中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 243-253 DOI: 10.7536/PC200504 Previous Articles   Next Articles

• Review •

Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous

Xuemei Wei1,2, Zhanwei Ma1,*(), Xinyuan Mu1, Jinzhi Lu1,2, Bin Hu1,*()   

  1. 1 State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Zhanwei Ma, Bin Hu
  • About author:
    * Corresponding author e-mail: (Zhanwei Ma);
  • Supported by:
    CAS “Light of West China” Program and the Science and Technology Plan of Gansu Province(20JR10RA044)
Richhtml ( 34 ) PDF ( 728 ) Cited
Export

EndNote

Ris

BibTeX

The dicarbonylation of acetylene small molecule, produced based on non-petroleum routes, can produce a large number of high value-added chemicals, which is of great significance in the environmental treatment of CO gas emissions and the chemicals application. The artide mainly reviews the advances in research on the catalyst in acetylene carbonylation from homogeneous to heterogeneous, and summarize the effects of catalyst types and additives on the acetylene mono-/bi-carbonylation reaction activity. Based on the analysis of the reaction mechanism, this article introduces the design ideas for the preparation of high-efficiency catalysts by adjusting the structural sensitivity factors(size effect and morphology effect). Thus the method for controllable preparation of the micro-nano structure of the heterogeneous catalyst and the structure-activity relationship are further reviewed, with a view to provide guidance for the design of a heterogeneous catalytic system for efficient acetylene carbonylation in the future.

Contents

1 Introduction

2 Homogeneous catalytic system for acetylene carbonylation

2.1 Carbonyl metal homogeneous catalytic system

2.2 Transition metal salt homogeneous catalytic system

3 Heterogeneous catalytic system for acetylene carbonylation

3.1 Nickel-based heterogeneous catalyst

3.2 Palladium-based heterogeneous catalyst

4 Palladium-based catalyst micro-nano structure construction

4.1 Palladium particle size controllable preparation

4.2 Pd-based catalyst morphology controllable preparation

5 Conclusion and outlook

Fig. 1 The synthesis of basic organic chemical intermediates by coal-based acetylene mono-/di-carbonylation method
Fig. 2 Ligands for carbonyl metal catalytic system with good catalytic activity[8]
Fig. 3 The plausible mechanism for acetylene dicarbonylation[28]
Table 1 Palladium-based homogeneous catalytic carbonylation of alkynes
Fig. 4 Plausible mechanism proposed for acetylene dicarbonylation cis-trans isomerization[34]
Fig. 5 The principle of redox cycles[38]
Fig. 6 Proposed reaction mechanism and inhibition by AA[43]
Fig. 7 Active sites on the Ni-modified catalyst surface[45]
Fig. 8 Microstructure of Pd/α-Fe2O3 catalyst[47]
Fig. 9 The acetylene conversion and selectivity(line chart) for dimethyl fumarate Pd/α-Fe2O3 as catalyst[47]
Fig. 10 (A)Schematic illustrating how continuous growth on the {100} planes eventually leads to the transformation of a Pd cube bound by {100} facets into an octahedron enclosed by {111} facets, and(B) SEM images of the Pd nanoparticles[59]
Fig. 11 Micromorphology images of Pd concave nanocubes[50]
Fig. 12 FE-SEM and HR-TEM images of(A1, A2, A3) Fe2O3-R,(B1, B2, B3) Fe2O3-S, and(C1, C2, C3) Fe2O3-C[64]
Fig. 13 TEM and SEM images of the as-prepared CeO2 nanocrystals and the corresponding catalysts:(a, b, and c) nanocubes,(d, e, and f) nanorods,(g and h) Ru/r-CeO2 and Ru/c-CeO2, and(i) nanoparticles(p-CeO2) [66]
Fig. 14 Illustration of the morphological evolution process of the titanium glycerolate precursor[69]
[1]
Centi G, Trifiro F, Ebner J R, Franchetti V M. Chem. Rev., 1988, 88(1):55.
[2]
Bordes E. Catal. Today, 1993, 16(1):27.
[3]
Lan J H, Chen Z Q, Lin J C, Yin G C. Green Chem., 2014, 16(10):4604.
[4]
Huang Z J, Cheng Y Z, Chen X P, Wang H F, Du C X, Li Y H. Chem. Commun., 2018, 54(32):3967.
[5]
Peng J B, Geng H Q, Wu X F. Chem, 2019, 5(3):526.
[6]
Reppe. US 2127127, 1939.
[7]
Reppe. US 2883418, 1959.
[8]
Dakli I, Corsi L. US 2881205, 1959.
[9]
Piero P. US 3060228, 1962.
[10]
Copenhaver J W, Bigelow M H. Acetylene and Carbon Monoxide Chemistry. New York: Reinhold Publishing Corporation, 1949.
[11]
Liu R, Xiong X M, Mu X Y, Ma Z W, Song C L, Hu B. J. Mol. Catal.(China), 2015, 29(2):97.
刘蕊, 熊绪茂, 慕新元, 马占伟, 宋承立, 胡斌. 分子催化, 2015, 29(2):97.
[12]
Liu R, Mu X Y, Xiong X M, Ma Z W, Song C L, Hu B. Natural Gas Chemical Industry, 2015, 40(5):76.
( 刘蕊, 慕新元, 熊绪茂, 马占伟, 宋承立, 胡斌. 天然气化工(C1化学与化工), 2015,40(5):76.
[13]
Zhao S L. Masteral Dissertation of Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, 2017.
( 赵胜利. 中国科学院兰州化学物理研究所硕士论文, 2017.).
[14]
Walter R. US 260490, 1952.
[15]
Tauster S J, Fung S C, Garten R L. US 3060227, 1962.
[16]
An Y Z, Qiu J M, Yang D H, He D H, Wang Z S. Natural Gas Chemical Industry, 1991, 16(6):17.
安一哲, 邱家明. 杨大海, 贺德华, 王宗说. 天然气化工, 1991, 16(6):17.
[17]
Cui L, Yang X G, Zhou X, Zeng Y, Wang G Y. Industrial Catal., 2013, 21(12):13.
[18]
Edelmann R E. US 2882299, 1949.
[19]
Bengamin J L. US 2882297, 1959.
[20]
Reppe. US 2925436, 1960.
[21]
Smolin E M. US 3025322, 1962.
[22]
Reppe. US 2604490, 1950.
[23]
Birch A J. J. Am. Chem. Soc., 1964, 86(10):2095.
[24]
Tang C M, Zeng Y, Yang X G, Lei Y C, Wang G Y. J. Mol. Catal. A: Chem., 2009, 314:15.
[25]
Larock R C. J. Org. Chem., 1975, 40(22):3237.
[26]
Knifton J F. US 3905672, 1975.
[27]
Deng X G. Nat. Gas Chem. Ind., 1994, 3(19): 46.
( 邓祥贵. 天然气化工, 1994, 3(19): 46.
[28]
Cassar L, Chiusoli G P, Guerrieri F. Synthesis, 1973(9):509.
[29]
Heck R F. J. Am. Chem. Soc., 1972, 94(8):2712.
[30]
Xu S Y, Nie Z W, Chen Y D, Ma J B. Chinese J. Catal., 1983, 4(1):24.
[31]
Gabriele B, Costa M, Salerno G, Chiusoli G P. J. Chem. Soc., Perkin Trans. 1, 1994(1):83.
[32]
Sakurai Y, Sakaguchi S, Ishii Y. Tetrahedron Lett., 1999, 40(9):1701.
[33]
Liu H Z, Lau G P S, Dyson P J. J. Org. Chem., 2015, 80(1):386.

pmid: 25418524
[34]
Zhao S L, Zhang Q S, Ma Z W, Song C L, Pei X P, Xiong X M, Hu B. J. Mol. Catal., 2017, 31(5):411.
赵胜利, 张勤生, 马占伟, 宋承立, 裴小平, 熊旭茂, 胡斌. 分子催化, 2017, 31(5):411.
[35]
Matthias B, Boy C, Carl D F, Christian W K. J. Mol. Catal. A, 1995, 104:17.
[36]
Zargarian D, Alper H. Organometallics, 1991, 10(8):2914.
[37]
Bruk L G, Kozlova A P, Marshakha O V, Oshanina I V, Temkin O N, Kaliya O L. Russ. Chem. Bull., 1999, 48(10):1875.
[38]
Beller M. Catalytic Carbonylation Reactions. Springer-Verlag Berlin Heidelberg, 2006.
[39]
Bhattacharyya S K, Sen A K. J. Appl. Chem., 1963, 13:498.
[40]
Bhattacharyya S K, Sen A K. Ind. Eng. Chem. Proc. Des. Dev., 1964, 3(2):169.
[41]
Bhattacharyya S K, Bhattach D P. J. Appl. Chem., 1966, 16(7):202.
[42]
Lin T J, Meng X, Shi L. J. Mol. Catal. A: Chem., 2015, 396:77.
[43]
Choi H S, Park J H, Bae J W, Lee J H, Chang T S. Catal. Commun., 2019, 123:86.
[44]
Lin T J, Meng X, Shi L. Appl. Catal. A: Gen., 2014, 485:163.
[45]
Xie H, Lin T J, Shi L, Meng X. RSC Adv., 2016, 6(99):97285.
[46]
Bhanage B, Gadge S. Synlett, 2013, 24(8):981.
[47]
Wei X M, Ma Z W, Lu J Z, Mu X Y, Hu B. New J. Chem., 2020, 44(4):1221.
[48]
Wang S M, Fu J W, Wang K, Gao M, Wang X Z, Wang Z W, Chen J F, Xu Q. Appl. Surf. Sci., 2018, 459:208.
[49]
Zhang L, Filot I A W, Su Y Q, Liu J X, Hensen E J M. J. Phys. Chem. C, 2019, 123(12):7290.
[50]
Jin M S, Zhang H, Xie Z X, Xia Y N. Angew. Chem. Int. Ed., 2011, 50(34):7850.
[51]
Chen X M, Wu G H, Chen J M, Chen X, Xie Z X, Wang X R. J. Am. Chem. Soc., 2011, 133(11):3693.

pmid: 21348468
[52]
Ayesh A I, Thaker S, Qamhieh N, Ghamlouche H. J. Nanoparticle Res., 2011, 13(3):1125.
[53]
Fujimoto K I, Ribeiro F H, Avalos-Borja M, Iglesia E. J. Catal., 1998, 179(2):431.
[54]
Ma N, Suematsu K, Yuasa M, Shimanoe K. ACS Appl. Mater. Interfaces, 2015, 7(28):15618.

pmid: 26111855
[55]
Murata K, Mahara Y, Ohyama J, Yamamoto Y, Arai S, Satsuma A. Angew. Chem. Int. Ed., 2017, 56(50):15993.

doi: 10.1002/anie.201709124
[56]
Iglesias-Juez A, Kubacka A, Fernández-García M, di Michiel M, Newton M A. J. Am. Chem. Soc., 2011, 133(12):4484.

pmid: 21370924
[57]
Li Y, Boone E, El-Sayed M A. Langmuir, 2002, 18(12):4921.
[58]
Zhang Y G, Wen X, Shi Y Q, Yue R, Bai L B, Liu Q T, Ba X W. Ind. Eng. Chem. Res., 2019, 58(3):1142.
[59]
Jin M S, Zhang H, Xie Z X, Xia Y N. Energy Environ. Sci., 2012, 5(4):6352.
[60]
Wei X M, Ma Z W, Lu J Z, Mu X Y, Hu B. New J. Chem., 2020, 44(3):1157.
[61]
Sun L M, Zhan W W, Li Y A, Wang F, Zhang X L, Han X G. Inorg. Chem. Front., 2018, 5(9):2332.
[62]
Zhao N N, He C C, Liu J B, Gong H J, An T, Xu H X, Zhao F Q, Hu R Z, Ma H X, Zhang J Z. J. Solid State Chem., 2014, 219:67.
[63]
Wei X M, Ma Z W, Mu X Y, Zhang Q S, Hu B. Molecular Catalysis, 2021, 499:111303.
[64]
Jian Y F, Yu T T, Jiang Z Y, Yu Y K, Douthwaite M, Liu J Y, Albilali R, He C. ACS Appl. Mater. Interfaces, 2019, 11(12):11369.

pmid: 30829030
[65]
Du X J, Zhang D S, Shi L Y, Gao R H, Zhang J P. J. Phys. Chem. C, 2012, 116(18):10009.
[66]
Ma Z W, Zhao S L, Pei X P, Xiong X M, Hu B. Catal. Sci. Technol., 2017, 7(1):191.
[67]
Lu J Z, Ma Z W, Wei X M, Zhang Q S, Hu B. New J. Chem., 2020, 44(22):9298.
[68]
Martra G. Appl. Catal. A: Gen., 2000,275.
[69]
Tian G H, Chen Y J, Zhou W, Pan K, Tian C G, Huang X R, Fu H G. CrystEngComm, 2011, 13(8):2994.
[70]
Beck D D, White J M, Ratcliffe C T. J. Phys. Chem., 1986, 90(14):3123.
[1] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[2] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[3] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[4] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[5] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[6] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[9] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[10] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[11] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[12] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[13] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[14] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[15] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.