中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1100-1114 DOI: 10.7536/PC200803 Previous Articles   Next Articles

• Review •

The Cocatalyst in Photocatalytic Hydrogen Evolution

Junlan Guo1, Yinghua Liang1,2(), Huan Wang2, Li Liu2(), Wenquan Cui2   

  1. 1 School of Chemical Engineering and Technology, Hebei University of Technology,Tianjin 300130, China
    2 College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology,Tangshan 063210, China
  • Received: Revised: Online: Published:
  • Contact: Yinghua Liang, Wenquan Cui
  • Supported by:
    Natural Science Foundation of Hebei Province of China(B2020209017); Project of Science and Technology Innovation Team, Tang Shan.
Richhtml ( 102 ) PDF ( 1687 ) Cited
Export

EndNote

Ris

BibTeX

Nowadays, development of a sustainable, green, new and efficient energy system has drawn much attention with the increasingly prominent energy and environmental problems. Photocatalytic production of H2 utilizing solar energy appears to be a promising strategy to solve the energy issues since it is clean, low-cost, and environmentally friendly. It is difficult for single semiconductor photocatalyst to meet all the requirements of photocatalysis because of its low utilization efficiency of light, fast recombination rate of electron-hole pairs, and insufficient active sites. Cocatalysts are often used to improve the photocatalytic activity. The loading of cocatalyst could facilitate charge separation and enhance the photocatalytic efficiency. In this review, we mainly outline the roles of cocatalysts in photocatalytic hydrogen production, such as enhancing light absorption, promoting charge separation, increasing active sites, and improving the ability of H adsorption, and introduce the loading method of cocatalysts. Moreover, the influencing factors of cocatalysts on activity, including size effect, position effect, configuration effect and quantity quantal effect are summarized, which sheds light on designing efficient and stable cocatalysts, and the concluding perspectives on future development of cocatalysts for photocatalytic hydrogen production are also presented.

Contents

1 Introduction

2 The category of cocatalyst

2.1 Metal-based cocatalyst

2.2 Metal-free cocatalyst

2.3 Multicomponent cocatalyst

3 The loading method of cocatalyst on photocatalyst

4 The effect of the cocatalyst on photocatalytic hydrogen evolution

4.1 Size effect

4.2 Location effect

4.3 Configuration effect

4.4 Quantal effect

4.5 Others

5 Conclusion and outlook

Fig. 1 Illustration of H2production over water splitting on photocatalyst
Fig. 2 Reaction pathway for photocatalytic H2 evolution
Fig. 3 Roles of cocatalyst in photocatalytic H2 evolution
Table 1 Electron work functions of frequently used metals[37]
Fig. 4 Merits of the Single-atom cocatalyst
Fig. 5 The category and roles of metal compound cocatalyst
Fig. 6 (a)The photocatalytic reaction mechanism of CoP/g-C3N4, (b) Dual proton adsorption site reaction process of CoP/g-C3N4
Fig. 7 The LUMO position of Pt cluster in photocatalytic H2 evolution[150]
Fig. 8 (a) Illustration of the charge transfer mechanism of CdSe@CdS/Ni; (b) The size effect of Ni on CdSe@CdS/Ni[157]
Fig. 9 (a) The mechanism for H2 production by MOx@TiO2@Pt[164], (b) The mechanism for H2 evolution on CoOx/TiO2/Pt, (c) The selective deposition of reduction and oxidation cocatalysts on different facets of BiVO4
Fig. 10 Illustration of charge transfer kinetics in photocatalyst-cocatalyst system
Fig. 11 Illustration of charge transfer of CdS/Pt with various Pt contents[176]
[1]
Ida S, Sato K, Nagata T, Hagiwara H, Watanabe M, Kim N, Shiota Y, Koinuma M, Takenaka S, Sakai T, Ertekin E, Ishihara T. Angew. Chem. Int. Ed., 2018, 57(29):9073.

doi: 10.1002/anie.201803214
[2]
Jiang W Y, Bai S, Wang L M, Wang X J, Yang L, Li Y R, Liu D, Wang X N, Li Z Q, Xiong Y J. Small., 2016, 12:1640.

doi: 10.1002/smll.201503552
[3]
Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M, Bahnemann D W. Chem. Rev., 2014, 114(19):9919.

doi: 10.1021/cr5001892 pmid: 25234429
[4]
Wen J Q, Li X, Liu W, Fang Y P, Xie J, Xu Y H. Chin. J. Catal., 2015, 36(12):2049.

doi: 10.1016/S1872-2067(15)60999-8
[5]
Bi L L. Doctoral Dissertation of Jilin University, 2019.
( 毕玲玲. 吉林大学博士学位论文, 2019.)
[6]
Tsuji I, Kato H, Kudo A. Angew. Chem., 2005, 117(23):3631.

doi: 10.1002/(ISSN)1521-3757
[7]
Sasaki Y, Iwase A, Kato H, Kudo A. J. Catal., 2008, 259(1):133.

doi: 10.1016/j.jcat.2008.07.017
[8]
Sayed F N, Jayakumar O D, Sasikala R, Kadam R M, Bharadwaj S R, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal J P, Tyagi A K. J. Phys. Chem. C, 2012, 116(23):12462.

doi: 10.1021/jp3029962
[9]
Yu J G, Qi L F, Jaroniec M. J. Phys. Chem. C, 2010, 114(30):13118.

doi: 10.1021/jp104488b
[10]
Lin H Y, Yang H C, Wang W L. Catal. Today, 2011, 174(1):106.

doi: 10.1016/j.cattod.2011.01.052
[11]
Korzhak A V, Ermokhina N I, Stroyuk A L, Bukhtiyarov V K, Raevskaya A E, Litvin V I, Kuchmiy S Y, Ilyin V G, Manorik P A. J. Photochem. Photobiol. A: Chem., 2008, 198(2/3):126.

doi: 10.1016/j.jphotochem.2008.02.026
[12]
Shiraishi Y, Kofuji Y, Kanazawa S, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. Chem. Commun., 2014, 50(96):15255.

doi: 10.1039/C4CC06960A
[13]
Sun C Z, Zhang H, Liu H, Zheng X X, Zou W X, Dong L, Qi L. Appl. Catal. B: Environ., 2018, 235:66.

doi: 10.1016/j.apcatb.2018.04.050
[14]
Zhao H, Wang J W, Dong Y M, Jiang P P. ACS Sustainable Chem. Eng., 2017, 5(9):8053.

doi: 10.1021/acssuschemeng.7b01665
[15]
Zhao H, Sun S N, Jiang P P, Xu Z J. Chem. Eng. J., 2017, 315:296.

doi: 10.1016/j.cej.2017.01.034
[16]
Sanchez M L K, Wu C H, Adams M W W, Dyer R B. Chem. Commun., 2019, 55(39):5579.

doi: 10.1039/C9CC01150A
[17]
Tabata M, Maeda K, Ishihara T, Minegishi T, Takata T, Domen K. J. Phys. Chem. C, 2010, 114(25):11215.

doi: 10.1021/jp103158f
[18]
Lin B, Li J L, Xu B, Yan X Q, Yang B L, Wei J J, Yang G D. Appl. Catal. B: Environ., 2019, 243:94.

doi: 10.1016/j.apcatb.2018.10.029
[19]
Zhang Q, Li N, Goebl J, Lu Z D, Yin Y D. J. Am. Chem. Soc., 2011, 133(46):18931.

doi: 10.1021/ja2080345 pmid: 21999679
[20]
Gao Y Y, Cheng F, Fang W N, Liu X G, Wang S Y, Nie W, Chen R T, Ye S, Zhu J, An H Y, Fan C H, Fan F T, Li C. Natl. Sci. Rev., 2020,nwaa151.
[21]
Grabowska E, Zaleska A, Sorgues S, Kunst M, Etcheberry A, Colbeau-Justin C, Remita H. J. Phys. Chem. C, 2013, 117(4):1955.

doi: 10.1021/jp3112183
[22]
Gao Y Y, Cheng F, Fang W N, Liu X G, Wang S Y, Nie W, Chen R T, Ye S, Zhu J, An H Y, Fan C H, Fan F T, Li C. Natl. Sci. Rev., 2020, 8(6):1.
[23]
Wang W N, An W J, Ramalingam B, Mukherjee S, Niedzwiedzki D M, Gangopadhyay S, Biswas P. J. Am. Chem. Soc., 2012, 134(27):11276.

doi: 10.1021/ja304075b
[24]
Ivanova I, Kandiel T A, Cho Y J, Choi W, Bahnemann D. ACS Catal., 2018, 8(3):2313.

doi: 10.1021/acscatal.7b04326
[25]
Reichert R, Jusys Z, Behm R J. J. Phys. Chem. C, 2015, 119(44):24750.

doi: 10.1021/acs.jpcc.5b08428
[26]
Zhu Y X, Marianov A, Xu H M, Lang C, Jiang Y J. ACS Appl. Mater. Interfaces, 2018, 10(11):9468.

doi: 10.1021/acsami.8b00393
[27]
Majeed I, Manzoor U, Kanodarwala F K, Nadeem M A, Hussain E, Ali H, Badshah A, Stride J A, Nadeem M A,. Catal. Sci. Technol., 2018, 8(4):1183.

doi: 10.1039/C7CY02219K
[28]
Wang X F, Ruan Y E, Feng S J, Chen S H, Su K X. ACS Sustainable Chem. Eng., 2018, 6(9):11424.

doi: 10.1021/acssuschemeng.8b01364
[29]
Su R, Dimitratos N, Liu J J, Carter E, Althahban S, Wang X Q, Shen Y B, Wendt S, Wen SX D, (Hans) Niemantsverdriet J W, Iversen B B, Kiely C J, Hutchings G J, Besenbacher F. ACS Catal., 2016, 6(7):4239.

doi: 10.1021/acscatal.6b00982
[30]
Hussain E, Majeed I, Nadeem M A, Badshah A, Chen Y X, Nadeem M A, Jin R C. J. Phys. Chem. C, 2016, 120(31):17205.

doi: 10.1021/acs.jpcc.6b04695
[31]
Xiao S N, Liu P J, Zhu W, Li G S, Zhang D Q, Li H X. Nano Lett., 2015, 15(8):4853.

doi: 10.1021/acs.nanolett.5b00082
[32]
Oshikiri M, Ye J H, Boero M. J. Phys. Chem. C, 2014, 118(24):12845.

doi: 10.1021/jp502099v
[33]
Vu M H, Sakar M, Nguyen C C, Do T O. ACS Sustainable Chem. Eng., 2018, 6(3):4194.

doi: 10.1021/acssuschemeng.7b04598
[34]
Zhen W L, Ma J T, Lu G X. Appl. Catal. B: Environ., 2016, 190:12.

doi: 10.1016/j.apcatb.2016.02.061
[35]
Zhukovskyi M, Tongying P, Yashan H, Wang Y X, Kuno M. ACS Catal., 2015, 5(11):6615.

doi: 10.1021/acscatal.5b01812
[36]
Banin U, Ben-Shahar Y, Vinokurov K. Chem. Mater., 2014, 26(1):97.

doi: 10.1021/cm402131n
[37]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6):3962.

doi: 10.1021/acs.chemrev.8b00400
[38]
Wood A, Giersig M, Mulvaney P. J. Phys. Chem. B, 2001, 105(37):8810.

doi: 10.1021/jp011576t
[39]
Zhao G X, Sun Y B, Zhou W, Wang X K, Chang K, Liu G G, Liu H M, Kako T, Ye J H. Adv. Mater., 2017, 29(40):1703258.

doi: 10.1002/adma.201703258
[40]
An Y, Liu Y Y, An P F, Dong J C, Xu B Y, Dai Y, Qin X Y, Zhang X Y, Whangbo M H, Huang B B. Angew. Chem. Int. Ed., 2017, 56(11):3036.

doi: 10.1002/anie.201612423
[41]
Tanaka A, Sakaguchi S, Hashimoto K, Kominami H. ACS Catal., 2013, 3(1):79.

doi: 10.1021/cs3006499
[42]
Chen W, Wang Y H, Liu M, Gao L, Mao L Q, Fan Z Y, Shangguan W F. Appl. Surf. Sci., 2018, 444:485.

doi: 10.1016/j.apsusc.2018.03.068
[43]
Li X B, Tung C H, Wu L Z. Nat. Rev. Chem., 2018, 2(8):160.

doi: 10.1038/s41570-018-0024-8
[44]
Wang Y, Ma Y, Li X B, Gao L, Gao X Y, Wei X Z, Zhang L P, Tung C H, Qiao L J, Wu L Z. J. Am. Chem. Soc., 2020, 142(10):4680.

doi: 10.1021/jacs.9b11768
[45]
Han Z J, Eisenberg R. Acc. Chem. Res., 2014, 47(8):2537.

doi: 10.1021/ar5001605
[46]
Wang G C, Zhang T, Yu W W, Si R, Liu Y F, Zhao Z K. ACS Catal., 2020, 10(10):5715.

doi: 10.1021/acscatal.0c01099
[47]
Li X G, Bi W T, Zhang L, Tao S, Chu W S, Zhang Q, Luo Y, Wu C Z, Xie Y. Adv. Mater., 2016, 28(12):2427.

doi: 10.1002/adma.201505281
[48]
Yi L H, Lan F J, Li J G, Zhao C X. ACS Sustainable. Chem. Eng., 2018, 6:12766.

doi: 10.1021/acssuschemeng.8b02001
[49]
Zhao Q, Sun J, Li S C, Huang C P, Yao W F, Chen W, Zeng T, Wu Q, Xu Q J. ACS Catal., 2018, 8(12):11863.

doi: 10.1021/acscatal.8b03737
[50]
Zhao Q, Yao W F, Huang C P, Wu Q, Xu Q J. ACS Appl. Mater. Interfaces, 2017, 9(49):42734.

doi: 10.1021/acsami.7b13566
[51]
Zhang L J, Zheng R, Li S, Liu B K, Wang D J, Wang L L, Xie T F. ACS Appl. Mater. Interfaces, 2014, 6(16):13406.

doi: 10.1021/am501216b
[52]
Wei Y, Cheng G, Xiong J Y, Xu F F, Chen R. ACS Sustainable Chem. Eng., 2017, 5(6):5027.

doi: 10.1021/acssuschemeng.7b00417
[53]
Zhang H B, Zhang P, Qiu M, Dong J C, Zhang Y F, Lou X W D. Adv. Mater., 2018: 1804883.
[54]
Yu J G, Hai Y, Cheng B. J. Phys. Chem. C, 2011, 115(11):4953.

doi: 10.1021/jp111562d
[55]
Ran J R, Yu J G, Jaroniec M. Green Chem., 2011, 13(10):2708.

doi: 10.1039/c1gc15465f
[56]
Ma S, Deng Y P, Xie J, He K L, Liu W, Chen X B, Li X. Appl. Catal. B: Environ., 2018, 227:218.

doi: 10.1016/j.apcatb.2018.01.031
[57]
Tong R, Sun Z, Wang X N, Wang S P, Pan H. J. Phys. Chem. C, 2019, 123(43):26136.

doi: 10.1021/acs.jpcc.9b07922
[58]
Sun Z J, Chen H L, Zhang L, Lu D P, Du P W. J. Mater. Chem. A, 2016, 4(34):13289.

doi: 10.1039/C6TA04696G
[59]
Moniruddin M, Oppong E, Stewart D, McCleese C, Roy A, Warzywoda J, Nuraje N. Inorg. Chem., 2019, 58(18):12325.

doi: 10.1021/acs.inorgchem.9b01854 pmid: 31483615
[60]
Yamakata A, Kawaguchi M, Nishimura N, Minegishi T, Kubota J, Domen K. J. Phys. Chem. C, 2014, 118(41):23897.

doi: 10.1021/jp508233z
[61]
Mao Z Y, Chen J J, Yang Y F, Wang D J, Bie L J, Fahlman B D. ACS Appl. Mater. Interfaces, 2017, 9(14):12427.

doi: 10.1021/acsami.7b00370
[62]
Shen R C, Xie J, Lu X Y, Chen X B, Li X. ACS Sustainable Chem. Eng., 2018, 6:4026.

doi: 10.1021/acssuschemeng.7b04403
[63]
Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J. Am. Chem. Soc., 2008, 130(23):7176.

doi: 10.1021/ja8007825 pmid: 18473462
[64]
Zhou W J, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H. Small, 2013, 9(1):140.

doi: 10.1002/smll.v9.1
[65]
Zong X, Han J F, Ma G J, Yan H J, Wu G P, Li C. J. Phys. Chem. C, 2011, 115(24):12202.

doi: 10.1021/jp2006777
[66]
Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett., 2011, 11(11):4774.

doi: 10.1021/nl202587b pmid: 21981013
[67]
Li N X, Huang H L, Bibi R, Shen Q H, Ngulube R, Zhou J C, Liu M C. Appl. Surf. Sci., 2019, 476:378.

doi: 10.1016/j.apsusc.2019.01.105
[68]
Song X F, Shen W H, Sun Z, Yang C, Zhang P, Gao L. Chem. Eng. J., 2016, 290:74.

doi: 10.1016/j.cej.2016.01.030
[69]
Yuan J L, Wen J Q, Zhong Y M, Li X, Fang Y P, Zhang S S, Liu W. J. Mater. Chem. A, 2015, 3(35):18244.

doi: 10.1039/C5TA04573H
[70]
Liu W J, Wang X F, Yu H G, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(9):12436.

doi: 10.1021/acssuschemeng.8b02971
[71]
Chang K, Li M, Wang T, Ouyang S X, Li P, Liu L Q, Ye J H. Adv. Energy Mater., 2015, 5(10):1402279.

doi: 10.1002/aenm.201402279
[72]
Liu W, Shen J, Liu Q Q, Yang X F, Tang H. Appl. Surf. Sci., 2018, 462:822.

doi: 10.1016/j.apsusc.2018.08.189
[73]
Liu X, Jiang Y Q, Li Y D, Wang Z, Li J Z, Huo H, Lin K F, Du Y C. ChemCatChem, 2019, 11(24):6244.

doi: 10.1002/cctc.v11.24
[74]
Dong Y M, Kong L G, Jiang P P, Wang G L, Zhao N, Zhang H Z, Tang B. ACS Sustainable Chem. Eng., 2017, 5(8):6845.

doi: 10.1021/acssuschemeng.7b01079
[75]
Sun Z J, Zheng H F, Li J S, Du P W. Energy Environ. Sci., 2015, 8(9):2668.

doi: 10.1039/C5EE01310K
[76]
Sun Z J, Lv B, Li J S, Xiao M, Wang X Y, Du P W. J. Mater. Chem. A, 2016, 4(5):1598.

doi: 10.1039/C5TA07561K
[77]
Dong Y M, Kong L G, Wang G L, Jiang P P, Zhao N, Zhang H Z. Appl. Catal. B: Environ., 2017, 211:245.

doi: 10.1016/j.apcatb.2017.03.076
[78]
Li C M, Du Y H, Wang D P, Yin S M, Tu W G, Chen Z, Kraft M, Chen G, Xu R. Adv. Funct. Mater., 2017, 27(4):1604328.

doi: 10.1002/adfm.v27.4
[79]
Shi Y M, Zhang B. Chem. Soc. Rev., 2016, 45(6):1781.

doi: 10.1039/C6CS90013E
[80]
Sun Z J, Zheng H F, Li J S, Du P W. Energy Environ. Sci., 2015, 8(9):2668.

doi: 10.1039/C5EE01310K
[81]
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Chem. Rev., 2014, 114(8):4081.

doi: 10.1021/cr4005814
[82]
Brown K A, Dayal S, Ai X, Rumbles G, King P W. J. Am. Chem. Soc., 2010, 132(28):9672.

doi: 10.1021/ja101031r
[83]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W. J. Am. Chem. Soc., 2012, 134(12):5627.

doi: 10.1021/ja2116348
[84]
Tard C, Pickett C J. Chem. Rev., 2009, 109(6):2245.

doi: 10.1021/cr800542q
[85]
Huang J E, Mulfort K L, Du P W, Chen L X. J. Am. Chem. Soc., 2012, 134(40):16472.

doi: 10.1021/ja3062584 pmid: 22989083
[86]
Wang F, Wang W G, Wang X J, Wang H Y, Tung C H, Wu L Z. Angew. Chem., 2011, 123(14):3251.

doi: 10.1002/ange.201006352
[87]
Li C B, Li Z J, Yu S, Wang G X, Wang F, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z. Energy Environ. Sci., 2013, 6(9):2597.

doi: 10.1039/c3ee40992a
[88]
Wen F Y, Wang X L, Huang L, Ma G J, Yang J H, Li C. ChemSusChem, 2012, 5(5):849.

doi: 10.1002/cssc.201200190
[89]
Cao S W, Liu X F, Yuan Y P, Zhang Z Y, Fang J, Loo S C J, Barber J, Sum T C, Xue C. Phys. Chem. Chem. Phys., 2013, 15(42):18363.

doi: 10.1039/c3cp53350f
[90]
Holá K, Pavliuk M V, Németh B, Huang P, Zdražil L, Land H, Berggren G, Tian H N. ACS Catal., 2020, 10(17):9943.

doi: 10.1021/acscatal.0c02474
[91]
Xu H Q, Yang S Z, Ma X, Huang J E, Jiang H L. ACS Catal., 2018, 8(12):11615.

doi: 10.1021/acscatal.8b03233
[92]
Shen R C, Xie J, Zhang H D, Zhang A P, Chen X B, Li X. ACS Sustainable Chem. Eng., 2018, 6(1):816.

doi: 10.1021/acssuschemeng.7b03169
[93]
Guo J L, Liang Y H, Liu L, Hu J S, Wang H, An W J, Cui W Q. Appl. Surf. Sci., 2020, 522:146356.

doi: 10.1016/j.apsusc.2020.146356
[94]
Sun X J, Yang D D, Dong H, Meng X B, Sheng J L, Zhang X, Wei J Z, Zhang F M. Sustain. Energy Fuels, 2018, 2(6):1356.

doi: 10.1039/C8SE00063H
[95]
Kumar D P, Choi J, Hong S, Reddy D A, Lee S, Kim T K. ACS Sustainable Chem. Eng., 2016, 4(12):7158.

doi: 10.1021/acssuschemeng.6b02032
[96]
Li K, Zhang Y, Lin Y Z, Wang K, Liu F T. ACS Appl. Mater. Interfaces, 2019, 11(32):28918.

doi: 10.1021/acsami.9b09312
[97]
Fu J W, Bie C B, Cheng B, Jiang C J, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(2):2767.

doi: 10.1021/acssuschemeng.7b04461
[98]
Zhang X, Dong H, Sun X J, Yang D D, Sheng J L, Tang H L, Meng X B, Zhang F M. ACS Sustainable Chem. Eng., 2018, 6(9):11563.

doi: 10.1021/acssuschemeng.8b01740
[99]
Xiang Q J, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2012, 134(15):6575.

doi: 10.1021/ja302846n
[100]
Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H. ACS Nano, 2014, 8(7):7078.

doi: 10.1021/nn5019945 pmid: 24923678
[101]
Zhang J, Yu J G, Jaroniec M, Gong J R. Nano Lett., 2012, 12(9):4584.

doi: 10.1021/nl301831h pmid: 22894686
[102]
Shen R C, Xie J, Ding Y N, Liu S Y, Adamski A, Chen X B, Li X. ACS Sustainable Chem. Eng., 2019, 7(3):3243.

doi: 10.1021/acssuschemeng.8b05185
[103]
Cheng L H, Xie S M, Zou Y J, Ma D D, Sun D K, Li Z H, Wang Z Y, Shi J W. Int. J. Hydrog. Energy, 2019, 44(8):4133.

doi: 10.1016/j.ijhydene.2018.12.159
[104]
Zhang W Y, Li Y X, Zeng X P, Peng S Q. Sci. Rep., 2015, 5(1):1.
[105]
Ran J R, Zhang J, Yu J G, Qiao S Z. ChemSusChem, 2014, 7(12):3426.

doi: 10.1002/cssc.v7.12
[106]
Lu X Y, Xie J, Liu S Y, Adamski A, Chen X B, Li X. ACS Sustainable Chem. Eng., 2018, 6(10):13140.

doi: 10.1021/acssuschemeng.8b02653
[107]
Ren X N, Hu Z Y, Jin J, Wu L, Wang C, Liu J, Liu F, Wu M, Li Y, Tendeloo G V, Su B L. ACS Appl. Mater. Interfaces, 2017, 9(35):29687.

doi: 10.1021/acsami.7b07226
[108]
Zhang Z Y, Wang Z, Cao S W, Xue C. J. Phys. Chem. C, 2013, 117(49):25939.

doi: 10.1021/jp409311x
[109]
Zhu Y X, Marianov A, Xu H M, Lang C, Jiang Y J. ACS Appl. Mater. Interfaces, 2018, 10(11):9468.

doi: 10.1021/acsami.8b00393
[110]
Li Z J, Wang X H, Tian W L, Meng A L, Yang L N. ACS Sustainable Chem. Eng., 2019, 7(24):20190.

doi: 10.1021/acssuschemeng.9b06430
[111]
Majeed I, Manzoor U, Kanodarwala F K, Nadeem M A, Hussain E, Ali H, Badshah A, Stride J A, Nadeem M A,. Catal. Sci. Technol., 2018, 8(4):1183.

doi: 10.1039/C7CY02219K
[112]
Bhunia K, Chandra M, Khilari S, Pradhan D. ACS Appl. Mater. Interfaces, 2019, 11(1):478.

doi: 10.1021/acsami.8b12183
[113]
Han C C, Lu Y, Zhang J L, Ge L, Li Y J. J. Mater. Chem. A 2015, 3:23274.

doi: 10.1039/C5TA05370F
[114]
Su R, Tiruvalam R, Logsdail A J, He Q, Downing C A, Jensen M T, Dimitratos N, Kesavan L, Wells P P, Bechstein R, Jensen H H, Wendt S, Catlow C R A, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2014, 8(4):3490.

doi: 10.1021/nn500963m
[115]
Zhang L X, Liu Q L, Aoki T, Crozier P A. J. Phys. Chem. C, 2015, 119(13):7207.

doi: 10.1021/jp512907g
[116]
Liu Y P, Wang B X, Zhang Q, Yang S Y, Li Y H, Zuo J L, Wang H J, Peng F. Green Chem., 2020, 22(1):238.

doi: 10.1039/C9GC03323H
[117]
Bai S, Yang L, Wang C L, Lin Y, Lu J L, Jiang J, Xiong Y J. Angew. Chem. Int. Ed., 2015, 54:14810.

doi: 10.1002/anie.v54.49
[118]
Chen S B, Zhou X F, Liao J H, Yang S Y, Zhou X S, Gao Q Z, Zhang S Q, Fang Y P, Zhong X H, Zhang S S. J. Mater. Chem. A, 2020, 8(6):3481.

doi: 10.1039/C9TA12915D
[119]
Zhang K, Ran J R, Zhu B C, Ju H X, Yu J G, Song L, Qiao S Z. Small, 2018, 14(38):1801705.

doi: 10.1002/smll.201801705 pmid: 30152582
[120]
Huang L, Wang X L, Yang J H, Liu G, Han J F, Li C. J. Phys. Chem. C, 2013, 117(22):11584.

doi: 10.1021/jp400010z
[121]
Yu H G, Huang X, Wang P, Yu J G. J. Phys. Chem. C, 2016, 120(7):3722.

doi: 10.1021/acs.jpcc.6b00126
[122]
Wei R B, Huang Z L, Gu G H, Wang Z, Zeng L X, Chen Y B, Liu Z Q. Appl. Catal. B: Environ., 2018, 231:101.

doi: 10.1016/j.apcatb.2018.03.014
[123]
Jiang Q Q, Li L, Bi J H, Liang S J, Liu M H. Nanomaterials, 2017, 7(2):24.

doi: 10.3390/nano7020024
[124]
Zhang J K, Yu Z B, Gao Z, Ge H B, Zhao S C, Chen C Q, Chen S, Tong X L, Wang M H, Zheng Z F, Qin Y. Angew. Chem. Int. Ed., 2017, 56(3):816.

doi: 10.1002/anie.v56.3
[125]
Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K. Angew. Chem., 2013, 125(43):11462.

doi: 10.1002/ange.v125.43
[126]
Li R G, Han H X, Zhang F X, Wang D, Li C. Energy Environ. Sci., 2014, 7(4):1369.

doi: 10.1039/C3EE43304H
[127]
Meng A Y, Zhang J, Xu D F, Cheng B, Yu J G. Appl. Catal. B: Environ., 2016, 198:286.

doi: 10.1016/j.apcatb.2016.05.074
[128]
Mu L C, Zhao Y, Li A L, Wang S Y, Wang Z L, Yang J X, Wang Y, Liu T F, Chen R T, Zhu J, Fan F T, Li R G, Li C. Energy Environ. Sci., 2016, 9(7):2463.

doi: 10.1039/C6EE00526H
[129]
Ding J J, Li X Y, Chen L, Zhang X, Yin H, Tian X Y. ACS Appl. Mater. Interfaces., 2019, 11:835.

doi: 10.1021/acsami.8b17663
[130]
Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. J. Catal., 2012, 290:151.

doi: 10.1016/j.jcat.2012.03.008
[131]
Aronovitch E, Houben L, Bar-Sadan M. Chem. Mater., 2019, 31(18):7231.

doi: 10.1021/acs.chemmater.9b01523
[132]
Marciniak S J, Ron D. Physiol. Rev., 2006, 86(4):1133.

pmid: 17015486
[133]
Shi X W, Fujitsuka M, Kim S, Majima T. Small, 2018, 14(11):1703277.

doi: 10.1002/smll.v14.11
[134]
Wang X Z, Meng S L, Xiao H Y, Feng K, Wang Y, Jian J X, Li X B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2020, 59(42):18400.

doi: 10.1002/anie.v59.42
[135]
Zhang L Y, Morello G, Carr S B, Armstrong F A. J. Am. Chem. Soc., 2020, 142(29):12699.

doi: 10.1021/jacs.0c04302
[136]
Wang W J, Song X W, Hong Z X, Li B B, Si Y N, Ji C Q, Su K Z, Tan Y X, Ju Z F, Huang Y Y, Chen C N, Yuan D Q. Appl. Catal. B: Environ., 2019, 258:117979.

doi: 10.1016/j.apcatb.2019.117979
[137]
Gao S, Fan W H, Liu Y, Jiang D Y, Duan Q. Int. J. Hydrog. Energy, 2020, 45(7):4305.

doi: 10.1016/j.ijhydene.2019.11.206
[138]
Xie G C, Zhang K, Guo B D, Liu Q, Fang L, Gong J R. Adv. Mater., 2013, 25(28):3820.

doi: 10.1002/adma.v25.28
[139]
Zhang J, Yu J G, Jaroniec M, Gong J R. Nano Lett., 2012, 12(9):4584.

doi: 10.1021/nl301831h pmid: 22894686
[140]
Lv X J, Zhou S X, Zhang C, Chang H X, Chen Y, Fu W F. J. Mater. Chem., 2012, 22(35):18542.

doi: 10.1039/c2jm33325b
[141]
Wang Y, Yu J G, Xiao W, Li Q. J. Mater. Chem. A, 2014, 2(11):3847.

doi: 10.1039/C3TA14908K
[142]
Zhao L W, Xu H B, Jiang B, Huang Y D. Part. Part. Syst. Charact., 2017, 34(3):1600323.

doi: 10.1002/ppsc.v34.3
[143]
Li X Y, Chen F, Lian C J, Zheng S Z, Hu Q H, Duo S W, Li W K, Hu C Y. J. Clust. Sci., 2016, 27(6):1877.

doi: 10.1007/s10876-016-1049-0
[144]
Dang X M, Zhang X F, Lu Z Y, Yang Z Z, Dong X L, Zhang X X, Ma C, Ma H C, Xue M, Shi F. J. Nanoparticle Res., 2014, 16(2):1.
[145]
Ghasemi S, Hashemian S J, Alamolhoda A A, Gocheva I, Rahman Setayesh S. Mater. Res. Bull., 2017, 87:40.

doi: 10.1016/j.materresbull.2016.11.020
[146]
Lang Q Q, Chen Y H, Huang T L, Yang L N, Zhong S X, Wu L J, Chen J R, Bai S. Appl. Catal. B: Environ., 2018, 220:182.

doi: 10.1016/j.apcatb.2017.08.045
[147]
Li Y H, Qi M Y, Li J Y, Tang Z R, Xu Y J. Appl. Catal. B: Environ., 2019, 257:117934.

doi: 10.1016/j.apcatb.2019.117934
[148]
Gao D D, Liu W J, Xu Y, Wang P, Fan J J, Yu H G. Appl. Catal. B: Environ., 2020, 260:118190.

doi: 10.1016/j.apcatb.2019.118190
[149]
Subramanian V, Wolf E E, Kamat P V. J. Am. Chem. Soc., 2004, 126(15):4943.

doi: 10.1021/ja0315199
[150]
Schweinberger F F, Berr M J, Döblinger M, Wolff C, Sanwald K E, Crampton A S, Ridge C J, Jäckel F, Feldmann J, Tschurl M, Heiz U. J. Am. Chem. Soc., 2013, 135(36):13262.

doi: 10.1021/ja406070q pmid: 23961721
[151]
Von Issendorff B, Cheshnovsky O. Annu. Rev. Phys. Chem., 2005, 56(1):549.

doi: 10.1146/annurev.physchem.54.011002.103845
[152]
Luo M H, Yao W F, Huang C P, Wu Q, Xu Q J. J. Mater. Chem. A, 2015, 3(26):13884.

doi: 10.1039/C5TA00218D
[153]
Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110(11):6503.

doi: 10.1021/cr1001645
[154]
Vamvasakis I, Liu B, Armatas G S. Adv. Funct. Mater., 2016, 26(44):8062.

doi: 10.1002/adfm.v26.44
[155]
Ben-Shahar Y, Scotognella F, Kriegel I, Moretti L, Cerullo G, Rabani E, Banin U. Nat. Commun., 2016, 7(1):1.
[156]
Karakus M, Sung Y, Wang H I, Mics Z, Char K, Bonn M, Cánovas E. J. Phys. Chem. C, 2017, 121(24):13070.

doi: 10.1021/acs.jpcc.7b03639
[157]
Nakibli Y, Mazal Y, Dubi Y, Wächtler M, Amirav L. Nano Lett., 2018, 18(1):357.

doi: 10.1021/acs.nanolett.7b04210 pmid: 29236508
[158]
Zhuang P, Yue H Y, Dong H, Zhou X. New J. Chem., 2020, 44(14):5428.

doi: 10.1039/C9NJ06398F
[159]
Li Y H, Xing J, Yang X H, Yang H G. Chem. Eur. J., 2014, 20(39):12377.

doi: 10.1002/chem.v20.39
[160]
Park H, Choi W, Hoffmann M R. J. Mater. Chem., 2008, 18(20):2379.

doi: 10.1039/b718759a
[161]
Qi M Y, Li Y H, Zhang F, Tang Z R, Xiong Y J, Xu Y J. ACS Catal., 2020, 10(5):3194.

doi: 10.1021/acscatal.9b05420
[162]
Xiao J D. Doctoral Dissertation of University of Science and Technology of China, 2017.
( 肖娟定. 中国科学技术博士论文, 2017.)
[163]
Xiao J D, Shang Q C, Xiong Y J, Zhang Q, Luo Y, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2016, 55(32):9389.

doi: 10.1002/anie.v55.32
[164]
She P, Rao H, Guan B Y, Qin J S, Yu J H. ACS Appl. Mater. Interfaces, 2020, 12(20):23356.

doi: 10.1021/acsami.0c04905
[165]
Sun X H, Du H. ACS Sustainable Chem. Eng., 2019, 7(19):16320.

doi: 10.1021/acssuschemeng.9b03361
[166]
Ma B J, Zhang J W, Lin K Y, Li D K, Liu Y H, Yang X. ACS Sustainable. Chem. Eng., 2019, 7:13569.

doi: 10.1021/acssuschemeng.9b03334
[167]
Li J, Zhang L, Li J W, An P, Hou Y D, Zhang J S. ACS Sustainable Chem. Eng., 2019, 7(16):14023.

doi: 10.1021/acssuschemeng.9b02529
[168]
Narayanan R, El-Sayed M A. J. Am. Chem. Soc., 2004, 126(23):7194.

pmid: 15186154
[169]
Wang W C, Zhu S, Cao Y N, Tao Y, Li X, Pan D L, Phillips D L, Zhang D Q, Chen M, Li G S, Li H X. Adv. Funct. Mater., 2019, 29(36):1901958.

doi: 10.1002/adfm.v29.36
[170]
Cao S W, Li H, Li Y, Zhu B C, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(5):6478.

doi: 10.1021/acssuschemeng.8b00259
[171]
Yao J, Zheng Y R, Jia X, Duan L X, Wu Q, Huang C P, An W, Xu Q J, Yao W F. ACS Appl. Mater. Interfaces, 2019, 11(29):25844.

doi: 10.1021/acsami.9b05572
[172]
Berr M J, Vaneski A, Mauser C, Fischbach S, Susha A S, Rogach A L, Jäckel F, Feldmann J. Small, 2012, 8(2):291.

doi: 10.1002/smll.201101317
[173]
Luo M H, Lu P, Yao W F, Huang C P, Xu Q J, Wu Q, Kuwahara Y, Yamashita H. ACS Appl. Mater. Interfaces, 2016, 8(32):20667.

doi: 10.1021/acsami.6b04388
[174]
Jiang W Y, Bai S, Wang L M, Wang X J, Yang L, Li Y R, Liu D, Wang X N, Li Z Q, Jiang J, Xiong Y J. Small, 2016, 12(12):1640.

doi: 10.1002/smll.201503552
[175]
Yi L H, Lan F J, Li J G, Zhao C X. ACS Sustainable Chem. Eng., 2018, 6:12766.

doi: 10.1021/acssuschemeng.8b02001
[176]
Simon T, Carlson M T, Stolarczyk J K, Feldmann J. ACS Energy Lett., 2016, 1(6):1137.

doi: 10.1021/acsenergylett.6b00468
[177]
Wu K F, Zhu H M, Lian T Q. Acc. Chem. Res., 2015, 48(3):851.

doi: 10.1021/ar500398g
[178]
Zhang L, Fu X L, Meng S G, Jiang X L, Wang J H, Chen S F. J. Mater. Chem. A, 2015, 3(47):23732.

doi: 10.1039/C5TA07459B
[179]
Murdoch M, Waterhouse G I N, Nadeem M A, Metson J B, Keane M A, Howe R F, Llorca J, Idriss H. Nat. Chem., 2011, 3(6):489.

doi: 10.1038/nchem.1048 pmid: 21602866
[180]
Li N, Ding Y X, Wu J J, Zhao Z J, Li X T, Zheng Y Z, Huang M L, Tao X. ACS Appl. Mater. Interfaces, 2019, 11(25):22297.

doi: 10.1021/acsami.9b03965
[181]
Liu J N, Jia Q H, Long J L, Wang X X, Gao Z W, Gu Q. Appl. Catal. B: Environ., 2018, 222:35.

doi: 10.1016/j.apcatb.2017.09.073
[182]
Mak K F, Lee C G, Home J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:136805.

doi: 10.1103/PhysRevLett.105.136805
[183]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat. Nanotechnol., 2012, 7(11):699.

doi: 10.1038/nnano.2012.193
[184]
Chang K, Li M, Wang T, Ouyang S X, Li P, Liu L Q, Ye J H. Adv. Energy Mater., 2015, 5(10):1402279.

doi: 10.1002/aenm.201402279
[185]
Chen J Z, Wu X J, Yin L S, Li B, Hong X, Fan Z X, Chen B, Xue C, Zhang H. Angew. Chem. Int. Ed., 2015, 54(4):1210.

doi: 10.1002/anie.201410172
[186]
Liu M J, Xia P F, Zhang L Y, Cheng B, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(8):10472.

doi: 10.1021/acssuschemeng.8b01835
[187]
Xue J W, Fujitsuka M, Majima T. ACS Appl. Mater. Interfaces, 2020, 12(5):5920.

doi: 10.1021/acsami.9b20247
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[5] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[6] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[7] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[8] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[9] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[10] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[11] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[12] Yukun Zhao, Yuanyuan Wang, Hongwei Ji, Wanhong Ma, Chuncheng Chen*, Jincai Zhao*. Photocatalytic Reductive Debromination of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2017, 29(9): 911-918.
[13] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[14] Wenbo Zhang, Fangqin Li, Jiang Wu*, Hexing Li*. Mercury Removal Technologies of the Flue Gas from Power Plants [J]. Progress in Chemistry, 2017, 29(12): 1435-1445.
[15] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.