中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 281-302 DOI: 10.7536/PC200515 Previous Articles   Next Articles

• Review •

Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application

Ying Yang1,2,3, Yuan Luo1,2,3, Shupeng Ma1,2,3, Congtan Zhu1,2,3, Liu Zhu4, Xueyi Guo1,2,3,*()   

  1. 1 School of Metallurgy and Environment, Central South University, Changsha 410083, China
    2 Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, China
    3 National & Regional Joint Engineering Research Center of Nonferrous Metal Resources Recycling,Changsha 410083, China
    4 First Rare Materials Co., Ltd, Qingyuan 511500, China
  • Received: Revised: Online: Published:
  • Contact: Xueyi Guo
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(61774169); Qingyuan Innovation and Entrepreneurship Research Team Project(2018001)
Richhtml ( 172 ) PDF ( 3236 ) Cited
Export

EndNote

Ris

BibTeX

Organic-inorganic hybrid perovskite solar cell(PSC) is a photovoltaic device with great potential for development. In the past decade, many studies have been devoted to the preparation of high-performance PSC, and have made amazing progress. Device efficiency has now exceeded 25%. The electron transport layer plays a vital role in extracting and transporting photogenerated electrons, blocking holes, modifying interfaces, adjusting interface energy levels, and reducing charge recombination. Inorganic n-type materials, such as TiO2, ZnO, SnO2 and other metal oxide materials have the advantages of low cost and good stability, which are often used as ETLs in traditional PSC. Organic n-type materials, such as fullerenes and their derivatives, naphthalene diimide polymers and small molecules, have good film-forming properties and strong electron transport capabilities, which are often used as ETLs in inverted PSCs. This review will systematically classify the electron transport materials for perovskite solar cells, outline their preparation methods, introduce their charge transport mechanism and effect in perovskite solar cells. The latest research progress of metal oxide materials, organic molecular materials, composite materials, multilayer electron transport layer materials and their modification methods are systematically discussed. Finally, the practical application and development prospects of the electron transport layer materials towards high-performance PSC are prospected. In summary, this review helps to better understand the preparation and mechanism of various electron transport layer materials related to perovskite solar cells, and provides strategies for further understanding and preparing high-performance PSCs.

Contents

1 Introduction

2 Charge transport mechanism of perovskite solar cells

2.1 Charge transport mechanism of positive perovskite solar cells

2.2 Charge transport mechanism of inverted perovskite solar cells

2.3 The role of electron transport layer in perovskite solar cells

3 Preparation methods of electron transport layer in perovskite solar cells

3.1 Spin coating

3.2 Chemical bath deposition

3.3 Atomic layer deposition

3.4 Other deposition methods

4 Electron transport materials in positive perovskite solar cells

4.1 TiO2

4.2 ZnO

4.3 SnO2

4.4 Other metal oxides(WOX, Nb2O5, CeOX)

5 Electron transport materials in inverted perovskite solar cells

5.1 Fullerene and its derivatives

5.2 Non-fullerene small organic molecules

5.3 Non-fullerene polymer molecules

6 Conclusion and outlook

Fig. 1 Typical perovskite solar cell structure: (a) mesoporous, (b) traditional plane, (c) inverted plane.
Fig. 2 (a) Typical positive planar heterojunction and (b) typical inverted planar heterojunction perovskite solar cell[10]
Fig. 3 Schematic diagram of electron transport mechanism of (a) positive and (b) inverted perovskite solar cell
Fig. 4 The attenuation mechanism of TiO2device under continuous ultraviolet light irradiation without O2[27].Copyright 2020 Elsevier.
Fig. 5 Preparation methods of electron transport layer: (a) spin coating method, (b) chemical bath deposition method[49]. Copyright 2016 Royal Society of Chemistry, (c) atomic layer deposition method
Fig. 6 (a) Schematic diagram, material energy level arrangement, cross-sectional SEM image, and J-V curves of device with different TiO2 thicknesses synthesized by atomic layer deposition(ALD)[41]. Copyright 2017 Royal Society of Chemistry. (b) Schematic diagram of the growth process of TiO2 nanorod arrays with pulsed laser deposition(PLD), SEM images of TiO2 nanorod deposited on silicon substrates by PLD at room temperature, cross-sectional SEM images of TiO2 nanostructures deposited on ITO glass substrates by PLD at 300 ℃[47]. Copyright 2016 Royal Society of Chemistry.
Fig. 7 (a) Schematic of device structure and energy level arrangement based on TiO2/ZnO/C60 electron transport trilayer planar PSC, J-V curves of PSCs based on four compound ETLs and the optimal PSC(The inset shows the maximum power point tracking for 10 min resulting in a stabilized PCE of 18.12% at 0.892 V)[59].Copyright 2018 American Chemical Society; (b) The device structure based on Mg doped TiO2 device, Conductivity measurement results of the films with different concentration of Mg treatment(The inset depicts the sample structure for this measurement), Nyquist plots at 700 mV and J-V curves[63].Copyright 2016 Royal Society of Chemistry.
Fig. 8 (a) Device structure with c-ZnO thin film, combustion synthesis schematic diagram, material energy level arrangement, and J-V curve of devices[69].Copyright 2019 John Wiley and Sons; (b) Device structure with ZnO nanowire array, J-V curve, and cross-sectional SEM image of PSC, cross-sectional SEM image of ZnO NW grown at 75 min[72].Copyright 2016 MDPI.
Fig. 9 (a) Schematics of the growth of perovskite deposited on PC61BM-coated ZnO and PEI-coated ZnO during thermal annealing, J-V curves of perovskite solar cell based on PC61BM-coated and PEI-coated ZnO, SEM images and grain size distribution of perovskite film deposited on PEI-coated ZnO without thermal annealing and with thermal annealing at 100 ℃ for 1 hour[76]. Copyright 2015 American Chemical Society; (b) Energy level arrangement of device based on ZnO and different element-doped ZnO, cross-sectional SEM image, J-V curve, and stability test of devices based on K-ZnO(Keep unpackaged devices in dark and ambient atmosphere, relative humidity is 40%~50%, temperature is 25±3 ℃)[79]. Copyright 2018 American Chemical Society.
Fig. 10 (a)SEM images and J-V curves(the inset is the maximum power point(MPP) tracking ) are presented for SnO2 layers deposited by atomic layer deposition and spin coating and chemical bath deposition(Scale bars are 200 nm)[49]. Copyright 2016 Royal Society of Chemistry;(b) Device structure, energy level arrangement, cross-sectional SEM images and J-V curve of the device based on the SnO2 electron transport layer prepared by spin coating method[89]. Copyright 2015 American Chemical Society
Fig. 11 (a) Cross-sectional SEM image of PSCs with GQD modified SnO2, schematic diagram of hot electron transfer from GQD to SnO2 under illumination, J-V curve of devices based on SnO2 and SnO2: GQD, and stability test results[98]. Copyright 2017 American Chemical Society; (b)Cross-sectional SEM image of a device based on Mg-doped SnO2, a schematic diagram of material energy level in device, J-V curves of device with different Mg-doped concentrations, and Steady-state efficiencies of the PSCs with SnO2 and Mg-SnO2[100]. Copyright 2016 Royal Society of Chemistry
Table 1 Performance parameters of perovskite solar cells with different metal oxide electron transport materials
ETL Material regulation Preparation Size JSC/(mA·cm-2) VOC/V FF PCE/% Stability ref
TiO2 Different Nanoparticles Atomic layer deposition 200 nm 20.81 1.03 0.70 15.03 200 h/96% 41
morphology Magnetron sputtering 125 nm 24.19 1.05 0.68 17.25 - 43
of TiO2 Spin coating 40 nm 20.97 0.97 0.67 13.66 - 37
Electron beam evaporation 20 nm 21.80 1.07 0.77 18.10 - 46
Spin coating 150 nm 23.64 1.06 0.72 18.03 - 51
Spin coating 150 nm 22.89 1.09 0.75 18.72 - 51
Spin coating 100 nm 18.54 0.94 0.63 11.00 - 52
Nanorods Pulsed laser deposition 150 nm 20.10 1.01 0.69 14.10 - 47
Solvothermal growth 180 nm 22.92 1.04 0.76 18.22 16 d/92% 120
hydrothermal growth 800 nm 19.70 1.10 0.76 16.57 - 121
Nanowies hydrothermal growth 120 nm 21.70 1.08 0.78 18.30 200 h/90% 53
Nanotubes Electrochemical anodization 9.4 μm 8.27 0.75 0.59 3.64 - 54
Nanosheets Hydrothermal + spin coating 200 nm 18.20 0.80 0.60 8.70 - 122
3D nanoflowers Chemical bath deposition 300 nm 22.00 0.99 0.72 15.71 - 55
Interfacial modification and element
doping of
TiO2
Interface modification TiCl4 modification + spin
coating
90 nm 21.70 1.17 0.79 20.10 90 d/96% 56
SAM modification + spin
coating
- 23.15 1.06 0.77 18.90 - 57
GQD modification + spin
coating
- 24.92 1.08 0.76 20.45 - 58
C60/ZnO modification + spin coating 40 nm 22.06 1.07 0.79 18.63 14 d/80% 59
Element doping Nb doping + chemical bath deposition 40 nm 22.86 1.10 0.77 19.23 1200 h/90% 60
Mg doping + spin coating 30 nm 22.56 1.10 0.77 19.08 - 63
Zn doping + chemical bath deposition 70 nm 21.83 1.10 0.73 17.60 33 d/91% 123
Li doping + spray pyrolysis 50 nm 23.26 1.08 0.68 17.06 - 64
Ag doping + screen printing 140 nm 22.80 1.03 0.75 17.70 - 124
TiO2 prepared at low
temperature
Nanoparticles Reactive ion etching 200 nm 21.11 1.07 0.73 17.29 - 65
Nanoparticles Sol-gel + spin coating 50 nm 20.40 1.01 0.77 15.80 - 66
Nanoparticles SnO2 modification + chemical bath deposition 60 nm 22.52 1.10 0.76 18.85 - 67
ZnO Differentmor-phology of
ZnO
Nanoparticles Spray pyrolysis 50 nm 17.90 1.08 0.66 12.70 - 68
Atomic layer deposition 30 nm 20.40 0.98 0.66 13.10 - 39
Spin coating 40 nm 21.10 1.07 0.72 16.10 800 h/36% 79
Combustion synthesis + spin coating 30 nm 24.67 1.08 0.75 19.84 700 h/>90% 69
Frequency(RF) magnetron
sputtering
40 nm 21.80 1.00 0.73 15.90 - 125
Solvothermal + spin coating 350 nm 23.26 1.06 0.64 15.92 7 d/>95% 70
Nanorods hydrothermal growth 150 nm 21.43 0.84 0.57 10.34 - 71
Electrospinning 440 nm 22.00 0.99 0.68 14.81 - 83
hydrothermal growth 300 nm 21.33 0.81 0.60 10.37 - 84
Nanowires hydrothermal growth 600 nm 21.50 0.67 0.62 9.06 - 72
3D Nanowalls hydrothermal growth 2 μm 7.75 0.77 0.43 2.56 - 73
ETL Material regulation Preparation Size JSC/(mA·cm-2) VOC/V FF PCE/% Stability ref
Interface malificution and element
doping of ZnO
Interface modi-
fication
Al2O3 modification +
hydrothermal growth
910 nm 22.42 1.02 0.71 16.08 - 75
PCBM modification + sol-gel + spin coating 60 nm 19.10 1.10 0.59 12.30 - 77
Element doping K doping + spin coating 40 nm 22.95 1.13 0.77 19.91 800 h/91% 79
In doping + electrospinning 440 nm 23.00 1.00 0.70 16.10 - 83
Ni doping + hydrothermal growth 300 nm 23.18 0.81 0.68 12.77 - 84
ZnO prepared at low
temperature
Nanoparticles Spin coating 25 nm 13.40 1.03 0.74 10.20 - 85
Nanoparticles Spin coating 130 nm 21.92 0.90 0.63 12.34 - 86
Nanoparticles PEIE modification + sol-gel + spin coating - 20.90 0.97 0.59 11.90 - 87
SnO2 Different
morphology
of SnO2
Nanoparticles Atomic layer deposition 15 nm 21.30 1.14 0.74 18.40 - 88
Atomic layer deposition 15 nm 22.10 1.08 0.75 17.80 - 126
Spin coating 60 nm 23.27 1.11 0.67 17.21 - 89
Spin coating + chemical bath deposition 30 nm 22.37 1.18 0.77 20.78 90 d/>20% 49
Chemical bath deposition 20 nm 21.30 1.05 0.66 14.80 - 127
Spin coating 40 nm 21.98 1.08 0.64 15.29 - 99
Spin coating 40 nm 23.20 1.08 0.61 15.31 - 101
Chemical bath deposition 30 nm 21.43 1.14 0.75 19.69 - 107
Spin coating 25 nm 24.31 1.07 0.77 19.90 40 d/100% 90
Spin coating 200 nm 17.39 0.70 0.53 6.50 - 91
Hydrothermal + spin coating 30 nm 23.71 1.08 0.71 18.60 - 128
Hydrothermal + spin coating 30 nm 23.05 1.13 0.80 20.79 - 129
Nanorods Hydrothermal growth 160 nm 23.10 1.00 0.66 15.46 - 92
Solvothermal + spin coating 60 nm 22.44 1.07 0.75 18.08 - 103
Nanotubes In-situ template self-etching 900 nm 18.38 0.94 0.71 12.26 25 d/90% 93
Nanosheets Electrospray 130 nm 19.90 1.04 0.69 14.27 94
Interface modification and element doping of
SnO2
Interface modi-fication KCl modification + spin coating 60 nm 23.10 1.13 0.79 20.50 30 d/90% 96
UV-O3 treatment + spin coating 50 nm 21.95 1.07 0.69 16.21 - 130
SAM modification + spin coating 40 nm 22.03 1.10 0.77 18.77 - 97
GQD modification + spin coating 40 nm 23.05 1.13 0.78 20.31 90 d/95% 98
Element doping Li doping + spin coating 40 nm 23.27 1.11 0.71 18.20 - 99
Zn doping + spin coating 40 nm 23.40 1.10 0.69 17.78 1200 h/100% 101
Nb doping + chemical bath deposition 30 nm 22.77 1.16 0.75 20.47 - 107
La doping + spin coating 50 nm 21.77 1.09 0.72 17.08 10 d/74% 105
Y doping + solvothermal + spin coating 60 nm 23.56 1.13 0.78 20.71 - 103
RCQ doping + spin coating 20 nm 24.10 1.14 0.83 22.77 1000 h/95% 109
SnO2 pre-
pared at low temperature
Nanoparticles Spin coating + hydrothermal treatment 20 nm 21.35 1.11 0.77 18.09 30 d/92% 110
Nanoparticles Sol-gel + spin coating 40 nm 21.80 1.13 0.73 18.00 14 d/87% 111
Nanoparticles CPTA modification + spin coating 32 nm 22.39 1.08 0.75 18.36 46 d/87% 112
WOx Nanoparticles Vacuum thermal evaporation 30 nm 22.15 0.95 0.75 15.85 30 d/80% 114
Nb2O5 Nanoparticles RF magnetron sputtering 85 nm 22.90 1.04 0.72 17.10 - 115
Nanoparticles Electron beam evaporation 60 nm 24.69 1.06 0.71 18.59 - 116
CeOx Nanoparticles Spin coating 60 nm 21.93 1.04 0.63 14.32 - 118
Nanoparticles Spin coating 60 nm 20.43 1.05 0.80 17.10 200 h/>90% 119
Fig. 12 Chemical molecular structure of fullerene and its derivatives
Fig. 13 (a)Energy level arrangement and J-V curve of a non-fullerene-based small molecule(TPE-PDI4) in device(the inset is the molecular structure of TPE-PDI4)[150].Copyright 2018 Royal Society of Chemistry; (b)Molecular structure, device structure and J-V curve of Non-fullerene small molecule NDI-ID[152]. Copyright 2018 John Wiley and Sons.
Fig. 14 Chemical molecular structure of non-fullerene polymer molecules[155,156]. Copyright 2018 John Wiley and Sons, Copyright 2019 American Chemical Society.
Table 2 Performance parameters of inverted perovskite solar cells with different organic electron transport materials
Material ETL Preparation Size JSC/(mA·cm-2) VOC/V FF PCE/% Stability ref
Fullerene and its
derivatives
C60 Spin coating 50 nm 17.78 0.95 0.55 9.32 - 133
Vapor deposition 1 nm 22.30 1.08 0.76 18.20 - 134
MAI doping + SAM
modification + spin coating
20 nm 22.60 1.07 0.81 19.50 30 d/90% 145
N-PDBI doping + spin
coating
- 23.00 1.06 0.75 18.30 650 h/80% 146
C70 Spin coating 50 nm 17.43 0.94 0.62 10.18 - 133
C60/C70 Spin coating 50 nm 21.01 0.95 0.71 14.04 - 133
PCBM Spin coating - 20.50 1.08 0.63 13.90 - 136
Spin coating 55 nm 20.70 0.87 0.78 14.10 - 157
Spin coating 50 nm 20.97 0.93 0.70 13.74 - 133
Spin coating 80 nm 21.00 0.92 0.67 13.00 139
Fluoride treatment + spin coating - 21.78 1.00 0.73 16.17 550 h/80% 142
DTT2FPDI modification + spin coating 15 nm 23.90 1.10 0.74 19.40 - 143
N2200 modification + spin coating 20.69 0.99 0.80 16.26 30 d/59.8% 144
2,6-Py doping + spin coating - 23.14 1.09 0.77 19.41 200 h/80% 147
CQDs doping + spin coating - 22.30 0.97 0.80 18.10 20 d/70% 148
C70-DPM-OE Spin coating 80 nm 21.90 0.97 0.75 16.00 - 139
Non-fullerene small organic molecules TPE-PDI4 Spin coating 37 nm 21.68 1.01 0.74 16.29 200 h/72% 150
PDIN Spin coating 30 nm 20.34 1.03 0.73 15.28 450 h/82% 151
NDI-ID Spin coating 40 nm 23.00 1.10 0.80 20.20 500 h/90% 152
TPE-DPP4 Spin coating 4 nm 22.03 1.05 0.80 18.44 600 h/>80% 153
TPE-ISO4 Spin coating 4 nm 21.86 1.04 0.80 18.19 600 h/<80% 153
Non-fullerene polymer molecules P(NDI2DT-TTCN) Spin coating 70 nm 22.00 1.00 0.77 17.00 100 h/89% 155
PN-F25% Spin coating 80 nm 22.10 1.10 0.72 17.50 300 h/73% 156
PN-F50% Spin coating 80 nm 21.60 1.08 0.68 15.90 300/78% 156
[1]
CaliÓ L, Momblona C, Gil-Escrig L, Kazim S, Sessolo M, Sastre-Santos Á, Bolink H J, Ahmad S. Sol. Energy Mater. Sol. Cells, 2017, 163:237.
[2]
Liu P, Xu B, Hua Y, Cheng M, Aitola K, Sveinbjörnsson K, Zhang J B, Boschloo G, Sun L C, Kloo L. J. Power Sources, 2017, 344:11.
[3]
Zheng S Z, Wang G P, Liu T F, Lou L Y, Xiao S, Yang S H. Sci. China Chem., 2019, 62:800.
[4]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131:6050.

pmid: 19366264
[5]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2:591.
[6]
Bi D Q, Tress W, Dar M I, Gao P, Luo J S, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena J P, Decoppet J D, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Hagfeldt A. Sci. Adv., 2016, 2:e1501170.
[7]
Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B. Nat. Photonics, 2019, 13:460.
[8]
National Renewable Energy Laboratory. Best Research-CellEfficiencies , 2019.
[9]
Yang Y, Chen T, Pan D Q, Gao J, Zhu C T, Lin F Y, Zhou C H, Tai Q D, Xiao S, Yuan Y B, Dai Q L, Han Y B, Xie H P, Guo X Y. Nano Energy, 2020, 67:104246.
[10]
Chan S H, Chang Y H, Wu M C. Front. Mater., 2019, 6:57.
[11]
Zhou Y, Li X, Lin H. Small, 2020, 16:1902579.
[12]
Guo H, Chen H Y, Zhang H Y, Huang X, Yang J, Wang B J, Li Y L, Wang L P, Niu X B, Wang Z M. Nano Energy, 2019, 59:1.
[13]
Myung C W, Lee G, Kim K S. J. Mater. Chem. A, 2018, 6:23071.
[14]
Shin S S, Yeom E J, Yang W S, Hur S, Kim M G, Im J, Seo J, Noh J H, Seok S I. Science, 2017, 356:167.
[15]
Fang Z M, Meng X Y, Zuo C T, Li D, Xiao Z, Yi C Y, Wang M K, Jin Z W, Yang S F, Ding L M. Sci. Bull., 2019, 64:1743.
[16]
Yan L, Xue Q F, Liu M Y, Zhu Z L, Tian J J, Li Z C, Chen Z, Chen Z M, Yan H, Yip H L, Cao Y. Adv. Mater., 2018, 30:1802509.
[17]
Wang D, Wu C C, Luo W, Guo X, Qu B, Xiao L X, Chen Z J. ACS Appl. Energy Mater., 2018, 1:2215.
[18]
Wang Z K, Liao L S. Adv. Opt. Mater., 2018, 6(17):1800276.
[19]
Cheng M, Zuo C T, Wu Y Z, Li Z, Xu B M, Hua Y, Ding L M. Sci. Bull., 2020, 65:1237.

doi: 10.1016/j.scib.2020.04.021
[20]
Zhang P, Wu J, Zhang T, Wang Y F, Liu D T, Chen H, Ji L, Liu C H, Ahmad W, Chen Z D, Li S B. Adv. Mater., 2018, 30(3):1703737.
[21]
Yang J L, Zuo C T, Peng Y, Yang Y, Yang X D, Ding L M. Sci. Bull., 2020, 65:872.
[22]
Cheng Y H, Xie C C, Liu X X, Zhu G Y, Li H W, Venkataraj S, Tan Z K, Ding L M, Aberle A G, Lin F. Sci. Bull., 2020, 65:607.
[23]
Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M. ACS Sustainable Chem. Eng., 2019, 7:4586.
[24]
Mao G P, Wang W, Shao S, Sun X J, Chen S A, Li M H, Li H M. Rare Met., 2018, 37:95.

doi: 10.1007/s12598-017-0951-4
[25]
Ting H K, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J. Acta Physica. Sinica, 2015, 64(3):11.
丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 物理学报, 2015, 64(3):11.
[26]
Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J. Nat. Commun., 2013, 4:2885.
[27]
Ji J, Liu X, Jiang H R, Duan M J, Liu B, Huang H, Wei D, Li Y F, Li M C. iScience, 2020, 23:101013.
[28]
Singh R, Ryu I, Yadav H, Park J, Jo J W, Yim S, Lee J J. Sol. Energy, 2019, 185:307.
[29]
Zhao Y H, Zhang K C, Wang Z W, Huang P, Zhu K, Li Z D, Li D H, Yuan L G, Zhou Y, Song B. ACS Appl. Mater. Interfaces, 2017, 9:26234.
[30]
Khorasani A, Marandi M, Iraji zad A, Taghavinia N. Electrochimica Acta, 2019, 297:1071.
[31]
Rong Y G, Ming Y, Ji W X, Li D, Mei A Y, Hu Y, Han H W. J. Phys. Chem. Lett., 2018, 9:2707.
[32]
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H. Science, 2014, 345:295.

pmid: 25035487
[33]
Xu C, Zhang Z L, Hu Y, Sheng Y S, Jiang P, Han H W, Zhang J. J. Energy Chem., 2018, 27:764.
[34]
Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z. Nat. Commun., 2018, 9:4609.
[35]
Cao J, Wu B H, Chen R H, Wu Y, Hui Y, Mao B W, Zheng N F. Adv. Mater., 2018, 30:1705596.
[36]
Jiang Q, Zhang X W, You J B. Small, 2018, 14:1801154.
[37]
Xia G J, Liu H L, Zhao X M, Dong X F, Wang S R, Li X G. Chem. Eng. J., 2019, 370:1111.
[38]
Kim I S, Haasch R T, Cao D H, Farha O K, Hupp J T, Kanatzidis M G, Martinson A B F. ACS Appl. Mater. Interfaces, 2016, 8:24310.

pmid: 27598453
[39]
Dong X, Hu H W, Lin B C, Ding J N, Yuan N Y. Chem. Commun., 2014, 50:14405.
[40]
Wang C L, Zhao D W, Grice C R, Liao W Q, Yu Y, Cimaroli A, Shrestha N, Roland P J, Chen J, Yu Z H, Liu P, Cheng N, Ellingson R J, Zhao X Z, Yan Y F. J. Mater. Chem. A, 2016, 4:12080.
[41]
Shalan A E, Narra S, Oshikiri T, Ueno K, Shi X, Wu H P, Elshanawany M M, Wei-Guang Diau E, Misawa H. Sustain. Energy Fuels, 2017, 1:1533.
[42]
Su T S, Hsieh T Y, Hong C Y, Wei T C. Sci. Rep., 2015, 5:16098.
[43]
Huang A B, Lei L, Zhu J T, Yu Y, Liu Y, Yang S W, Bao S H, Cao X, Jin P. ACS Appl. Mater. Interfaces, 2017, 9:2016.
[44]
Mahmood K, Swain B S, Jung H S. Nanoscale, 2014, 6:9127.

pmid: 24975490
[45]
Kumari N, Patel S R, Gohel J V. Opt. Quantum Electron., 2018, 50:180.
[46]
Schulze P S C, Bett A J, Winkler K, Hinsch A, Lee S, Mastroianni S, Mundt L E, Mundus M, Würfel U, Glunz S W, Hermle M, Goldschmidt J C. ACS Appl. Mater. Interfaces, 2017, 9:30567.
[47]
Yang B, Mahjouri-Samani M, Rouleau C M, Geohegan D B, Xiao K. Phys. Chem. Chem. Phys., 2016, 18:27067.
[48]
Mohamad Noh M F, Arzaee N A, Safaei J, Mohamed N A, Kim H P, Mohd Yusoff A R, Jang J, Mat Teridi M A. J. Alloy. Compd., 2019, 773:997.
[49]
Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Grätzel M, Hagfeldt A, Correa-Baena J P. Energy Environ. Sci., 2016, 9:3128.
[50]
Wu M C, Chan S H, Lee K M, Chen S H, Jao M H, Chen Y F, Su W F. J. Mater. Chem. A, 2018, 6:16920.
[51]
Lee D G, Kim M C, Kim B J, Kim D H, Lee S M, Choi M, Lee S, Jung H S. Appl. Surf. Sci., 2019, 477:131.
[52]
Chen P, Wang Y L, Wang M Q, Zhang X T, Wang L L, Liu Y C. J. Energy Chem., 2015, 24:717.
[53]
Wu W Q, Chen D H, Cheng Y B, Caruso R A. ACS Appl. Mater. Interfaces, 2020, 12:11450.
[54]
Tenkyong T, Praveen B, Pugazhendhi K, Sharmila D J, Shyla J M. CrystEngComm, 2019, 21:4798.
[55]
Chen X, Tang L J, Yang S, Hou Y, Yang H G. J. Mater. Chem. A, 2016, 4:6521.
[56]
Tan H R, Jain A, Voznyy O, Lan X Z, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H. Science, 2017, 355:722.

pmid: 28154242
[57]
Han F, Hao G M, Wan Z Q, Luo J S, Xia J X, Jia C Y. Electrochimica Acta, 2019, 296:75.
[58]
Shen D L, Zhang W F, Xie F Y, Li Y F, Abate A, Wei M D. J. Power Sources, 2018, 402:320.
[59]
Xu J, Fang M D, Chen J, Zhang B, Yao J X, Dai S Y. ACS Appl. Mater. Interfaces, 2018, 10:20578.
[60]
Yin G N, Ma J X, Jiang H, Li J, Yang D, Gao F, Zeng J H, Liu Z K, Liu S F. ACS Appl. Mater. Interfaces, 2017, 9:10752.

doi: 10.1021/acsami.7b01063 pmid: 28291331
[61]
Zhang X, Bao Z Q, Tao X Y, Sun H X, Chen W, Zhou X F. RSC Adv., 2014, 4:64001.

doi: 10.1039/C4RA11155A
[62]
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345:542.

pmid: 25082698
[63]
Zhang H Y, Shi J J, Xu X, Zhu L F, Luo Y H, Li D M, Meng Q B. J. Mater. Chem. A, 2016, 4:15383.
[64]
Liu D T, Li S B, Zhang P, Wang Y F, Zhang R, Sarvari H, Wang F, Wu J, Wang Z M, Chen Z D. Nano Energy, 2017, 31:462.

doi: 10.1016/j.nanoen.2016.11.028
[65]
Kim B J, Kwon S L, Kim M C, Jin Y U, Lee D G, Jeon J B, Yun Y, Choi M, Boschloo G, Lee S, Jung H S. ACS Appl. Mater. Interfaces, 2020, 12:7125.

pmid: 31958005
[66]
You M S, Heo J H, Park J K, Moon S H, Park B J, Im S H. Sol. Energy Mater. Sol. Cells, 2019, 194:1.
[67]
Xie H X, Yin X T, Liu J, Guo Y X, Chen P, Que W X, Wang G F, Gao B W. Appl. Surf. Sci., 2019, 464:700.
[68]
Ngo T T, Barea E M, Tena-Zaera R, Mora-SerÓ I. ACS Appl. Energy Mater., 2018, 1:4057.

doi: 10.1021/acsaem.8b00733
[69]
Zheng D, Wang G, Huang W, Wang B H, Ke W J, Logsdon J L, Wang H Y, Wang Z, Zhu W G, Yu J S, Wasielewski M R, Kanatzidis M G, Marks T J, Facchetti A. Adv. Funct. Mater., 2019, 29:1900265.
[70]
Zhang R, Fei C B, Li B, Fu H Y, Tian J J, Cao G Z. ACS Appl. Mater. Interfaces, 2017, 9:9785.

doi: 10.1021/acsami.7b00726 pmid: 28244306
[71]
Li W S, Lin T R, Yang H T, Li Y R, Chuang K C, Li Y S, Luo J D, Hus C S, Cheng H C. Jpn. J. Appl. Phys., 2018, 57:06KB03.
[72]
Dymshits A, Iagher L, Etgar L. Materials, 2016, 9:60.
[73]
Islavath N, Das D, Joshi S V, Ramasamy E. Mater. Des., 2017, 116:219.
[74]
Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M. Sci. Bull., 2019, 64:507.
[75]
Li S B, Zhang P, Wang Y F, Sarvari H, Liu D T, Wu J, Yang Y J, Wang Z M, Chen Z D. Nano Res., 2017, 10:1092.
[76]
Cheng Y H, Yang Q D, Xiao J Y, Xue Q F, Li H W, Guan Z Q, Yip H L, Tsang S W. ACS Appl. Mater. Interfaces, 2015, 7:19986.

doi: 10.1021/acsami.5b04695 pmid: 26280249
[77]
Zhang J Q, Tan C H, Du T, Morbidoni M, Lin C T, Xu S D, Durrant J R, McLachlan M A. Sci. Bull., 2018, 63:343.
[78]
Mahmud M A, Elumalai N K, Upama M B, Wang D, Soufiani A M, Wright M, Xu C, Haque F, Uddin A. ACS Appl. Mater. Interfaces, 2017, 9:33841.

pmid: 28910073
[79]
Azmi R, Hwang S, Yin W P, Kim T W, Ahn T K, Jang S Y. ACS Energy Lett., 2018, 3:1241.
[80]
Baktash A, Amiri O, Sasani A. Superlattices Microstruct., 2016, 93:128.
[81]
Bhoomanee C, Ruankhama P, Choopun S, Prathan A, Wongratanaphisan D. Mater. Today: Proc., 2019, 17:1259.
[82]
Su T Y, Zheng Y H, Ma Z W, Cheng L, Xu X L, Zhang F P, Yu G, Sheng Z G. ChemistrySelect, 2018, 3:363.
[83]
Mahmood K, Khalid A, Ahmad S W, Mehran M T. Surf. Coat. Technol., 2018, 352:231.
[84]
Chen P Y, Yang S H. Opt. Mater. Express, 2016, 6:3651.
[85]
Liu D Y, Kelly T L. Nat. Photonics, 2014, 8:133.
[86]
Jung K, Lee J, Kim J, Chae W S, Lee M J. J. Power Sources, 2016, 324:142.
[87]
Lim J W, Wang H, Choi C H, Quan L N, Chung K, Park W T, Noh Y Y, Kim D H. J. Power Sources, 2019, 438:226956.
[88]
Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M, Hagfeldt A. Energy Environ. Sci., 2015, 8:2928.
[89]
Ke W J, Fang G J, Wan J W, Tao H, Liu Q, Xiong L B, Qin P L, Wang J, Lei H W, Yang G, Qin M C, Zhao X Z, Yan Y F. Nat. Commun., 2015, 6:6700.

doi: 10.1038/ncomms7700 pmid: 25798925
[90]
Jiang Q, Zhang L Q, Wang H L, Yang X L, Meng J H, Liu H, Yin Z G, Wu J L, Zhang X W, You J B. Nat. Energy, 2017, 2:16177.
[91]
Li Y, Zhu J, Huang Y, Liu F, Lv M, Chen S H, Hu L H, Tang J W, Yao J X, Dai S Y. RSC Adv., 2015, 5:28424.
[92]
Zhang X K, Rui Y C, Wang Y Q, Xu J L, Wang H Z, Zhang Q H, Müller-Buschbaum P. J. Power Sources, 2018, 402:460.
[93]
Gao C M, Yuan S, Cao B Q, Yu J H. Chem. Eng. J., 2017, 325:378.
[94]
Mahmood K, Khalid A, Nawaz F, Mehran M T. J. Colloid Interface Sci., 2018, 532:387.

doi: 10.1016/j.jcis.2018.08.009 pmid: 30096532
[95]
Chen Y C, Meng Q, Zhang L R, Han C B, Gao H L, Zhang Y Z, Yan H. J. Energy Chem., 2019, 35:144.
[96]
Liu X, Zhang Y F, Shi L, Liu Z H, Huang J L, Yun J S, Zeng Y Y, Pu A B, Sun K W, Hameiri Z, Stride J A, Seidel J, Green M A, Hao X J. Adv. Energy Mater., 2018, 8:1800138.
[97]
Zuo L J, Chen Q, de Marco N, Hsieh Y T, Chen H J, Sun P Y, Chang S Y, Zhao H X, Dong S Q, Yang Y. Nano Lett., 2017, 17:269.
[98]
Xie J S, Huang K, Yu X G, Yang Z R, Xiao K, Qiang Y P, Zhu X D, Xu L B, Wang P, Cui C, Yang D R. ACS Nano, 2017, 11:9176.

doi: 10.1021/acsnano.7b04070 pmid: 28858471
[99]
Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J. Nano Energy, 2016, 26:208.
[100]
Xiong L B, Qin M C, Yang G, Guo Y X, Lei H W, Liu Q, Ke W J, Tao H, Qin P L, Li S Z, Yu H Q, Fang G J. J. Mater. Chem. A, 2016, 4:8374.
[101]
Ye H B, Liu Z Y, Liu X Y, Sun B, Tan X H, Tu Y X, Shi T L, Tang Z R, Liao G L. Appl. Surf. Sci., 2019, 478:417.
[102]
Chen H, Liu D T, Wang Y F, Wang C Y, Zhang T, Zhang P, Sarvari H, Chen Z, Li S B. Nanoscale Res. Lett., 2017, 12:238.
[103]
Song J, Zhang W N, Wang D, Deng K M, Wu J H, Lan Z. Sol. Energy, 2019, 185:508.
[104]
Ma Z, Zhou W Y, Xiao Z, Zhang H, Li Z Y, Zhuang J, Peng C T, Huang Y L. Org. Electron., 2019, 71:98.
[105]
Xu Z H, Teo S H, Gao L G, Guo Z L, Kamata Y, Hayase S, Ma T L. Org. Electron., 2019, 73:62.
[106]
Bahadur J, Ghahremani A H, Martin B, Druffel T, Sunkara M K, Pal K. Org. Electron., 2019, 67:159.
[107]
Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S H, Seo J, Luo J S, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A, Correa-Baena J P. ACS Energy Lett., 2018, 3:773.
[108]
Bai Y, Fang Y J, Deng Y H, Wang Q, Zhao J J, Zheng X P, Zhang Y, Huang J S. ChemSusChem, 2016, 9:2686.
[109]
Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W. Adv. Mater., 2020, 32:1906374.
[110]
Liu C, Zhang L Z, Zhou X Y, Gao J S, Chen W, Wang X Z, Xu B M. Adv. Funct. Mater., 2019, 29:1807604.
[111]
Chen C, Jiang Y, Guo J L, Wu X Y, Zhang W H, Wu S J, Gao X S, Hu X W, Wang Q M, Zhou G F, Chen Y W, Liu J M, Kempa K, Gao J W. Adv. Funct. Mater., 2019, 29:1900557.
[112]
Zhong M Y, Liang Y Q, Zhang J Q, Wei Z X, Li Q, Xu D S. J. Mater. Chem. A, 2019, 7:6659.
[113]
Wang K, Shi Y T, Dong Q S, Li Y, Wang S F, Yu X F, Wu M Y, Ma T L. J. Phys. Chem. Lett., 2015, 6:755.

pmid: 26262648
[114]
Wang F Y, Zhang Y H, Yang M F, Du J Y, Yang L L, Fan L, Sui Y R, Liu X Y, Yang J H. J. Power Sources, 2019, 440:227157.
[115]
Ling X F, Yuan J Y, Liu D Y, Wang Y J, Zhang Y N, Chen S, Wu H H, Jin F, Wu F P, Shi G Z, Tang X, Zheng J W, Liu S F, Liu Z K, Ma W L. ACS Appl. Mater. Interfaces, 2017, 9:23181.

doi: 10.1021/acsami.7b05113 pmid: 28627165
[116]
Feng J S, Yang Z, Yang D, Ren X D, Zhu X J, Jin Z W, Zi W, Wei Q B, Liu S F. Nano Energy, 2017, 36:1.
[117]
Feng J S, Zhu X J, Yang Z, Zhang X R, Niu J Z, Wang Z Y, Zuo S N, Priya S, Liu S F, Yang D. Adv. Mater., 2018, 30:1801418.
[118]
Wang X, Deng L L, Wang L Y, Dai S M, Xing Z, Zhan X X, Lu X Z, Xie S Y, Huang R B, Zheng L S. J. Mater. Chem. A, 2017, 5:1706.
[119]
Hu T, Xiao S Q, Yang H J, Chen L, Chen Y W. Chem. Commun., 2018, 54:471.
[120]
Li X, Dai S M, Zhu P, Deng L L, Xie S Y, Cui Q, Chen H, Wang N, Lin H. ACS Appl. Mater. Interfaces, 2016, 8:21358.

pmid: 27480286
[121]
Li R, Zhang H Y, Chai R X, Zhang M, Guo M. Ceram. Int., 2019, 45:12353.
[122]
Maitani M M, Satou H, Ohmura A, Tsubaki S, Wada Y J. Jpn. J. Appl. Phys., 2017, 56:08MC17.
[123]
Liu X T, Wu Z H, Zhang Y Q, Tsamis C. Appl. Surf. Sci., 2019, 471:28.
[124]
Chen S H, Chan S H, Lin Y T, Wu M C. Appl. Surf. Sci., 2019, 469:18.
[125]
Tseng Z L, Chiang C H, Wu C G. Sci. Rep., 2015, 5:13211.

doi: 10.1038/srep13211 pmid: 26411577
[126]
Kuang Y H, Zardetto V, van Gils R, Karwal S, Koushik D, Verheijen M A, Black L E, Weijtens C, Veenstra S, Andriessen R, Kessels W M M, Creatore M. ACS Appl. Mater. Interfaces, 2018, 10:30367.

doi: 10.1021/acsami.8b09515 pmid: 30113160
[127]
BarbÉ J, Tietze M L, Neophytou M, Murali B, Alarousu E, Labban A E, Abulikemu M, Yue W, Mohammed O F, McCulloch I, Amassian A, del Gobbo S. ACS Appl. Mater. Interfaces, 2017, 9:11828.

doi: 10.1021/acsami.6b13675 pmid: 28177212
[128]
Liu H R, Chen Z L, Wang H B, Ye F H, Ma J J, Zheng X L, Gui P B, Xiong L B, Wen J, Fang G J. J. Mater. Chem. A, 2019, 7:10636.
[129]
Yang G, Chen C, Yao F, Chen Z L, Zhang Q, Zheng X L, Ma J J, Lei H W, Qin P L, Xiong L B, Ke W J, Li G, Yan Y F, Fang G J. Adv. Mater., 2018, 30:1706023.
[130]
Huang L K, Sun X X, Li C, Xu J, Xu R, Du Y Y, Ni J, Cai H K, Li J, Hu Z Y, Zhang J J. ACS Appl. Mater. Interfaces, 2017, 9:21909.

doi: 10.1021/acsami.7b04392 pmid: 28613825
[131]
Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F. Nano Energy, 2017, 41:84.
[132]
Yan Y L, Gao J M, Meng F N, Wang N, Gao L G, Ma T L. Progress in Chemistry, 2019, 31(7):1031.
闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马延丽. 化学进展, 2019, 31(7):1031.
[133]
Dai S M, Tian H R, Zhang M L, Xing Z, Wang L Y, Wang X, Wang T, Deng L L, Xie S Y, Huang R B, Zheng L S. J. Power Sources, 2017, 339:27.
[134]
Liu D Y, Wang Q, Traverse C J, Yang C C, Young M, Kuttipillai P S, Lunt S Y, Hamann T W, Lunt R R. ACS Nano, 2018, 12:876.
[135]
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. Science, 2015, 347:522.

doi: 10.1126/science.aaa0472 pmid: 25635093
[136]
Upama M B, Elumalai N K, Mahmud M A, Wang D, Haque F, Gonçales V R, Gooding J J, Wright M, Xu C, Uddin A. Org. Electron., 2017, 50:279.
[137]
Said A A, Xie J, Zhang Q C. Small, 2019, 15:1900854.
[138]
Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R. Science, 2018, 360:1442.

doi: 10.1126/science.aap9282 pmid: 29954975
[139]
Xing Y, Sun C, Yip H L, Bazan G C, Huang F, Cao Y. Nano Energy, 2016, 26:7.
[140]
Chen R, Wang W, Bu T L, Ku Z L, Zhong J, Peng Y, Xiao S Q, You W, Huang F Z, Cheng Y B, Fu Z Y. Acta Phys.-Chim. Sin., 2019, 35(4):401.
[141]
Chen C, Wu C, Ding X D, Tian Y, Zheng M M, Cheng M, Xu H, Jin Z W, Ding L M. Nano Energy., 2020, 71:6.
[142]
Chang C Y, Wang C P, Raja R, Wang L, Tsao C S, Su W F. J. Mater. Chem. A, 2018, 6:4179.
[143]
Wang H L, Yang F, Xiang Y R, Ye S, Peng X, Song J, Qu J L, Wong W Y. J. Mater. Chem. A, 2019, 7:24191.
[144]
Ren C X, He Y, Li S Q, Sun Q J, Liu Y F, Wu Y K, Cui Y X, Li Z F, Wang H, Hao Y Y, Wu Y C. Org. Electron., 2019, 70:292.
[145]
Bai Y, Dong Q F, Shao Y C, Deng Y H, Wang Q, Shen L, Wang D, Wei W, Huang J S. Nat. Commun., 2016, 7:12806.

doi: 10.1038/ncomms12806 pmid: 27703136
[146]
Wang Z P, McMeekin D P, Sakai N, van Reenen S, Wojciechowski K, Patel J B, Johnston M B, Snaith H J. Adv. Mater., 2017, 29:1604186.
[147]
Jiang Y Y, Li J, Xiong S X, Jiang F Y, Liu T F, Qin F, Hu L, Zhou Y H. J. Mater. Chem. A, 2017, 5:17632.
[148]
Zhu X M, Sun J, Yuan S, Li N, Qiu Z W, Jia J B, Liu Y N, Dong J, Lv P, Cao B Q. New J. Chem., 2019, 43:7130.
[149]
Wan L, Li X D, Song C J, He Y, Zhang W J. Sol. Energy Mater. Sol. Cells, 2019, 191:437.
[150]
Jiang K, Wu F, Yu H, Yao Y Q, Zhang G Y, Zhu L N, Yan H. J. Mater. Chem. A, 2018, 6:16868.
[151]
Miao J S, Hu Z, Liu M, Umair Ali M, Goto O, Lu W, Yang T B, Liang Y Y, Meng H. Org. Electron., 2018, 52:200.
[152]
Jung S K, Heo J H, Lee D W, Lee S C, Lee S H, Yoon W, Yun H, Im S H, Kim J H, Kwon O P. Adv. Funct. Mater., 2018, 28:1870129.
[153]
Wang R, Qiao J H, He B Z, Tang X S, Wu F, Zhu L N. J. Mater. Chem. C, 2018, 6:8429.
[154]
Zhang M Y, Zhan X W. Adv. Energy Mater., 2019, 9:1900860.
[155]
Kim H I, Kim M J, Choi K, Lim C, Kim Y H, Kwon S K, Park T. Adv. Energy Mater., 2018, 8:1702872.
[156]
Tian L, Hu Z C, Liu X C, Liu Z X, Guo P P, Xu B M, Xue Q F, Yip H L, Huang F, Cao Y. ACS Appl. Mater. Interfaces, 2019, 11:5289.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[4] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[5] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[6] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[7] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[8] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[9] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[10] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[11] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.
[12] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[13] Xiaoyin Li, Chuancong Zhou, Yinghua Wang, Feifei Ding, Huawei Zhou, Xianxi Zhang. Sn-Based Light-Absorbing Materials for Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(6): 882-893.
[14] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[15] Ze Feng, Dan Sun, Yougen Tang, Haiyan Wang. Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Progress in Chemistry, 2019, 31(2/3): 442-454.