中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1614-1626 DOI: 10.7536/PC200821 Previous Articles   Next Articles

• Review •

Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals

Zehao Hu1,2, Ting Chen1,2(), Yanqiao Xu2, Weihui Jiang2, Zhixiang Xie1   

  1. 1 Institute of Materials Science & Devices, Suzhou University of Science and Technology,Suzhou 215009, China
    2 School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
  • Received: Revised: Online: Published:
  • Contact: Ting Chen
  • Supported by:
    National Natural Science Foundation of China(52062019); Qinglan Praject of Jiangsu Province, and the Project of Jingdezhen Science and Technology Bureau(20192GYZD008-15); Qinglan Praject of Jiangsu Province, and the Project of Jingdezhen Science and Technology Bureau(20192GYZD008-18)
Richhtml ( 34 ) PDF ( 1007 ) Cited
Export

EndNote

Ris

BibTeX

All-inorganic lead halide perovskite nanocrystals have extremely broad application prospects in light emitting diode, solar cell and biomarker fields due to their excellent optoelectronic properties, i.e. high fluorescence quantum yield, high color purity and wide color gamut. However, the unsatisfactory stability caused by the ionic characteristics has seriously hindered their further application. Although many strategies, i.e. metal ions doping, surface passivation and coating, have been developed to improve stability, how to maintain stability when exposed to air, water, and polar solvents is still an urgent issue. In addition, anion exchange in perovskite may limit its application in multicolor luminescence display field. It is an ideal and effective strategy to improve the stability of perovskite nanocrystals by surface coating to maintain the high fluorescence quantum efficiency and avoid anion exchange, which has been receiving considerable attention of researchers. In this review, we summarize the root of instability for lead halide perovskite nanocrystals, and introduce the current research progress of surface coating strategy for all-inorganic lead halide perovskite in detail, as well as its applications in the lighting and display field. Finally, the challenges concerning the development of the lead halide perovskite nanocrystals are outlined and the main future research directions are concluded.

Contents

1 Introduction

2 Properties of all-inorganic cesium lead halide perovskite nanocrystals

2.1 Crystal structure

2.2 Optical property

2.3 Stability

3 Surface coating strategy

3.1 Organic matrix coating

3.2 Inorganic oxide coating

3.3 Inorganic non-oxide coating

4 Applications of all-inorganic cesium lead halide perovskite in WLED

5 Conclusion and outlook

Fig.1 Structure of perovskite ABX3[19]. Copyright 2009, ACS
Fig.2 (a) Typical point defects in CsPbX3 NCs, (b) schematic representation of electronic band structure of typical defect-intolerant semiconductors and CsPbX3 NCs, and (c) schematic representation of local structural deformation of the Pb-Br framework[32]. Copyright 2020, Wiley online library
Fig.3 Schematic illustration of the preparation process of CsPbBr3@PS (a) and CsPbBr3@PVP (b)[61,64]. Copyright 2017, ACS
Fig.4 (a) PLQY of CsPbBr3@SHFW NCs, (b) photographs of CsPbBr3@SHFW composite powders immersed in water for 3 months and 6 months, respectively, (c) photographs of CsPbX3@SHFW composite powders, and water drops on the composite films under white light and 365 nm UV light, respectively, (d) PL spectra[64]. Copyright 2019, ACS
Fig.5 Schematic illustration of the synthetic strategy of the mesoporous ZJU-28 (a) and CsPbX3@ZJU-28 (b)[65]. Copyright 2020, Elsevier
Fig.6 (a) Preparation of CsPbBr3@SiO2 NCs by direct mixing method, preparation of CsPbBr3@SiO2 NCs using (b) mesoporous silica and (c) APTES as silicon source[70,73]. Copyright 2016, Willey Online Library; 2016, ACS; 2020, Elsevier
Fig.7 (a) the environmental stability, (b) the photostability of CsPbBr3@TiO2 core/shell NCs[76]. Copyright 2017, Willey Online Library
Fig.8 (a) Synthetic procedure of the mSiO2-ABX3@AlOx shells coated via ALD method, (b) time resolved relative PL intensity of mSiO2-CsPbBr3 with different AlOx shell thickness[80]. Copyright 2020, Elsevier
Fig.9 Synthesis process schematic of (a) CsPbBr3 embedded in KX salt, (b) CsPbBr3@NH4Br and (c) RDP@Pb(OH)Br NCs[82⇓~84]. Copyright 2016, 2020, ACS; 2017, Royal Society of Chemistry
Fig.10 (a) Schematic illustration of the preparation of CsPbBr3@Cs4PbBr6 NCs, (b) photographs of Cs4PbBr6, CsPbBr3 and CsPbBr3@Cs4PbBr6 powders under ambient and 365 nm UV light[88]. Copyright 2018, Royal Society of Chemistry
Table 1 Influence of different core-shell materials on stability of all-inorganic lead halide perovskite nanocrystals
Table 2 Performance of core-shell all-inorganic lead halide perovskite nanocrystals based QLED
Fig.11 Schematics of the two principal white-lighting strategies of pc-WLED devices: (a) a blue chip with a yellow down converting phosphor, (b) a UV chip with red, green and blue (RGB) phosphors[102]. Copyright 2015, Royal Society of Chemistry
Fig.12 Time-dependent PL spectra and CIE color coordinates of WLED based on: (a,b) CsPbBr3@SiO2 and (c,d) CsPbBr3 NCs[90]. Copyright 2017, ACS
Table 3 Optoelectronic performances of WLEDs based on core/shell structure all-inorganic cesium lead halide perovskite nanocrystals
[1]
Peña M A, Fierro J L G. Chem. Rev., 2001, 101(7): 1981.

pmid: 11710238
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2(1): 1.
[3]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338(6107): 643.

doi: 10.1126/science.1228604
[4]
Stranks S D, Snaith H J. Nat. Nanotechnol., 2015, 10(5): 391.

doi: 10.1038/nnano.2015.90 pmid: 25947963
[5]
Schmidt L C, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink H J, Galian R E, Pérez-Prieto J. J. Am. Chem. Soc., 2014, 136(3): 850.

doi: 10.1021/ja4109209
[6]
Dave K, Bao Z, Nakahara S, Ohara K, Masada S, Tahara H, Kanemitsu Y, Liu R S. Nanoscale, 2020, 12(6): 3820.

doi: 10.1039/C9NR09056H
[7]
Xu Y, Lou S Q, Xia C, Xuan T T, Li H L. J. Lumin., 2020, 222: 117132.

doi: 10.1016/j.jlumin.2020.117132
[8]
Li Q, Wang H B, Yue X F, Du J X. Talanta, 2020, 211: 120705.

doi: 10.1016/j.talanta.2019.120705
[9]
Zhang H L, Yuan L, Chen Y, Zhang Y Q, Yu Y X, Liang X J, Xiang W D, Wang T. Chem. Commun., 2020, 56(19): 2853.

doi: 10.1039/C9CC07676J
[10]
Liu X Y, Liu Z Y, Li J J, Tan X H, Sun B, Fang H, Xi S, Shi T L, Tang Z R, Liao G L. J. Mater. Chem. C, 2020, 8(10): 3337.

doi: 10.1039/C9TC06630F
[11]
Zhu W D, Deng M Y, Chen D D, Chen D Z, Xi H, Chang J J, Zhang J C, Zhang C F, Hao Y. J. Mater. Chem. C, 2020, 8(1): 209.

doi: 10.1039/C9TC05403K
[12]
Chen Y X, Xu Y F, Wang X D, Chen H Y, Kuang D B. Sustain. Energy Fuels, 2020, 4(5): 2249.
[13]
Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L. ACS Energy Lett., 2017, 2(9): 2071.

doi: 10.1021/acsenergylett.7b00547 pmid: 28920080
[14]
Zou S H, Liu Y S, Li J H, Liu C P, Feng R, Jiang F L, Li Y X, Song J Z, Zeng H B, Hong M C, Chen X Y. J. Am. Chem. Soc., 2017, 139(33): 11443.

doi: 10.1021/jacs.7b04000
[15]
Krieg F, Ochsenbein S T, Yakunin S ten Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V. ACS Energy Lett., 2018, 3(3): 641.

doi: 10.1021/acsenergylett.8b00035
[16]
Bodnarchuk M I, Boehme S C, ten Brinck S, Bernasconi C, Shynkarenko Y, Krieg F, Widmer R, Aeschlimann B, Günther D, Kovalenko M V, Infante I. ACS Energy Lett., 2019, 4(1): 63.

doi: 10.1021/acsenergylett.8b01669 pmid: 30662955
[17]
Ding N, Zhou D L, Sun X K, Xu W, Xu H W, Pan G C, Li D Y, Zhang S, Dong B, Song H W. Nanotechnology, 2018, 29(34): 345703.

doi: 10.1088/1361-6528/aac84d pmid: 29808823
[18]
Ma T Q, Wang S W, Zhang Y W, Zhang K X, Yi L X. J. Mater. Sci., 2020, 55(2): 464.

doi: 10.1007/s10853-019-03974-y
[19]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r
[20]
Stoumpos C C, Kanatzidis M G. Acc. Chem. Res., 2015, 48(10): 2791.

doi: 10.1021/acs.accounts.5b00229
[21]
Knop O, Wasylishen R E, White M A, Cameron T S, Oort M J M V. Can. J. Chem., 1990, 68(3): 412.

doi: 10.1139/v90-063
[22]
Evarestov R A, Kotomin E A, Senocrate A, Kremer R K, Maier J. Phys. Chem. Chem. Phys., 2020, 22(7): 3914.

doi: 10.1039/c9cp06322f pmid: 32016248
[23]
Burwig T, Fränzel W, Pistor P. J. Phys. Chem. Lett., 2018, 9(16): 4808.

doi: 10.1021/acs.jpclett.8b02059
[24]
Yi C Y, Luo J S, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin S M, Röthlisberger U, Grätzel M. Energy Environ. Sci., 2016, 9(2): 656.

doi: 10.1039/C5EE03255E
[25]
Møller C K. Nature, 1958, 182(4647): 1436.
[26]
Brivio F, Walker A B, Walsh A. APL Mater., 2013, 1(4): 042111.

doi: 10.1063/1.4824147
[27]
Kovalenko M V, Protesescu L, Bodnarchuk M I. Science, 2017, 358(6364): 745.

doi: 10.1126/science.aam7093 pmid: 29123061
[28]
Brandt R E, Stevanović V, Ginley D S, Buonassisi T. MRS Commun., 2015, 5(2): 265.

doi: 10.1557/mrc.2015.26
[29]
Kang J, Wang L W. J. Phys. Chem. Lett., 2017, 8(2): 489.

doi: 10.1021/acs.jpclett.6b02800 pmid: 28071911
[30]
Palazon F, Akkerman Q A, Prato M, Manna L. ACS Nano, 2016, 10(1): 1224.

doi: 10.1021/acsnano.5b06536
[31]
Palazon F di Stasio F, Akkerman Q A, Krahne R, Prato M, Manna L. Chem. Mater., 2016, 28(9): 2902.

doi: 10.1021/acs.chemmater.6b00954
[32]
Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N, Fu F. Small Methods, 2020, 4(10): 2000395.

doi: 10.1002/smtd.v4.10
[33]
Zhu H, Miyata K, Fu Y, Wang J, Joshi P P, Niesner D, Williams K W, Jin S, Zhu X Y. Science, 2016, 353(6306): 1409.

doi: 10.1126/science.aaf9570
[34]
Bakulin A A, Selig O, Bakker H J, Rezus Y L A, Müller C, Glaser T, Lovrincic R, Sun Z H, Chen Z Y, Walsh A, Frost J M, Jansen T L C. J. Phys. Chem. Lett., 2015, 6(18): 3663.

doi: 10.1021/acs.jpclett.5b01555 pmid: 26722739
[35]
Huang S Q, Li Z C, Wang B, Zhu N W, Zhang C Y, Kong L, Zhang Q, Shan A D, Li L. ACS Appl. Mater. Interfaces, 2017, 9(8): 7249.

doi: 10.1021/acsami.6b14423
[36]
Dai J F, Xi J, Zu Y Q, Li L, Xu J, Shi Y F, Liu X Y, Fan Q H, Zhang J J, Wang S P, Yuan F, Dong H, Jiao B, Hou X, Wu Z X. Nano Energy, 2020, 70: 104467.

doi: 10.1016/j.nanoen.2020.104467
[37]
Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X W, Kanjanaboos P, Nogueira A F, Sargent E H. ACS Appl. Mater. Interfaces, 2015, 7(45): 25007.

doi: 10.1021/acsami.5b09084
[38]
de Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z. ACS Nano, 2016, 10(2): 2071.

doi: 10.1021/acsnano.5b06295
[39]
Creutz S E, Crites E N, de Siena M C, Gamelin D R. Nano Lett., 2018, 18(2): 1118.

doi: 10.1021/acs.nanolett.7b04659
[40]
Roesch R, Faber T, von Hauff E, Brown T M, Lira-Cantu M, Hoppe H. Adv. Energy Mater., 2015, 5(20): 1501407.

doi: 10.1002/aenm.201501407
[41]
Ren J J, Dong X, Zhang G Y, Li T R, Wang Y H. New J. Chem., 2017, 41(22): 13961.

doi: 10.1039/C7NJ03017G
[42]
Diroll B T, Nedelcu G, Kovalenko M V, Schaller R D. Adv. Funct. Mater., 2017, 27(21): 1606750.

doi: 10.1002/adfm.v27.21
[43]
Amgar D, Binyamin T, Uvarov V, Etgar L. Nanoscale, 2018, 10(13): 6060.

doi: 10.1039/C7NR09607K
[44]
Rao L S, Tang Y, Yan C M, Li J S, Zhong G S, Tang K R, Yu B H, Li Z T, Zhang J Z. J. Mater. Chem. C, 2018, 6(20): 5375.

doi: 10.1039/C8TC00582F
[45]
Shi J D, Ge W Y, Zhu J F, Saruyama M, Teranishi T. ACS Appl. Nano Mater., 2020, 3(8): 7563.

doi: 10.1021/acsanm.0c01204
[46]
Huang S Q, Wang B, Zhang Q, Li Z C, Shan A D, Li L. Adv. Opt. Mater., 2018, 6(6): 1701106.

doi: 10.1002/adom.v6.6
[47]
Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J. Chem. Mater., 2019, 31(11): 3917.

doi: 10.1021/acs.chemmater.8b05362
[48]
Lv W, Li L, Xu M C, Hong J X, Tang X X, Xu L G, Wu Y H, Zhu R, Chen R F, Huang W. Adv. Mater., 2019, 31(28): 1900682.

doi: 10.1002/adma.v31.28
[49]
Wu L Z, Zhong Q X, Yang D, Chen M, Hu H C, Pan Q, Liu H Y, Cao M H, Xu Y, Sun B Q, Zhang Q. Langmuir, 2017, 33(44): 12689.

doi: 10.1021/acs.langmuir.7b02963
[50]
Pan L, Zhang L, Qi Y F, Conkle K, Han F X, Zhu X C, Box D, Shahbazyan T V, Dai Q L. ACS Appl. Nano Mater., 2020, 3(9): 9260.

doi: 10.1021/acsanm.0c01887
[51]
Chen T, Xu Y Q, Xie Z X, Jiang W H, Wang L J, Jiang W. Nanoscale, 2020, 12(17): 9569.

doi: 10.1039/D0NR00579G
[52]
Henglein A. Chem. Rev., 1989, 89(8): 1861.

doi: 10.1021/cr00098a010
[53]
Zhou H S, Sasahara H, Honma I, Komiyama H, Haus J W. Chem. Mater., 1994, 6(9): 1534.

doi: 10.1021/cm00045a010
[54]
Brokmann X, Messin G, Desbiolles P, Giacobino E, Dahan M, Hermier J P. New J. Phys., 2004, 6: 99.

doi: 10.1088/1367-2630/6/1/099
[55]
Marchuk K, Guo Y J, Sun W, Vela J, Fang N. J. Am. Chem. Soc., 2012, 134(14): 6108.

doi: 10.1021/ja301332t pmid: 22458433
[56]
Jiang D H, Tsai Y H, Veeramuthu L, Liang F C, Chen L C, Lin C C, Satoh T, Tung S H, Kuo C C. APL Mater., 2019, 7(11): 111105.

doi: 10.1063/1.5124880
[57]
Zhong Q X, Cao M H, Hu H C, Yang D, Chen M, Li P L, Wu L Z, Zhang Q. ACS Nano, 2018, 12(8): 8579.

doi: 10.1021/acsnano.8b04209
[58]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15(6): 3692.

doi: 10.1021/nl5048779 pmid: 25633588
[59]
Hormats E I, Unterleitner F C. J. Phys. Chem., 1965, 69(11): 3677.

doi: 10.1021/j100895a002
[60]
Müller M, Kaiser M, Stachowski G M, Resch-Genger U, Gaponik N, Eychmüller A. Chem. Mater., 2014, 26(10): 3231.

doi: 10.1021/cm5009043
[61]
Zhang H H, Wang X, Liao Q, Xu Z Z, Li H Y, Zheng L M, Fu H B. Adv. Funct. Mater., 2017, 27(7): 1604382.

doi: 10.1002/adfm.v27.7
[62]
Huang H, Chen B K, Wang Z G, Hung T F, Susha A S, Zhong H Z, Rogach A L. Chem. Sci., 2016, 7(9): 5699.

doi: 10.1039/c6sc01758d pmid: 30034709
[63]
Xuan T T, Huang J J, Liu H, Lou S Q, Cao L Y, Gan W J, Liu R S, Wang J. Chem. Mater., 2019, 31(3): 1042.

doi: 10.1021/acs.chemmater.8b04596
[64]
Wei Y, Deng X R, Xie Z X, Cai X C, Liang S S, Ma P A, Hou Z Y, Cheng Z Y, Lin J. Adv. Funct. Mater., 2017, 27(39): 1703535.

doi: 10.1002/adfm.v27.39
[65]
Ren J J, Zhou X P, Wang Y H. Chem. Eng. J., 2020, 391: 123622.

doi: 10.1016/j.cej.2019.123622
[66]
Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444
[67]
James S L. Chem. Soc. Rev., 2003, 32(5): 276.

doi: 10.1039/b200393g
[68]
Li Z X, Yu C C, Wen Y Y, Wei Z T, Chu J M, Xing X F, Zhang X, Hu M L, He M. Nanomaterials, 2019, 9(8): 1147.

doi: 10.3390/nano9081147
[69]
Li Z C, Kong L, Huang S Q, Li L. Angew. Chem. Int. Ed., 2017, 56(28): 8134.

doi: 10.1002/anie.v56.28
[70]
Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C, Chen C Y, Lee Y C, Tsai T L, Liu R S. Angew. Chem. Int. Ed., 2016, 55(28): 7924.

doi: 10.1002/anie.201603698
[71]
Dirin D N, Protesescu L, Trummer D, Kochetygov I V, Yakunin S, Krumeich F, Stadie N P, Kovalenko M V. Nano Lett., 2016, 16(9): 5866.

doi: 10.1021/acs.nanolett.6b02688
[72]
Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D, Yu W W. Adv. Mater., 2016, 28(45): 10088.

doi: 10.1002/adma.201603081
[73]
Guan H L, Zhao S Y, Wang H X, Yan D D, Wang M, Zang Z G. Nano Energy, 2020, 67: 104279.

doi: 10.1016/j.nanoen.2019.104279
[74]
Hu Z P, Liu Z Z, Bian Y, Li S Q, Tang X S, Du J, Zang Z G, Zhou M, Hu W, Tian Y X, Leng Y X. Adv. Opt. Mater., 2018, 6(3): 1700997.

doi: 10.1002/adom.v6.3
[75]
Park D H, Han J S, Kim W, Jang H S. Dyes Pigments, 2018, 149: 246.

doi: 10.1016/j.dyepig.2017.10.003
[76]
Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W W. Adv. Funct. Mater., 2018, 28(1): 1704288.

doi: 10.1002/adfm.v28.1
[77]
Yuan S, Chen D Q, Li X Y, Zhong J S, Xu X H. ACS Appl. Mater. Interfaces, 2018, 10(22): 18918.

doi: 10.1021/acsami.8b05155
[78]
Li G R, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S C, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Adv. Mater., 2016, 28(18): 3528.

doi: 10.1002/adma.201600064
[79]
Loiudice A, Saris S, Oveisi E, Alexander D T L, Buonsanti R. Angew. Chem. Int. Ed., 2017, 56(36): 10696.

doi: 10.1002/anie.201703703
[80]
You C Y, Li F M, Lin L H, Lin J S, Chen Q Q, Radjenovic P M, Tian Z Q, Li J F. Nano Energy, 2020, 71: 104554.

doi: 10.1016/j.nanoen.2020.104554
[81]
Dameron A A, Davidson S D, Burton B B, Carcia P F, McLean R S, George S M. J. Phys. Chem. C, 2008, 112(12): 4573.

doi: 10.1021/jp076866+
[82]
Guhrenz C, Benad A, Ziegler C, Haubold D, Gaponik N, Eychmüller A. Chem. Mater., 2016, 28(24): 9033.

doi: 10.1021/acs.chemmater.6b03980
[83]
Lou S Q, Xuan T T, Yu C Y, Cao M M, Xia C, Wang J, Li H L. J. Mater. Chem. C, 2017, 5(30): 7431.

doi: 10.1039/C7TC01174A
[84]
Yu Y C, Hou J H, Zhang L H, Sun Q S, Attique S, Wang W J, Xu X X, Xu F, Ci Z P, Cao B Q, Qiao X, Xiao X H, Yang S K. Nano Lett., 2020, 20(4): 2316.

doi: 10.1021/acs.nanolett.9b04730
[85]
García-Santamaría F, Brovelli S, Viswanatha R, Hollingsworth J A, Htoon H, Crooker S A, Klimov V I. Nano Lett., 2011, 11(2): 687.

doi: 10.1021/nl103801e pmid: 21207930
[86]
Tang X S, Yang J, Li S Q, Chen W W, Hu Z P, Qiu J. Front. Chem., 2019, 7: 499.

doi: 10.3389/fchem.2019.00499
[87]
Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X L, Yang Z Y, Sargent E H. Adv. Mater., 2017, 29(21): 1605945.

doi: 10.1002/adma.201605945
[88]
Xuan T T, Lou S Q, Huang J J, Cao L Y, Yang X F, Li H L, Wang J. Nanoscale, 2018, 10(21): 9840.

doi: 10.1039/C8NR01266K
[89]
Zhang D W, Zhao J, Liu Q L, Xia Z G. Inorg. Chem., 2019, 58(2): 1690.

doi: 10.1021/acs.inorgchem.8b03295
[90]
Hu H C, Wu L Z, Tan Y S, Zhong Q X, Chen M, Qiu Y H, Yang D, Sun B Q, Zhang Q, Yin Y D. J. Am. Chem. Soc., 2018, 140(1): 406.

doi: 10.1021/jacs.7b11003
[91]
Zhou Y J, Pan A Z, Shi C Y, Ma X Q, Jia M J, Huang H, Ren D Z, He L. Appl. Surf. Sci., 2020, 515: 146004.

doi: 10.1016/j.apsusc.2020.146004
[92]
Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T. J. Phys. D: Appl. Phys., 2010, 43(35): 354002.

doi: 10.1088/0022-3727/43/35/354002
[93]
Mishra K C, Zachau M, Levin R E. Phys. Rev. Lett., 2009, 103(26): 269401.

doi: 10.1103/PhysRevLett.103.269401
[94]
Narendran N, Gu Y. J. Display Technol., 2005, 1(1): 167.

doi: 10.1109/JDT.2005.852510
[95]
Maier-Flaig F, Rinck J, Stephan M, Bocksrocker T, Bruns M, Kübel C, Powell A K, Ozin G A, Lemmer U. Nano Lett., 2013, 13(2): 475.

doi: 10.1021/nl3038689 pmid: 23320768
[96]
Jiang G C, Guhrenz C, Kirch A, Sonntag L, Bauer C, Fan X L, Wang J, Reineke S, Gaponik N, Eychmüller A. ACS Nano, 2019, 13(9): 10386.

doi: 10.1021/acsnano.9b04179
[97]
Hao W, Xinmin Z, Chongfeng G, Jian X, Mingmei W, Qiang S. IEEE Photonics Technol. Lett., 2005, 17(6): 1160.

doi: 10.1109/LPT.2005.846504
[98]
Shirasaki Y, Supran G J, Bawendi M G, Bulović V. Nat. Photonics, 2013, 7(1): 13.

doi: 10.1038/nphoton.2012.328
[99]
Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(15): 2435.

doi: 10.1002/adfm.v26.15
[100]
Filippetti A, Mattoni A. Phys. Rev. B, 2014, 89(12): 125203.

doi: 10.1103/PhysRevB.89.125203
[101]
Di X X, Shen L D, Jiang J T, He M L, Cheng Y Z, Zhou L, Liang X J, Xiang W D. J. Alloys Compd., 2017, 729: 526.

doi: 10.1016/j.jallcom.2017.09.213
[102]
Li G G, Tian Y, Zhao Y, Lin J. Chem. Soc. Rev., 2015, 44(23): 8688.

doi: 10.1039/C4CS00446A
[1] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[2] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[3] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[4] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[5] Lili Feng, Yiman Liu, Lin Yao, Rui Sun, Junhui He. Infrared Stealth and Multi-Band Compatible Stealth Materials [J]. Progress in Chemistry, 2021, 33(6): 1044-1058.
[6] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[7] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[8] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[9] Qiaoxia Lin, Meng Yin, Yan Wei, Jingjing Du, Weiyi Chen, Di Huang. The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys [J]. Progress in Chemistry, 2020, 32(4): 406-416.
[10] Wei-Pin Huang, Ke-Feng Ren, Jian Ji. New Strategies for Regulating Polymer’s Surface Microstructure [J]. Progress in Chemistry, 2020, 32(10): 1494-1503.
[11] Yanqiao Xu, Ting Chen, Lianjun Wang, Weihui Jiang, Wan Jiang, Zhixiang Xie. From Preparation to Lighting and Display Applications of Ⅰ-Ⅲ-Ⅵ Quantum Dots [J]. Progress in Chemistry, 2019, 31(9): 1238-1250.
[12] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[13] Rui Sun, Lin Yao, Junhui He, Jie Liang. Thermochromic Smart Coatings [J]. Progress in Chemistry, 2019, 31(12): 1712-1728.
[14] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[15] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.