中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1074-1091 DOI: 10.7536/PC200714 Previous Articles   Next Articles

• Review •

Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives

Xiaolu Liu1, Yuxiao Geng1, Ran Hao1, Yuping Liu1,*(), Zhongyong Yuan2, Wei Li1   

  1. 1 Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
    2 National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Yuping Liu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21421001); National Natural Science Foundation of China(21573115); National Natural Science Foundation of China(21875118)
Richhtml ( 89 ) PDF ( 1179 ) Cited
Export

EndNote

Ris

BibTeX

Ammonia (NH3) is one of the most important nitrogen-based fertilizers and chemicals, and is also a novel hydrogen storage material. It is made on an industrial scale via the Haber-Bosch process, which requires high temperature and high pressure to consume a large amount of energy. It is very urgent to find an environmentally benign alternative process to alleviate the crises for energy and environment. Electrocatalytic nitrogen reduction reaction (NRR) has attracted worldwide research interest. However, such process is actually hard to perform due to the inherent inertness of N2 molecules together with the low solubility in aqueous solutions. Although great research efforts have been made to explore and design suitable electrocatalysts for ammonia synthesis, the yield of ammonia is still very low. In addition, the ambiguous mechanism still remains as a major barrier for the development of NRR systems. In this review, we firstly introduced the catalytic reaction mechanisms towards NRR. Then we overviewed of the latest progress of the state-of-art catalysts in the electrocatalytic NRR. Moreover, we put more emphasis on the various rational strategies for electrocatalyst design to enhance the NRR performance, such as size effects, facets regulation, defects engineering, amorphization, which are aiming to increasing the exposed active sites or altering the electronic structure to further improve the apparent or intrinsic activity. Finally, we briefly discussed the main challenges in this field. We hope this review will offer a helpful guidance for the reasonable design of electrocatalysts towards NRR, arouse more interests in the new research field of NRR, and promote the green ammonia synthesis industrialization as soon as possible.

Contents

1 Introduction

2 NRR Mechanisms

3 The factors of electrocatalytic NRR system

3.1 Modified reactor configuration

3.2 Suitable applied potential

3.3 Effects of electrolytes

4 Research progress of electrocatalyst of NRR

4.1 Noble metal-based electrocatalysts

4.2 Non-noble metal-based electrocatalysts

4.3 Metal-free electrocatalysts

4.4 Single-metal-atom electrocatalysts

5 Electrocatalysts design for NRR

5.1 Size effects

5.2 Defect engineering

5.3 Morphology effects

5.4 Amorphous phases

6 Conclusion and outlook

Scheme 1 Schematic depiction of (a) the dissociative pathway, (b) associative alternating pathways, (c) associative distal associative for catalytic conversion of N2 to NH3[4], Copyright 2020, Wiley-VCH
Fig.1 Schematics of different cell configurations of (a) PEM-type cell, (b) Single chamber and (c) H-type cell for NRR at ambient conditions[3]. Copyright 2018, Wiley-VCH
Fig. 2 (a) Transmission electron microscopy image of Au THH NRs and the geometric model. (b) NH3 yield rates and FEs at each given potential. (c) Setup of the electrolytic cell used for the NRR. (d) Free energy diagram and catalytic pathway of N2 reduction on the Au THH NRs[37]. Copyright 2017, Wiley-VCH
Fig. 3 (a) NH3 synthesis Faradic efficiency and (b) corresponding yield rate. (c) NRR catalytic mechanism of the Mo2C/C under proton-suppressed and proton-enriched condtions[79]. Copyright 2019, Wiley-VCH
Fig. 4 (a) HAADF-STEM image of Pt SAs/WO3. (b) HRTEM image of Pt NPs/WO3. (c) Yield of NH3 and Faradaic efficiency of Pt SAs/WO3 and Pt NPs/WO3. (d) Electrochemical in situ time-resolved Fourier transform infrared (FT-IR) spectra for nitrogen reduction reaction (NRR) on the Pt SAs/WO3 electrode[94]. Copyright 2020, Wiley-VCH.
Fig. 5 (a) Schematic diagram of Al-Co3O4/NF synthesis. (b, c) SEM images of Al-Co3O4/NF. (d) The proposed limitation and promotion of NRR behavior from different surface interface structures. (e) Electrochemical in situ-FTIR spectra of NRR on Al-Co3O4/NF. (f) Corresponding possible pathway for NH3 production[115]. Copyright 2020, ACS
Table 1 Summary of recently reported NRR electrocatalysts.
Catalyst Electrolyte NH3 yield rate FE (%) Potential
(V vs RHE)
ref
Noble metal-
based materials
THH Au nanorods 0.1 mol/L KOH 1.648 μg·h -1·c m - 2 4.0 -0.2 37
Hollow Au nocages 0.5mol/L LiClO4 3.9 μg·h -1·c m - 2 30.2 -0.5 120
porous Au film 0.1 mol/L Na2SO4 9.42 μg·h -1·c m - 2 13.36 -0.2 38
Au/TiO2 0.1mol/L HCl 21.4 μg·h -1 m g cat. - 1 8.11 -0.2 99
a-Au/CeOx-rGO 0.1 mol/L HCl 8.3 μg·h -1 m g cat. - 1 10.1 -0.2 127
Pd/C 0.1mol/L PBS 4.5 μg·h -1 m g cat. - 1 8.2 0.1 27
Pd0.2Cu0.8/rGO 0.1 mol/L KOH 2.80 μg·h -1 m g cat. - 1 17.8 -0.2 48
Pt93Ir7alloy 0.001 mol/L HCl 28 μg·h -1·c m - 2 40.8 -0.3 34
Rh nanosheet 0.1 mol/L KOH 23.88μg·h-1·m g cat. - 1 0.217 -0.2 54
Ag nanosheets 0.1 mol/L HCl 4.62×10-11mol ·s -1·cm-2 4.8 -0.6 44
Ag3Cu networks 0.1 mol/L Na2SO4 24.59 μg·h -1 m g cat. - 1 13.28 -0.5 47
Non-noble metal-
based materials
Fe2O3nanorode 0.1mol/L Na2SO4 15.9 μg·h -1 m g cat. - 1 0.94 -0.8 22
Fe/Fe3O4 0.1mol/L PBS 0.19 μg·h -1·c m - 2 8.29 -0.3 57
MoO3 0.1 mol/L HCl 4.80×10-10 mol·s-1·cm-2 1.9 -0.5 59
Nb2O5 nanofiber 0.1 mol/L HCl 43.6 μg·h -1 m g cat. - 1 9.26 -0.55 61
NbO2 0.05 mol/L H2SO4 11.6 μg·h -1 m g cat. - 1 32 -0.65 60
Mn3O4 NP@rGO 0.1 mol/L Na2SO4 17.4 μg·h -1 m g cat. - 1 3.52 -0.85 62
r-WO3nanosheets 0.1 mol/L HCl 17.28 μg·h -1 m g cat. - 1 7 -0.3 63
WO3-x nanosheets 0.1 mol/L HCl 4.2 μg·h -1 m g cat. - 1 6.8 -0.12 64
Bi4V2O11/CeO2 0.1 mol/L HCl 23.21 μg·h -1 m g cat. - 1 10.16 -0.2 126
Ti3C2Tx MXene N.A. 0.26 μg·h -1·c m - 2 5.78 -0.2 103
Mo2C/C 0.5mol/L H2SO4 11.3 μg·h -1 m g cat. - 1 7.8 -0.2 79
MoS2 nanoflower 0.1mol/L Na2SO4 29.28 μg·h -1 m g cat. - 1 8.34 -0.4 107
Mo2N 0.1 mol/L HCl 78.4 μg·h -1 m g cat. - 1 4.5 -0.3 73
MoN NA/CC 0.1 mol/L HCl 3.01×10-10 mol·s-1·cm-2 1.15 -0.3 74
W2N3 nanosheets 0.1 mol/L KOH 11.66±0.98 μg·h-1 m g cat. - 1 11.67 ± 0.93 -0.2 76
Metal-free materials N-doped carbon 0.1 mol/L KOH 57.8 μg·h -1 cm-2 10.2 -0.3 118
PCN 0.1 mol/L HCl 8.09 μg·h -1 m g cat. - 1 11.59 -0.2 106
B-doped graphene 0.05 mol/L H2SO4 9.8 μg·h -1·c m - 2 10.8 -0.5 84
B4C 0.1 mol/L HCl 26.57 μg·h -1 m g cat. - 1 15.95 -0.75 88
Single atom
metal materials
Ru SAs/N-C 0.05 mol/L H2SO4 120.9 μg·h -1 m g cat. - 1 29.6 -0.2 92
Ru@ZrO2/NC 0.1 mol/L HCl 3665 μg·h -1 m g cat. - 1 21 -0.21 93
Au1/C3N4 0.005 mol/L H2SO4 1305 μg·h -1 m g cat. - 1 11.1 -0.1 V vs Ag/AgCl 91
Pt SAs/WO3 0.1 mol/L K2SO4 342.4 μg·h -1·m g Pt - 1 31.1 -0.2 94
Mo SAs/N-C 0.1 mol/L KOH 34.0±3.6 μg·h-1·m g cat. - 1 14.6±1.6 -0.3 95
Fe SAs/MoS2 0.1 mol/L KCl 97.5±6 μg·h-1·c m - 2 31.6±2 -0.2 96
[1]
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. Nat. Geosci., 2008, 1(10):636.

doi: 10.1038/ngeo325
[2]
Canfield D E, Glazer A N, Falkowski P G. Science, 2010, 330(6001):192.

doi: 10.1126/science.1186120 pmid: 20929768
[3]
Cui X Y, Tang C, Zhang Q. Adv. Energy Mater., 2018, 8(22):1800369.

doi: 10.1002/aenm.v8.22
[4]
Patil S B, Wang D Y. Small, 2020, 16 (45):2002885.

doi: 10.1002/smll.v16.45
[5]
Tanabe Y, Nishibayashi Y. Coord. Chem. Rev., 2013, 257(17/18):2551.

doi: 10.1016/j.ccr.2013.02.010
[6]
van der Ham C J M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43(15):5183.

doi: 10.1039/C4CS00085D
[7]
Xue X L, Chen R P, Yan C Z, Zhao P Y, Hu Y, Zhang W J, Yang S Y, Jin Z. Nano Res., 2019, 12(6):1229.

doi: 10.1007/s12274-018-2268-5
[8]
MacKay B A, Fryzuk M D. Chem. Rev., 2004, 104(2):385.

pmid: 14871129
[9]
Li M Q, Huang H, Low J, Gao C, Long R, Xiong Y J. Small Methods, 2019, 3(6):1800388.

doi: 10.1002/smtd.v3.6
[10]
Jia H P, Quadrelli E A. Chem. Soc. Rev., 2014, 43(2):547.

doi: 10.1039/C3CS60206K
[11]
Zhan C G, Nichols J A, Dixon D A. J. Phys. Chem. A, 2003, 107(20):4184.

doi: 10.1021/jp0225774
[12]
Singh A R, Rohr B A, Schwalbe J A, Cargnello M, Chan K R, Jaramillo T F, Chorkendorff I, Nørskov J K. ACS Catal., 2017, 7(1):706.

doi: 10.1021/acscatal.6b03035
[13]
Li J, Zheng G F. Adv. Sci., 2017, 4(3):1600380.

doi: 10.1002/advs.201600380
[14]
Cao N, Zheng G F. Nano Res., 2018, 11(6):2992.

doi: 10.1007/s12274-018-1987-y
[15]
Guo X X, Du H T, Qu F L, Li J H. J. Mater. Chem. A, 2019, 7(8):3531.

doi: 10.1039/C8TA11201K
[16]
Shipman M A, Symes M D. Catal. Today, 2017, 286:57.

doi: 10.1016/j.cattod.2016.05.008
[17]
Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov J K. Phys. Chem. Chem. Phys., 2012, 14(3):1235.

doi: 10.1039/c1cp22271f pmid: 22146855
[18]
Abghoui Y, Garden A L, Hlynsson V F, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E. Phys. Chem. Chem. Phys., 2015, 17(7):4909.

doi: 10.1039/c4cp04838e pmid: 25446373
[19]
Kang S H, Wang J L, Zhang S B, Zhao C J, Wang G Z, Cai W P, Zhang H M. Electrochem. Commun., 2019, 100:90.

doi: 10.1016/j.elecom.2019.01.028
[20]
Ling C Y, Zhang Y H, Li Q, Bai X W, Shi L, Wang J L. J. Am. Chem. Soc., 2019, 141(45):18264.

doi: 10.1021/jacs.9b09232
[21]
Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M. Catal. Today, 2017, 286:2.

doi: 10.1016/j.cattod.2016.06.014
[22]
Xiang X J, Wang Z, Shi X F, Fan M K, Sun X P. ChemCatChem, 2018, 10(20):4530.

doi: 10.1002/cctc.201801208
[23]
Hao Q, Liu C, Jia G, Wang Y, Arandiyan H, Wei W, Ni B J. Mater. Horiz., 2020, 7 (4):1014.

doi: 10.1039/C9MH01668F
[24]
Chen S M, Perathoner S, Ampelli C, Mebrahtu C, Su D S, Centi G. Angew. Chem. Int. Ed., 2017, 56(10):2699.

doi: 10.1002/anie.201609533
[25]
Chen G F, Ren S Y, Zhang L L, Cheng H, Luo Y R, Zhu K H, Ding L X, Wang H H. Small Methods, 2019, 3(6):1800337.

doi: 10.1002/smtd.v3.6
[26]
Pham D N, Burgess B K. Biochemistry, 1993, 32(49):13725.

pmid: 8257707
[27]
Wang J, Yu L, Hu L, Chen G, Xin H L, Feng X F. Nat. Commun., 2018, 9(1):1.

doi: 10.1038/s41467-017-02088-w
[28]
Song Y, Johnson D, Peng R, Hensley D K, Bonnesen P V, Liang L B, Huang J S, Yang F C, Zhang F, Qiao R, Baddorf A P, Tschaplinski T J, Engle N L, Hatzell M C, Wu Z L, Cullen D A, Meyer H M III, Sumpter B G, Rondinone A J. Sci. Adv., 2018, 4(4):e1700336.

doi: 10.1126/sciadv.1700336
[29]
Liu Y Y, Han M M, Xiong Q Z, Zhang S B, Zhao C J, Gong W B, Wang G Z, Zhang H M, Zhao H J. Adv. Energy Mater., 2019, 9(14):1970042.

doi: 10.1002/aenm.v9.14
[30]
Tang C, Qiao S Z. Chem. Soc. Rev., 2019, 48(12):3166.

doi: 10.1039/C9CS00280D
[31]
Liu H L, Nosheen F, Wang X. Chem. Soc. Rev., 2015, 44(10):3056.

doi: 10.1039/C4CS00478G
[32]
Gu J, Zhang Y W, Tao F F. Chem. Soc. Rev., 2012, 41(24):8050.

doi: 10.1039/c2cs35184f
[33]
Lan R, Irvine J T S, Tao S W. Sci. Rep., 2013, 3(1):1.
[34]
Mao Y J, Wei L, Zhao X S, Wei Y S, Li J W, Sheng T, Zhu F C, Tian N, Zhou Z Y, Sun S G. Chem. Commun., 2019, 55(63):9335.

doi: 10.1039/C9CC04034J
[35]
Nazemi M, El-Sayed M A. J. Phys. Chem. Lett., 2018, 9(17):5160.

doi: 10.1021/acs.jpclett.8b02188
[36]
Liu G Q, Cui Z Q, Han M M, Zhang S B, Zhao C J, Chen C, Wang G Z, Zhang H M. Chem. Eur. J., 2019, 25(23):5904.

doi: 10.1002/chem.v25.23
[37]
Bao D, Zhang Q, Meng F L, Zhong H X, Shi M M, Zhang Y, Yan J M, Jiang Q, Zhang X B. Adv. Mater., 2017, 29(3):1604799.

doi: 10.1002/adma.v29.3
[38]
Wang H J, Yu H J, Wang Z Q, Li Y H, Xu Y, Li X N, Xue H R, Wang L. Small, 2019, 15(6):1804769.

doi: 10.1002/smll.v15.6
[39]
Lv X W, Wang L, Wang G C, Hao R, Ren J T, Liu X L, Duchesne P N, Liu Y P, Li W, Yuan Z Y, Ozin G A. J. Mater. Chem. A, 2020, 8(18):8868.

doi: 10.1039/D0TA02832K
[40]
Wang P, Ji Y, Shao Q, Li Y, Huang X. Sci. Bull., 2020, 65:350.

doi: 10.1016/j.scib.2019.12.019
[41]
Kordali V, Kyriacou G, Lambrou C. Chem. Commun., 2000(17):1673.
[42]
Lindley B M, Bruch Q J, White P S, Hasanayn F, Miller A J M. J. Am. Chem. Soc., 2017, 139(15):5305.

doi: 10.1021/jacs.7b01323 pmid: 28383261
[43]
Ahmed M I, Liu C W, Zhao Y, Ren W H, Chen X J, Chen S, Zhao C. Angew. Chem. Int. Ed., 2020, 59(48):21465.

doi: 10.1002/anie.v59.48
[44]
Huang H H, Xia L, Shi X F, Asiri A M, Sun X P. Chem. Commun., 2018, 54(81):11427.

doi: 10.1039/C8CC06365F
[45]
Ji L, Shi X F, Asiri A M, Zheng B Z, Sun X P. Inorg. Chem., 2018, 57(23):14692.

doi: 10.1021/acs.inorgchem.8b02436
[46]
Nazemi M, El-Sayed M A. J. Phys. Chem. C, 2019, 123(18):11422.

doi: 10.1021/acs.jpcc.9b01107
[47]
Yu H J, Wang Z Q, Yang D D, Qian X Q, Xu Y, Li X N, Wang H J, Wang L. J. Mater. Chem. A, 2019, 7(20):12526.

doi: 10.1039/C9TA03297E
[48]
Shi M M, Bao D, Li S J, Wulan B R, Yan J M, Jiang Q. Adv. Energy Mater., 2018, 8(21):1800124.

doi: 10.1002/aenm.v8.21
[49]
Wang Z Q, Li C J, Deng K, Xu Y, Xue H R, Li X N, Wang L, Wang H J. ACS Sustainable Chem. Eng., 2019, 7(2):2400.

doi: 10.1021/acssuschemeng.8b05245
[50]
Lv J, Wu S L, Tian Z F, Ye Y X, Liu J, Liang C H. J. Mater. Chem. A, 2019, 7(20):12627.

doi: 10.1039/C9TA02045D
[51]
Pang F J, Wang Z F, Zhang K, He J, Zhang W Q, Guo C X, Ding Y. Nano Energy, 2019, 58:834.

doi: 10.1016/j.nanoen.2019.02.019
[52]
Wang H J, Li Y H, Yang D D, Qian X Q, Wang Z Q, Xu Y, Li X N, Xue H R, Wang L. Nanoscale, 2019, 11(12):5499.

doi: 10.1039/C8NR10398D
[53]
Xu W C, Fan G L, Chen J L, Li J H, Zhang L, Zhu S L, Su X C, Cheng F Y, Chen J. Angew. Chem. Int. Ed., 2020, 59(9):3511.

doi: 10.1002/anie.v59.9
[54]
Liu H M, Han S H, Zhao Y, Zhu Y Y, Tian X L, Zeng J H, Jiang J X, Xia B Y, Chen Y. J. Mater. Chem. A, 2018, 6(7):3211.

doi: 10.1039/C7TA10866D
[55]
Chen C Y, Chen M L, Chen H B, Wang H X, Cramer S P, Zhou Z H. J. Inorg. Biochem., 2014, 141:114.

doi: 10.1016/j.jinorgbio.2014.08.003
[56]
Burgess B K, Lowe D J. Chem. Rev., 1996, 96(7):2983.

doi: 10.1021/cr950055x
[57]
Hu L, Khaniya A, Wang J, Chen G, Kaden W E, Feng X F. ACS Catal., 2018, 8(10):9312.

doi: 10.1021/acscatal.8b02585
[58]
Zhang G, Ji Q H, Zhang K, Chen Y, Li Z H, Liu H J, Li J H, Qu J H. Nano Energy, 2019, 59:10.

doi: 10.1016/j.nanoen.2019.02.028
[59]
Han J R, Ji X Q, Ren X, Cui G W, Li L, Xie F Y, Wang H, Li B H, Sun X P. J. Mater. Chem. A, 2018, 6(27):12974.

doi: 10.1039/C8TA03974G
[60]
Huang L S, Wu J W, Han P, Al-Enizi A M, Almutairi T M, Zhang L J, Zheng G F. Small Methods, 2019, 3(6):1800386.

doi: 10.1002/smtd.v3.6
[61]
Han J R, Liu Z C, Ma Y J, Cui G W, Xie F Y, Wang F X, Wu Y P, Gao S Y, Xu Y H, Sun X P. Nano Energy, 2018, 52:264.

doi: 10.1016/j.nanoen.2018.07.045
[62]
Huang H, Gong F, Wang Y, Wang H B, Wu X F, Lu W B, Zhao R B, Chen H Y, Shi X F, Asiri A M, Li T S, Liu Q, Sun X P. Nano Res., 2019, 12(5):1093.

doi: 10.1007/s12274-019-2352-5
[63]
Kong W H, Zhang R, Zhang X X, Ji L, Yu G S, Wang T, Luo Y L, Shi X F, Xu Y H, Sun X P. Nanoscale, 2019, 11(41):19274.

doi: 10.1039/C9NR03678D
[64]
Sun Z Y, Huo R P, Choi C, Hong S, Wu T S, Qiu J S, Yan C, Han Z S, Liu Y C, Soo Y L, Jung Y. Nano Energy, 2019, 62:869.

doi: 10.1016/j.nanoen.2019.06.019
[65]
Tong Y Y, Guo H P, Liu D L, Yan X, Su P P, Liang J, Zhou S, Liu J, Lu G Q M, Dou S X. Angew. Chem. Int. Ed., 2020, 59(19):7356.

doi: 10.1002/anie.v59.19
[66]
Zhang X X, Liu Q, Shi X F, Asiri A M, Luo Y L, Sun X P, Li T S. J. Mater. Chem. A, 2018, 6(36):17303.

doi: 10.1039/C8TA05627G
[67]
Yang L, Wu T W, Zhang R, Zhou H, Xia L, Shi X F, Zheng H G, Zhang Y N, Sun X P. Nanoscale, 2019, 11(4):1555.

doi: 10.1039/c8nr09564g pmid: 30637419
[68]
Wu T W, Zhao H T, Zhu X J, Xing Z, Liu Q, Liu T, Gao S Y, Lu S Y, Chen G, Asiri A M, Zhang Y N, Sun X P. Adv. Mater., 2020, 32(30):2000299.

doi: 10.1002/adma.v32.30
[69]
Xu T, Ma D W, Li C B, Liu Q, Lu S Y, Asiri A M, Yang C, Sun X P. Chem. Commun., 2020, 56(25):3673.

doi: 10.1039/C9CC10087C
[70]
Li C B, Ma D W, Mou S Y, Luo Y S, Ma B Y, Lu S Y, Cui G W, Li Q, Liu Q, Sun X P. J. Energy Chem., 2020, 50:402.

doi: 10.1016/j.jechem.2020.03.044
[71]
Xia L, Li B H, Zhang Y, Zhang R, Ji L, Chen H Y, Cui G W, Zheng H G, Sun X P, Xie F Y, Liu Q. Inorg. Chem., 2019, 58(4):2257.

doi: 10.1021/acs.inorgchem.8b03143 pmid: 30688065
[72]
Li C B, Yu J L, Yang L, Zhao J X, Kong W H, Wang T, Asiri A M, Li Q, Sun X P. Inorg. Chem., 2019, 58(15):9597.

doi: 10.1021/acs.inorgchem.9b01707
[73]
Ren X, Cui G W, Chen L, Xie F Y, Wei Q, Tian Z Q, Sun X P. Chem. Commun., 2018, 54(61):8474.

doi: 10.1039/C8CC03627F
[74]
Zhang L, Ji X Q, Ren X, Luo Y L, Shi X F, Asiri A M, Zheng B Z, Sun X P. ACS Sustainable Chem. Eng., 2018, 6(8):9550.

doi: 10.1021/acssuschemeng.8b01438
[75]
Zhang R, Zhang Y, Ren X, Cui G W, Asiri A M, Zheng B Z, Sun X P. ACS Sustainable Chem. Eng., 2018, 6(8):9545.

doi: 10.1021/acssuschemeng.8b01261
[76]
Jin H Y, Li L Q, Liu X, Tang C, Xu W J, Chen S M, Song L, Zheng Y, Qiao S Z. Adv. Mater., 2019: 1902709.
[77]
Yang X, Nash J, Anibal J, Dunwell M, Kattel S, Stavitski E, Attenkofer K, Chen J G, Yan Y S, Xu B J. J. Am. Chem. Soc., 2018, 140(41):13387.

doi: 10.1021/jacs.8b08379
[78]
Hu B, Hu M W, Seefeldt L, Liu T L. ACS Energy Lett., 2019, 4(5):1053.

doi: 10.1021/acsenergylett.9b00648
[79]
Cheng H, Ding L X, Chen G F, Zhang L L, Xue J, Wang H H. Adv. Mater., 2018, 30(46):1803694.

doi: 10.1002/adma.201803694
[80]
Zhang L, Ji X Q, Ren X, Ma Y J, Shi X F, Tian Z Q, Asiri A M, Chen L, Tang B, Sun X P. Adv. Mater., 2018, 30(28):1800191.

doi: 10.1002/adma.v30.28
[81]
Tahir M, Pan L, Idrees F, Zhang X W, Wang L, Zou J J, Wang Z L. Nano Energy, 2017, 37:136.

doi: 10.1016/j.nanoen.2017.05.022
[82]
Kumar C V S, Subramanian V. Phys. Chem. Chem. Phys., 2017, 19(23):15377.

doi: 10.1039/C7CP02220D
[83]
Zhao J X, Wang B, Zhou Q, Wang H B, Li X H, Chen H Y, Wei Q, Wu D, Luo Y L, You J M, Gong F F, Sun X P. Chem. Commun., 2019, 55(34):4997.

doi: 10.1039/C9CC00726A
[84]
Yu X M, Han P, Wei Z X, Huang L S, Gu Z X, Peng S J, Ma J M, Zheng G F. Joule, 2018, 2(8):1610.

doi: 10.1016/j.joule.2018.06.007
[85]
Yang Y Y, Zhang L F, Hu Z P, Zheng Y, Tang C, Chen P, Wang R G, Qiu K W, Mao J, Ling T, Qiao S Z. Angew. Chem. Int. Ed., 2020, 59(11):4525.

doi: 10.1002/anie.v59.11
[86]
Ren J T, Wan C Y, Pei T Y, Lv X W, Yuan Z Y. Appl. Catal. B: Environ., 2020, 266:118633.

doi: 10.1016/j.apcatb.2020.118633
[87]
Zhang L L, Ding L X, Chen G F, Yang X F, Wang H H. Angew. Chem. Int. Ed., 2019, 58(9):2528.

doi: 10.1002/anie.v58.9
[88]
Qiu W B, Xie X Y, Qiu J D, Fang W H, Liang R P, Ren X, Ji X Q, Cui G W, Asiri A M, Cui G L, Tang B, Sun X P. Nat. Commun., 2018, 9(1):1.

doi: 10.1038/s41467-017-02088-w
[89]
Liang S X, Hao C, Shi Y T. ChemCatChem, 2015, 7(17):2559.

doi: 10.1002/cctc.201500363
[90]
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angew. Chem. Int. Ed., 2017, 56(45):13944.

doi: 10.1002/anie.201703864
[91]
Wang X Q, Wang W, Qiao M, Wu G, Chen W X, Yuan T W, Xu Q, Chen M, Zhang Y, Wang X, Wang J, Ge J J, Hong X, Li Y F, Wu Y E, Li Y D. Sci. Bull., 2018, 63(19):1246.

doi: 10.1016/j.scib.2018.07.005
[92]
Geng Z G, Liu Y, Kong X D, Li P, Li K, Liu Z Y, Du J J, Shu M, Si R, Zeng J. Adv. Mater., 2018, 30(40):1870301.

doi: 10.1002/adma.v30.40
[93]
Tao H C, Choi C, Ding L X, Jiang Z, Han Z S, Jia M W, Fan Q, Gao Y N, Wang H H, Robertson A W, Hong S, Jung Y, Liu S Z, Sun Z Y. Chem, 2019, 5(1):204.

doi: 10.1016/j.chempr.2018.10.007
[94]
Hao R, Sun W M, Liu Q, Liu X L, Chen J L, Lv X, Li W, Liu Y P, Shen Z R. Small, 2020, 16(22):2000015.
[95]
Han L L, Liu X J, Chen J P, Lin R Q, Liu H X, Lü F, Bak S, Liang Z X, Zhao S Z, Stavitski E, Luo J, Adzic R R, Xin H L. Angew. Chem. Int. Ed., 2019, 58(8):2321.

doi: 10.1002/anie.v58.8
[96]
Li J, Chen S, Quan F J, Zhan G M, Jia F L, Ai Z H, Zhang L Z. Chem, 2020, 6(4):885.

doi: 10.1016/j.chempr.2020.01.013
[97]
Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P. J. Am. Chem. Soc., 2014, 136(19):6978.

doi: 10.1021/ja500328k
[98]
Mistry H, Varela A S, Kühl S, Strasser P, Cuenya B R. Nat. Rev. Mater., 2016, 1(4):1.
[99]
Shi M M, Bao D, Wulan B R, Li Y H, Zhang Y F, Yan J M, Jiang Q. Adv. Mater., 2017, 29(17):1606550.

doi: 10.1002/adma.v29.17
[100]
Dou S, Wang X, Wang S Y. Small Methods, 2019, 3(1):1800211.

doi: 10.1002/smtd.v3.1
[101]
Gao S, Sun Z T, Liu W, Jiao X C, Zu X L, Hu Q T, Sun Y F, Yao T, Zhang W H, Wei S Q, Xie Y. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6
[102]
Yao J X, Bao D, Zhang Q, Shi M M, Wang Y, Gao R, Yan J M, Jiang Q. Small Methods, 2019, 3(6):1800333.

doi: 10.1002/smtd.v3.6
[103]
Fang Y F, Liu Z C, Han J R, Jin Z Y, Han Y Q, Wang F X, Niu Y S, Wu Y P, Xu Y H. Adv. Energy Mater., 2019, 9(16):1803406.

doi: 10.1002/aenm.v9.16
[104]
Abghoui Y, Skúlason E. J. Phys. Chem. C, 2017, 121(11):6141.

doi: 10.1021/acs.jpcc.7b00196
[105]
Li Q Y, He L Z, Sun C H, Zhang X W. J. Phys. Chem. C, 2017, 121(49):27563.

doi: 10.1021/acs.jpcc.7b10522
[106]
Lv C, Qian Y M, Yan C S, Ding Y, Liu Y Y, Chen G, Yu G H. Angew. Chem. Int. Ed., 2018, 57(32):10246.

doi: 10.1002/anie.v57.32
[107]
Li X H, Li T S, Ma Y J, Wei Q, Qiu W B, Guo H R, Shi X F, Zhang P, Asiri A M, Chen L, Tang B, Sun X P. Adv. Energy Mater., 2018, 8(30):1801357.

doi: 10.1002/aenm.v8.30
[108]
Suryanto B H R, Wang D B, Azofra L M, Harb M, Cavallo L, Jalili R, Mitchell D R G, Chatti M, MacFarlane D R. ACS Energy Lett., 2019, 4(2):430.

doi: 10.1021/acsenergylett.8b02257
[109]
Huang J W, Sun Y H, Zhang Y D, Zou G F, Yan C Y, Cong S, Lei T, Dai X, Guo J, Lu R F, Li Y R, Xiong J. Adv. Mater., 2018, 30(5):1705045.

doi: 10.1002/adma.201705045
[110]
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Adv. Energy Mater., 2017, 7(7):1602086.

doi: 10.1002/aenm.201602086
[111]
Du X C, Huang J W, Zhang J J, Yan Y C, Wu C Y, Hu Y, Yan C Y, Lei T, Chen W, Fan C, Xiong J. Angew. Chem. Int. Ed., 2019, 58(14):4484.

doi: 10.1002/anie.v58.14
[112]
Wan Y C, Xu J C, Lv R. Mater. Today, 2019, 27:69.

doi: 10.1016/j.mattod.2019.03.002
[113]
Wu T W, Kong W H, Zhang Y, Xing Z, Zhao J X, Wang T, Shi X F, Luo Y L, Sun X P. Small Methods, 2019, 3(11):1900356.

doi: 10.1002/smtd.v3.11
[114]
Wu T W, Zhu X J, Xing Z, Mou S Y, Li C B, Qiao Y X, Liu Q, Luo Y L, Shi X F, Zhang Y N, Sun X P. Angew. Chem. Int. Ed., 2019, 58(51):18449.

doi: 10.1002/anie.v58.51
[115]
Lv X W, Liu Y P, Hao R, Tian W W, Yuan Z Y. ACS Appl. Mater. Interfaces, 2020, 12(15):17502.

doi: 10.1021/acsami.0c00647
[116]
Zhang J, Tian X Y, Liu M J, Guo H, Zhou J D, Fang Q Y, Liu Z, Wu Q, Lou J. J. Am. Chem. Soc., 2019, 141(49):19269.

doi: 10.1021/jacs.9b02501 pmid: 31701745
[117]
Yan D F, Dou S, Tao L, Liu Z J, Liu Z G, Huo J, Wang S Y. J. Mater. Chem. A, 2016, 4(36):13726.

doi: 10.1039/C6TA05863A
[118]
Mukherjee S, Cullen D A, Karakalos S, Liu K X, Zhang H, Zhao S, Xu H, More K L, Wang G F, Wu G. Nano Energy, 2018, 48:217.

doi: 10.1016/j.nanoen.2018.03.059
[119]
Qin Q, Zhao Y, Schmallegger M, Heil T, Schmidt J, Walczak R, Gescheidt-Demner G, Jiao H J, Oschatz M. Angew. Chem. Int. Ed., 2019, 58(37):13101.

doi: 10.1002/anie.v58.37
[120]
Nazemi M, Panikkanvalappil S R, El-Sayed M A. Nano Energy, 2018, 49:316.

doi: 10.1016/j.nanoen.2018.04.039
[121]
Ye S R, Rathmell A R, Chen Z F, Stewart I E, Wiley B J. Adv. Mater., 2014, 26(39):6670.

doi: 10.1002/adma.v26.39
[122]
Hong W, Shang C S, Wang J, Wang E K. Energy Environ. Sci., 2015, 8(10):2910.

doi: 10.1039/C5EE01988E
[123]
Yang D J, Zhang L J, Yan X C, Yao X D. Small Methods, 2017, 1(12):1700209.

doi: 10.1002/smtd.v1.12
[124]
Yang L, Guo Z L, Huang J, Xi Y N, Gao R J, Su G, Wang W, Cao L X, Dong B H. Adv. Mater., 2017, 29(46):1704574.

doi: 10.1002/adma.v29.46
[125]
Cai P W, Huang J H, Chen J X, Wen Z H. Angew. Chem. Int. Ed., 2017, 56(17):4858.

doi: 10.1002/anie.201701280
[126]
Lv C, Yan C S, Chen G, Ding Y, Sun J X, Zhou Y S, Yu G H. Angew. Chem. Int. Ed., 2018, 57(21):6073.

doi: 10.1002/anie.v57.21
[127]
Li S J, Bao D, Shi M M, Wulan B R, Yan J M, Jiang Q. Adv. Mater., 2017, 29(33):1700001.

doi: 10.1002/adma.v29.33
[128]
Andersen S Z, Čolić V, Yang S, Schwalbe J A, Nielander A C, McEnaney J M, Enemark-Rasmussen K, Baker J G, Singh A R, Rohr B A, Statt M J, Blair S J, Mezzavilla S, Kibsgaard J, Vesborg P C K, Cargnello M, Bent S F, Jaramillo T F, Stephens I E L, Nørskov J K, Chorkendorff I. Nature, 2019, 570(7762):504.

doi: 10.1038/s41586-019-1260-x
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[5] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[6] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[7] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[8] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[9] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[10] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[11] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[12] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[13] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.
[14] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[15] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.