中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2128-2137 DOI: 10.7536/PC200859 Previous Articles   Next Articles

• Review •

Glucose Isomerization into Fructose by Chemocatalytic Route

Yiqiang Liu1, Yimei Qiu1, Xing Tang1,2(), Yong Sun1,2, Xianhai Zeng1,2, Lu Lin1,2   

  1. 1 Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, College of Energy, Xiamen University,Xiamen 361102, China
    2 Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass,Xiamen 361102, China
  • Received: Revised: Online: Published:
  • Contact: Xing Tang
  • Supported by:
    National Key R&D Program of China(2019YFB1503903); Key-Area Research and Development Program of Guangdong Province(2020B0101070001); National Natural Science Foundation of China(21706223); National Natural Science Foundation of China(21506177); Fundamental Research Funds for the Central Universities(20720190014)
Richhtml ( 45 ) PDF ( 1060 ) Cited
Export

EndNote

Ris

BibTeX

The biorefinery based on sugar platform can produce various carbon-based chemicals, materials, and fuels. Compared with glucose and cellulose, a facile conversion of fructose into versatile biomass-based platform molecules such as 5-hydroxymethylfurfural with desirable selectivity can be expected, thus the isomerization of glucose into fructose has become one of the vital reactions for biorefinery. In this review, an in-depth discussion on the reaction mechanism of glucose isomerization by chemocatalytic route is provided, and the recent research progress on glucose isomerization into fructose in the view of isomerization catalysts is comprehensively summarized. Based on the discussion on the catalysts for glucose isomerization and their catalysis, the ongoing research on the chemocatalytic isomerization of glucose into fructose is envisaged.

Contents

1 Introduction

2 Mechanism of glucose isomerization into fructose

2.1 Isomerization mechanism over basic catalysts

2.2 Isomerization mechanism over acidic catalysts

3 Homogeneous catalysts

3.1 Base catalysts

3.2 Acid catalysts

4 Heterogeneous catalysts

4.1 Hydrotalcites

4.2 Metal oxides and insoluble salts

4.3 Zeolites

4.4 Alkaline resins

4.5 Metal organic frameworks

5 Conclusion and outlook

Fig. 1 Mechanism of base catalyzed proton transfer for glucose isomerization into fructose
Fig. 2 Mechanism of hydride transfer for glucose isomerization into fructose.
Table 1 Representative experimental data for glucose isomerization into fructose catalyzed by homogeneous catalysts
Fig. 3 Mechanism of glucose isomerization catalyzed by AlCl3 in water[24]
Table 2 Representative experimental data for glucose isomerization into fructose catalyzed by hydrotalcites
Table 3 Representative experimental data for glucose isomerization into fructose catalyzed by metal oxides and insoluble salts
Table 4 Representative experimental data for glucose isomerization into fructose catalyzed by zeolites
Fig. 4 Partially hydrolyzed Sn center over the surface of Sn-beta[22]
Table 5 Representative experimental data for glucose isomerization into fructose catalyzed by alkaline resins and MOFs
Fig. 5 The conversion of glucose into fructose by two-step strategy(isomerization and hydrolysis) in methanol and water[71]
Fig. 6 Mechanism of glucose isomerization catalyzed by MIL-101
[1]
van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem. Rev., 2013, 113(3): 1499.

doi: 10.1021/cr300182k
[2]
Persson H, Yang W. Fuel, 2019, 252: 200.

doi: 10.1016/j.fuel.2019.04.087
[3]
Güney T, Kantar K. Int. J. Sust. Dev. World., 2020, 1: 6.
[4]
Abelson P H. Science, 1981, 213(4508): 605.

pmid: 17847456
[5]
Torget R W, Kim J S, Lee Y Y. Ind. Eng. Chem. Res., 2000, 39(8): 2817.

doi: 10.1021/ie990915q
[6]
Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H. Appl. Catal. A: Gen., 2005, 295(2): 150.

doi: 10.1016/j.apcata.2005.08.007
[7]
Kei-ichi S, Yoshihisa I, Hitoshi I. Chem. Lett., 2000, 29(1): 22.

doi: 10.1246/cl.2000.22
[8]
Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A. Chem. Eur. J., 2011, 17(5): 1456.

doi: 10.1002/chem.v17.5
[9]
Wang J J, Xu W J, Ren J W, Liu X H, Lu G Z, Wang Y Q. Green Chem., 2011, 13(10): 2678.

doi: 10.1039/c1gc15306d
[10]
Wei J N, Wang T, Liu H, Liu Y Q, Tang X, Sun Y, Zeng X H, Lei T Z, Liu S J, Lin L. J. Catal., 2020, 389: 87.

doi: 10.1016/j.jcat.2020.05.020
[11]
Vuilleumier S. Am. J. Clin. Nutr., 1993, 58(5): 733S.

doi: 10.1093/ajcn/58.5.733S
[12]
Delidovich I, Palkovits R. ChemSusChem, 2016, 9(6): 547.

doi: 10.1002/cssc.201501577 pmid: 26948404
[13]
Buchholz K, Seibel J. Carbohydr. Res., 2008, 343(12): 1966.

doi: 10.1016/j.carres.2008.02.007
[14]
de Bruyn C A L, van Ekenstein W A. Recl. Trav. Chim. Pays-Bas, 1895, 14(7): 203.

doi: 10.1002/recl.18950140703
[15]
Nagorski R W, Richard J P. J. Am. Chem. Soc., 2001, 123(5): 794.

pmid: 11456612
[16]
Wolfrom M L, Lewis W L. J. Am. Chem. Soc., 1928, 50(3): 837.

doi: 10.1021/ja01390a032
[17]
De Wit G, Kieboom A P G, van Bekkum H. Carbohydr. Res., 1979, 74(1): 157.

doi: 10.1016/S0008-6215(00)84773-4
[18]
Román-Leshkov Y, Moliner M, Labinger J A, Davis M E. Angewandte Chemie Int. Ed., 2010, 49(47): 8954.

doi: 10.1002/anie.v49.47
[19]
Yang Q, Sherbahn M, Runge T. ACS Sustainable Chem. Eng., 2016, 4(6): 3526.

doi: 10.1021/acssuschemeng.6b00587
[20]
Yang Q, Zhou S F, Runge T. J. Catal., 2015, 330: 474.

doi: 10.1016/j.jcat.2015.08.008
[21]
Nguyen H, Nikolakis V, Vlachos D G. ACS Catal., 2016, 6(3): 1497.

doi: 10.1021/acscatal.5b02698
[22]
Li Y P, Head-Gordon M, Bell A T. ACS Catal., 2014, 4(5): 1537.

doi: 10.1021/cs401054f
[23]
Choudhary V, Pinar A B, Lobo R F, Vlachos D G, Sandler S I. ChemSusChem, 2013, 6(12): 2369.

doi: 10.1002/cssc.201300328 pmid: 24106178
[24]
Tang J Q, Guo X W, Zhu L F, Hu C W. ACS Catal., 2015, 5(9): 5097.

doi: 10.1021/acscatal.5b01237
[25]
Guo J, Zhu S H, Cen Y L, Qin Z F, Wang J G, Fan W B. Appl. Catal. B: Environ., 2017, 200: 611.

doi: 10.1016/j.apcatb.2016.07.051
[26]
Chen S S, Tsang D C W, Tessonnier J P. Appl. Catal. B: Environ., 2020, 261: 118126.
[27]
de Bruijn J M, Kieboom A P G, van Bekkum H. Recl. Trav. Chim. Pays-Bas, 2010, 106(2): 35.

doi: 10.1002/recl.19871060201
[28]
Mendicino J F. J. Am. Chem. Soc., 1960, 82(18): 4975.

doi: 10.1021/ja01503a055
[29]
Despax S, Estrine B, Hoffmann N, Le Bras J, Marinkovic S, Muzart J. Catal. Commun., 2013, 39: 35.

doi: 10.1016/j.catcom.2013.05.004
[30]
Liu C, Carraher J M, Swedberg J L, Herndon C R, Fleitman C N, Tessonnier J P. ACS Catal., 2014, 4(12): 4295.

doi: 10.1021/cs501197w
[31]
Kumar S, Sharma S, Kansal S K, Elumalai S. ACS Omega, 2020, 5(5): 2406.

doi: 10.1021/acsomega.9b03918
[32]
Li X, Zhang X, Li H W, Long J X. ChemistrySelect, 2019, 4(46): 13731.

doi: 10.1002/slct.v4.46
[33]
Xiang X Y, Wei Y, Pei B Y, Qiu R X, Chen X Y, Zhao C Y, Luo X Y, Lin J Q. J. Chem. Ind. Engin., 2020, 71(01):290.
(项小燕, 危依, 裴宝有, 丘荣星, 陈晓燕, 赵朝阳, 罗小燕, 林金清. 化工学报, 2020, 71(01): 290. )
[34]
Jia S Y, Liu K R, Xu Z W, Yan P F, Xu W J, Liu X M, Zhang Z C. Catal. Today, 2014, 234: 83.

doi: 10.1016/j.cattod.2014.02.038
[35]
Yang B Y, Montgomery R. Carbohydr. Res., 1996, 280(1): 27.

doi: 10.1016/0008-6215(95)00294-4
[36]
de Bruijn J M, Kieboom A P G, van Bekkum H. Recl. Trav. Chim. Pays-Bas, 1986, 105(6): 176.

doi: 10.1002/recl.19861050603
[37]
van den Berg R, Peters J A, van Bekkum H. Carbohydr. Res., 1994, 253: 1.

doi: 10.1016/0008-6215(94)80050-2
[38]
Mushrif S H, Varghese J J, Vlachos D G. Phys. Chem. Chem. Phys., 2014, 16(36): 19564.

doi: 10.1039/c4cp02095b pmid: 25105840
[39]
Norton A M, Nguyen H, Xiao N L, Vlachos D G. RSC Adv., 2018, 8(31): 17101.

doi: 10.1039/C8RA03088J
[40]
Loerbroks C, Van Rijn J, Ruby M P, Tong Q, Schüth F, Thiel W. Chem. Eur. J., 2014, 20(38): 12298.

doi: 10.1002/chem.v20.38
[41]
Lecomte J, Finiels A, Moreau C. Starch Stärke, 2002, 54(2): 75.

doi: 10.1002/(ISSN)1521-379X
[42]
Delidovich I, Palkovits R. J. Catal., 2015, 327: 1.

doi: 10.1016/j.jcat.2015.04.012
[43]
Yu S, Kim E, Park S, Song I K, Jung J C. Catal. Commun., 2012, 29: 63.

doi: 10.1016/j.catcom.2012.09.015
[44]
Lee G, Jeong Y, Takagaki A, Jung J C. J. Mol. Catal. A: Chem., 2014, 393: 289.

doi: 10.1016/j.molcata.2014.06.019
[45]
Upare P P, Chamas A, Lee J H, Kim J C, Kwak S K, Hwang Y K, Hwang D W. ACS Catal., 2020, 10(2): 1388.

doi: 10.1021/acscatal.9b01650
[46]
Delidovich I, Palkovits R. Catal. Sci. Technol., 2014, 4(12): 4322.

doi: 10.1039/C4CY00776J
[47]
Cavani F, Trifirò F, Vaccari A. Catal. Today, 1991, 11(2): 173.

doi: 10.1016/0920-5861(91)80068-K
[48]
Chimentão R J, AbellÓ S, Medina F, Llorca J, Sueiras J E, Cesteros Y, Salagre P. J. Catal., 2007, 252(2): 249.

doi: 10.1016/j.jcat.2007.09.015
[49]
Roelofs J C A A, van Dillen A J, Jong K P D. Catal. Today, 2000, 60(3/4): 297.

doi: 10.1016/S0920-5861(00)00346-1
[50]
Debecker D, Gaigneaux E, Busca G. Chem. Eur. J., 2009, 15(16): 3920.

doi: 10.1002/chem.v15:16
[51]
Takagaki . Catalysts, 2019, 9(11): 907.

doi: 10.3390/catal9110907
[52]
Rabee A I M, Le S D, Nishimura S. Chem. Asian J., 2020, 15(2): 294.

doi: 10.1002/asia.v15.2
[53]
Kitajima H, Higashino Y, Matsuda S, Zhong H, Watanabe M, Aida T M, Smith R L Jr. Catal. Today, 2016, 274: 67.

doi: 10.1016/j.cattod.2016.01.049
[54]
Son P A, Nishimura S, Ebitani K. React. Kinetics Mech. Catal., 2014, 111(1): 183.
[55]
Lima S, Dias A S, Lin Z, Brandão P, Ferreira P, Pillinger M, Rocha J, Calvino-Casilda V, Valente A A. Appl. Catal. A: Gen., 2008, 339(1): 21.

doi: 10.1016/j.apcata.2007.12.030
[56]
Witvrouwen T, Dijkmans J, Paulussen S, Sels B. J. Energy Chem., 2013, 22(3): 451.

doi: 10.1016/S2095-4956(13)60059-5
[57]
Moliner M, Roman-Leshkov Y, Davis M E. Proc. Natl. Acad. Sci. U S A, 2010, 107(14): 6164.

doi: 10.1073/pnas.1002358107 pmid: 20308577
[58]
Bermejo-Deval R, Assary R S, Nikolla E, Moliner M, Roman-Leshkov Y, Hwang S J, Palsdottir A, Silverman D, Lobo R F, Curtiss L A, Davis M E. PNAS, 2012, 109(25): 9727.

doi: 10.1073/pnas.1206708109 pmid: 22665778
[59]
Chang C C, Cho H J, Wang Z P, Wang X T, Fan W. Green Chem., 2015, 17(5): 2943.

doi: 10.1039/C4GC02457E
[60]
Rai N, Caratzoulas S, Vlachos D G. ACS Catal., 2013, 3(10): 2294.

doi: 10.1021/cs400476n
[61]
Bermejo-Deval R, Orazov M, Gounder R, Hwang S J, Davis M E. ACS Catal., 2014, 4(7): 2288.

doi: 10.1021/cs500466j
[62]
Li G N, Pidko E A, Hensen E J M. Catal. Sci. Technol., 2014, 4(8): 2241.

doi: 10.1039/C4CY00186A
[63]
Dapsens P Y, Mondelli C, Jagielski J, Hauert R, PÉrez-Ramírez J. Catal. Sci. Technol., 2014, 4(8): 2302.

doi: 10.1039/c4cy00172a
[64]
Graça I, Iruretagoyena D, Chadwick D. Appl. Catal. B: Environ., 2017, 206: 434.

doi: 10.1016/j.apcatb.2017.01.037
[65]
Li B, Li L W, Dong Y N, Zhang Q, Weng W Z, Wan H L. Chin. J. Chem. Phys., 2018, 31(02): 203.

doi: 10.1063/1674-0068/31/cjcp1709183
(李兵, 李路微, 董颖男, 章青, 翁维正, 万惠霖. 化学物理学报. 2018, 31(02): 203.)
[66]
Zhou Y B, Zhuang J P, Wang L Y, Yu K R, Wu S B. Modern Food Sci. Technol., 2017, 33(05): 155.
(周彦斌, 庄军平, 庄军平, 王兰英, 余开荣, 武书彬. 现代食品科技. 2017, 33(05): 155.)
[67]
Rajabbeigi N, Torres A I, Lew C M, Elyassi B, Ren L M, Wang Z P, Cho H J, Fan W, Daoutidis P, Tsapatsis M. Chem. Eng. Sci., 2014, 116: 235.

doi: 10.1016/j.ces.2014.04.031
[68]
Gounder R, Davis M E. J. Catal., 2013, 308: 176.

doi: 10.1016/j.jcat.2013.06.016
[69]
Guo Q, Ren L M, Alhassan S M, Tsapatsis M. Chem. Commun., 2019, 55(99): 14942.

doi: 10.1039/C9CC07842H
[70]
Cordon M J, Hall J N, Harris J W, Bates J S, Hwang S J, Gounder R. Catal. Sci. Technol., 2019, 9(7): 1654.

doi: 10.1039/C8CY02589D
[71]
Saravanamurugan S, Paniagua M, Melero J A, Riisager A. J. Am. Chem. Soc., 2013, 135(14): 5246.

doi: 10.1021/ja400097f pmid: 23506200
[72]
Saravanamurugan S, Riisager A, Taarning E, Meier S. ChemCatChem, 2016, 8(19): 3107.

doi: 10.1002/cctc.v8.19
[73]
Saravanamurugan S, Riisager A, Taarning E, Meier S. Chem. Commun., 2016, 52(86): 12773.

doi: 10.1039/C6CC05592C
[74]
Ren L M, Guo Q, Kumar P, Orazov M, Xu D D, Alhassan S M, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2015, 54(37): 10848.

doi: 10.1002/anie.201505334
[75]
Ren L M, Guo Q, Orazov M, Xu D D, Politi D, Kumar P, Alhassan S M, Mkhoyan K A, Sidiras D, Davis M E, Tsapatsis M. ChemCatChem, 2016, 8(7): 1274.

doi: 10.1002/cctc.v8.7
[76]
de Moreau C, Durand R, Roux A, Tichit D. Appl. Catal. A: Gen., 2000, 193(1/2): 257.

doi: 10.1016/S0926-860X(99)00435-4
[77]
Dijkmans J, Gabriëls D, Dusselier M de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels B F. Green Chem., 2013, 15(10): 2777.

doi: 10.1039/c3gc41239c
[78]
Chakrabarti A, Sharma M M. React. Polym., 1993, 20(1/2): 1.

doi: 10.1016/0923-1137(93)90064-M
[79]
Langlois D P, Larson R F. US 2746889, 1956.
[80]
Rendleman J A Jr, Hodge J E Jr. Carbohydr. Res., 1979, 75: 83.

doi: 10.1016/S0008-6215(00)84629-7
[81]
Mun D, Huynh N T T, Shin S, Kim Y J, Kim S, Shul Y G, Cho J K. Res. Chem. Intermed., 2017, 43(10): 5495.

doi: 10.1007/s11164-017-2942-3
[82]
Jiang J C, Yaghi O M. Chem. Rev., 2015, 115(14): 6966.

doi: 10.1021/acs.chemrev.5b00221
[83]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.
[84]
Akiyama G, Matsuda R, Sato H, Kitagawa S. Chem. Asian J., 2014, 9(10): 2772.

doi: 10.1002/asia.201402119
[85]
Guo Q, Ren L M, Kumar P, Cybulskis V J, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2018, 57(18): 4926.

doi: 10.1002/anie.v57.18
[86]
de Mello M D, Tsapatsis M. ChemCatChem, 2018, 10(11): 2417.

doi: 10.1002/cctc.v10.11
[1] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[2] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[3] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[4] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[5] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[6] Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*. Preparation of 5-Hydroxymethylfurfural from Glucose [J]. Progress in Chemistry, 2018, 30(2/3): 314-324.
[7] Fang Li, He Jinlu. Nonenzymatic Glucose Sensors [J]. Progress in Chemistry, 2015, 27(5): 585-593.
[8] Zhang Yuqi, Yu Jicheng, Shen Qundong, Gu Zhen. Glucose-Responsive Synthetic Closed-Loop Insulin Delivery Systems [J]. Progress in Chemistry, 2015, 27(1): 11-26.
[9] Zhou Lilong, Wu Tinghua, Wu Ying. Degradation and Conversion of Cellulose in Ionic Liquids [J]. Progress in Chemistry, 2012, 24(08): 1533-1543.
[10] Li Wenling, Zang Peng, Li Hongfu, Yang Shixia. Biomimetic Synthesis of Oligostilbenes [J]. Progress in Chemistry, 2012, 24(04): 545-555.
[11] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[12] Li Yan, Wei Zuojun, Chen Chuanjie, Liu Yingxin. Preparation of 5-hydroxymethylfurfural by Dehydration of Carbohydrates [J]. Progress in Chemistry, 2010, 22(08): 1603-1609.
[13] Chen Mao Weng Yue Lei Aiwen. Asymmetric Cycloisomerization of 1,n-Enynes Catalyzed by Transition Metals [J]. Progress in Chemistry, 2010, 22(07): 1341-1352.
[14] Lu Yuhua Song Feijie Jia Xueshun Liu Yuanhong. Transition Metal-Catalyzed Synthesis of Furan Derivatives [J]. Progress in Chemistry, 2010, 22(01): 58-70.
[15] Huang Shiyong Wang Fuli Pan Lixia. Synthesis of 5-Hydroxymethylfurfural via Dehydration of Fructose [J]. Progress in Chemistry, 2009, 21(0708): 1442-1449.