen C Z, Wang S F, Min D Y. Ind. Crop. Prod., 2020, 145:111920.
[97]
Zhang X F, Yan Q G, Hassan E B, Li J H, Cai Z Y, Zhang J L. Mater. Lett., 2017, 203:42.
[98]
Tamborini L H, Casco M E, Militello M P, Silvestre-Albero J, Barbero C A, Acevedo D F. Fuel Process. Technol., 2016, 149:209.
[99]
Hu L, Wu Z, Xu J X, Zhou S Y, Tang G D. Korean J. Chem. Eng., 2016, 33:1232.
[100]
Cha J S, Choi J C, Ko J H, Park Y K, Park S H, Jeong K E, Kim S S, Jeon J K. Chem. Eng. J., 2010, 156:321.
[101]
Yu J T, Dehkhoda A M, Ellis N. Energy Fuels, 2011, 25:337.
[102]
Liu W J, Jiang H, Yu H Q. Green Chem., 2015, 17:4888.
[103]
Zhou S H, Dai F L, Chen Y A, Dang C, Zhang C Z, Liu D T, Qi H S. Green Chem., 2019, 21:1421.
[104]
Zhou S H, Dai F L, Xiang Z Y, Song T, Liu D T, Lu F C, Qi H S. Appl. Catal. B: Environ., 2019, 248:31.
[105]
Chen D W, Liang F B, Feng D X, Du F L, Zhao G, Liu H Z, Xian M. Catal. Commun., 2016, 84:159.
[106]
Milczarek G. Electroanalysis, 2007, 19:1411.
[107]
Milczarek G. Electroanalysis, 2008, 20:211.
[108]
Milczarek G. Electrochimica Acta, 2009, 54:3199.
[109]
Buoro R M, Bacil R P, da Silva R P, da Silva L C C, Lima A W O, Cosentino I C, Serrano S H P. Electrochimica Acta, 2013, 96:191.
[110]
Degefu H, Amare M, Tessema M, Admassie S. Electrochimica Acta, 2014, 121:307.

doi: 10.1016/j.electacta.2013.12.133
[111]
Rębiś T, Sobkowiak M, Milczarek G. J. Electroanal. Chem., 2016, 780:257.
[112]
Ciszewski A, Sron K, Stepniak I, Milczarek G. Electrochimica Acta, 2014, 134:355.

doi: 10.1016/j.electacta.2014.04.152
[113]
Gawluk K, Modrzejwska-Sikorska A, Rębiś T, Milczarek G. Catalysts, 2017, 7:392.
[114]
Wei Y X, Song M, Yu L, Tang X H. Catalysts, 2017, 7:180.
[115]
Amare M, Aklog S. J. Anal. Methods Chem., 2017, 2017:1.
[116]
Ohsaka T, Tanaka K, Tokuda K. J. Chem. Soc., Chem. Commun., 1993,222.
[117]
Fukui M, Kitani A, Degrand C, Miller L L. J. Am. Chem. Soc., 1982, 104:28.
[118]
Ciszewski A, Milczarek G. Anal. Chem., 2000, 72:3203.

doi: 10.1021/ac991182m pmid: 10939388
[119]
Zhang X, Benavente J, Garcia-Valls R. J. Power Sources, 2005, 145:292.
[120]
Yang C, Liu P. Ind. Eng. Chem. Res., 2009, 48:9498.
[121]
Milczarek G, Inganas O. Science, 2012, 335:1468.

doi: 10.1126/science.1215159 pmid: 22442478
[122]
Rębiś T, Milczarek G. Electrochimica Acta, 2016, 204:108.
[123]
Lai B B, Bai R X, Gu Y L. ACS Sustainable Chem. Eng., 2018, 6:17076.
[124]
Faeghi F, Javanshir S, Molaei S. ChemistrySelect, 2018, 3:11427.
[125]
Yang Z J, Zhang X, Yao X D, Fang Y X, Chen H Y, Ji H B. Tetrahedron, 2016, 72:1773.
[126]
Song K P, Tang C, Zou Z J, Wu Y D. Transition Met. Chem., 2020, 45:111.

doi: 10.1007/s11243-019-00363-x
[127]
Benaissi K, Johnson L, Walsh D A, Thielemans W. Green Chem., 2010, 12:220.
[128]
Milczarek G, Ciszewski A. Colloids Surfaces B: Biointerfaces, 2012, 90:53.

doi: 10.1016/j.colsurfb.2011.09.047 pmid: 22019258
[129]
Lin X B, Wu M, Wu D Y, Kuga S, Endo T, Huang Y. Green Chem., 2011, 13:283.

doi: 10.1039/C0GC00513D
[130]
Coccia F, Tonucci L, Bosco D, Bressan M, D’Alessandro N. Green Chem., 2012, 14:1073. 8aaa5684-653b-4fd6-8731-3384b155bfde

doi: 10.1039/c2gc16524d
[131]
Coccia F, Tonucci L, D’Alessandro N, D’Ambrosio P, Bressan M. Inorganica Chimica Acta, 2013, 399:12. 7ae6a08a-dccb-413a-9fbe-c3f813e6e3e1

doi: 10.1016/j.ica.2012.12.035
[132]
Marulasiddeshwara M B, Kumar P R. Int. J. Biol. Macromol., 2016, 83:326.

doi: 10.1016/j.ijbiomac.2015.11.034 pmid: 26601763
[133]
Marulasiddeshwara M B, Raghavendra Kumar P. Mater. Today: Proc., 2018, 5:20811.
[134]
Hu S X, Hsieh Y L. Carbohydr. Polym., 2015, 131:134.

doi: 10.1016/j.carbpol.2015.05.060 pmid: 26256169
[135]
Chen X Y, Yuan B, Yu F L, Liu Y X, Xie C X, Yu S T. ACS Omega, 2020, 5:8902.

doi: 10.1021/acsomega.0c00533 pmid: 32337453
[136]
Marulasiddeshwara M B, Dakshayani S S, Sharath Kumar M N, Chethana R, Raghavendra Kumar P, Devaraja S. Mater. Sci. Eng.: C, 2017, 81:182.
[137]
Milczarek G, Rebis T, Fabianska J. Colloids Surfaces B: Biointerfaces, 2013, 105:335.

doi: 10.1016/j.colsurfb.2013.01.010 pmid: 23399431
[138]
Modrzejewska-Sikorska A, Konował E, Klapiszewski Ł, Nowaczyk G, Jurga S, Jesionowski T, Milczarek G. Int. J. Biol. Macromol., 2017, 103:403.

doi: 10.1016/j.ijbiomac.2017.05.083 pmid: 28527991
[139]
Konował E, Modrzejewska-Sikorska A, Milczarek G. Mater. Lett., 2015, 159:451.
[140]
Hu S X, Hsieh Y L. Int. J. Biol. Macromol., 2016, 82:856.

doi: 10.1016/j.ijbiomac.2015.09.066 pmid: 26434523
[141]
Modrzejewska-Sikorska A, Konował E, Cichy A, Nowicki M, Jesionowski T, Milczarek G. J. Mol. Liq., 2017, 240:80.
[142]
Mohazzab B F, Jaleh B, Nasrollahzadeh M, Khazalpour S, Sajjadi M, Varma R S. ACS Omega, 2020, 5:5888.

doi: 10.1021/acsomega.9b04149 pmid: 32226869
[143]
Chen S L, Wang G H, Sui W J, Parvez A M, Dai L, Si C L. Ind. Crop. Prod., 2020, 145:112164.
[144]
Rak M J, Friščić T, Moores A. Faraday Discuss., 2014, 170:155.

doi: 10.1039/c4fd00053f pmid: 25408257
[145]
Xue M, Zhang S Z, Wu Y F, Liu J, Cui Y C. Chin. J. Appl. Chem., 2010, 27(7):787. a7da8806-19a0-4c09-8e08-0aa1ab949a45

doi: 10.3724/SP.J.1095.2010.90577
薛蔓, 张士真, 吴玉锋, 刘剑, 崔元臣. 应用化学, 2010, 27(7):787. a7da8806-19a0-4c09-8e08-0aa1ab949a45

doi: 10.3724/SP.J.1095.2010.90577
[146]
Chen X Y, Zhu B Q, Yuan B, Yu F L, Xie C X, Yu S T. Chem. J. Chin. Univ., 2020, 41:1826.
陈祥云, 朱本强, 袁冰, 于凤丽, 解从霞, 于世涛. 高等学校化学学报, 2020, 41:1826.
[147]
Gao C, Wang X L, Wang H S, Zhou J H, Zhai S R, An Q D. Int. J. Biol. Macromol., 2020, 144:947.

doi: 10.1016/j.ijbiomac.2019.09.172 pmid: 31669463
[148]
Gao C, Wang X L, Zhai S R, An Q D. Int. J. Biol. Macromol., 2019, 134:202.

doi: 10.1016/j.ijbiomac.2019.05.017 pmid: 31075332
[149]
Nasrollahzadeh M, Bidgoli N S S, Issaabadi Z, Ghavamifar Z, Baran T, Luque R. Int. J. Biol. Macromol., 2020, 148:265.

doi: 10.1016/j.ijbiomac.2020.01.107 pmid: 31935407
[150]
Nasrollahzadeh M, Issaabadi Z, Varma R S. ACS Omega, 2019, 4:14234.

doi: 10.1021/acsomega.9b01640 pmid: 31508546
[151]
Zhang X L, Yu D L, Zhang Y Q, Guo W H, Ma X X, He X Q. RSC Adv., 2016, 6:104183.
[152]
Shen Y X, Li Y H, Yang G X, Zhang Q, Liang H, Peng F. J. Energy Chem., 2020, 44:106.
[153]
Cai X S, Qin B H, Li Y H, Zhang Q, Yang G X, Wang H J, Cao Y H, Yu H, Peng F. ChemElectroChem, 2020, 7:320.

doi: 10.1002/celc.v7.1
[154]
Li X W, Lv Y, Pan D. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 569:110.
[155]
GuillÉn E, Rico R, LÓpez-Romero J M, Bedia J, Rosas J M, Rodríguez-Mirasol J, Cordero T. Appl. Catal. A: Gen., 2009, 368:113.
[156]
Hao W M, Björnerbäck F, Trushkina Y, Oregui Bengoechea M, Salazar-Alvarez G, Barth T, Hedin N. ACS Sustainable Chem. Eng., 2017, 5:3087.
[157]
Oregui-Bengoechea M, Miletić N, Hao W M, Björnerbäck F, Rosnes M H, Garitaonandia J S, Hedin N, Arias P L, Barth T. ACS Sustainable Chem. Eng., 2017, 5:11226.
[158]
Liu S J, Van Muyden A P, Bai L C, Cui X J, Fei Z F, Li X H, Hu X L, Dyson P J. ChemSusChem, 2019, 12:3271.

doi: 10.1002/cssc.201900677 pmid: 31038822
[159]
Kurnia I, Yoshida A, Situmorang Y A, Kasai Y, Abudula A, Guan G Q. ACS Sustainable Chem. Eng., 2019, 7:8670.
[160]
Zhou H, Xu H H, Wang X K, Liu Y. Green Chem., 2019, 21:2923.
[161]
Zhou H, Xu H H, Liu Y. Appl. Catal. B: Environ., 2019, 244:965.
[162]
Zhou H, Hong S, Zhang H, Chen Y T, Xu H H, Wang X K, Jiang Z, Chen S L, Liu Y. Appl. Catal. B: Environ., 2019, 256:117767.
[163]
Minh T D, Ncibi M C, Certenais M, Viitala M, Sillanpää M. J. Clean. Prod., 2020, 253:120013.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[12] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[13] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.