中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1560-1570 DOI: 10.7536/PC200810 Previous Articles   Next Articles

• Review •

Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism

Yuan Su1,2, Keming Ji2(), Jiayao Xun2, Liang Zhao1(), Kan Zhang2, Ping Liu2()   

  1. 1 State Key Laboratory of Heavy Oil Processing, China University of Petroleum,Beijing 102249, China
    2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
  • Received: Revised: Online: Published:
  • Contact: Keming Ji, Liang Zhao, Ping Liu
  • Supported by:
    project of leading talents in emerging industries of Shanxi province(E0SW986201)
Richhtml ( 55 ) PDF ( 774 ) Cited
Export

EndNote

Ris

BibTeX

Formaldehyde is the main indoor pollutant, which has teratogenicity and carcinogenicity. Catalytic oxidation of formaldehyde has high conversion efficiency without secondary pollution, therefore related research has been increasingly concerned. This paper introduces noble metal and non-noble metal catalysts in detail. The effects of active components, support and catalyst promoters on the physicochemical properties and reaction performance of the catalyst are discussed. The influence factors of catalytic reactions, such as preparation methods, and the level of water content in the reactants are discussed. Besides, the main factors of catalyst deactivation are analyzed. The results show that the number of reactive oxygen species, surface hydroxyl groups, oxygen vacancies, as well as the adsorption, desorption and storage capacity of the reactants are the key factors affecting the catalytic activity. Noble metal catalysts, especially Pt catalysts, have better catalytic performance and can fully convert formaldehyde at lower temperature. Non-noble metal catalysts have variable valence states and abundant raw material resources, is cheap and easy to obtain, and could have enough catalytic activity through reasonable design of catalyst, therefore its application prospect is broad.

Contents

1 Introduction

2 Influence of active components on catalytic performance

2.1 Noble metals active components

2.2 Non-noble metal active components

3 Influence of supports on catalytic performance

3.1 Single metal oxide supports

3.2 Composite metal oxide supports

4 Influence of promoters on catalytic performance

4.1 Alkali metal promoters

4.2 Transition metal promoters

5 Other factors affecting catalytic performance

5.1 Effects of preparation method

5.2 Effects of water

5.3 Effects of catalytic deactivation

6 Conclusion

Fig.1 Catalytic oxidation of formaldehyde on noble metal catalyst[19]. Copyright 2018, Elsevier
Fig.2 Reaction scheme of the catalytic oxidation of HCHO on the TiO2 supported Pt, Rh, Pd and Au catalysts[56]. Copyright 2007, Elsevier
Fig.3 Manganese oxides with different chemical composition and crystal structure: (a) β-MnO2, (b) γ-MnO2, (c) α-MnO2, (d) δ-MnO2, (e) λ-MnO2, (f)LiMn2O4, (g) Mn2O3, (h) Mn3 O 4[61]. Copyright 2013, American Chemical Society
Fig.4 SEM (a,c,e) and TEM (b,d,f) images of three MnO2 nanostructures; Catalytic performance of three Pt/MnO2 catalysts[32]. Copyright 2011, American Chemical Society
Fig.5 Schematic illustration of possible HCHO oxidation mechanism over Pt/GOFe catalyst at room temperature[101]. Copyright 2018, Elsevier
Fig.6 Oxygen vacancy formation energy of calculated MnO2 monolayer super cell structures[110]. Copyright 2018, The Royal Society of Chemistry
Fig.7 (a) TEM image of Ag/Fe0.1-MnOx catalyst, elemental mapping of (b) Ag, (c) Mn, (d) Fe images of Ag/Fe0.1-MnOx catalyst, (e) High resolution TEM images of Ag/Fe0.1-MnOx catalyst, (f) proposed model for the distribution of Fe in MnOx (the red ball-O atom, the purple ball-Mn atom, the yellow ball-Fe atom); and (g) Possible mechanism of HCHO oxidation process over Ag/Fe-MnOx catalyst[100]. Copyright 2016, Elsevier
Fig.8 SEM images of varied manganese oxide catalysts: (a) BSW-80, (b) BSW-100, (c) BSW-120, and (d) BSW-140[117]. Copyright 2011, Elsevier
Fig.9 H2O-TPD profiles of the fresh MCo2O4 (M=Mn, Ce, Cu) catalysts and the deactivated MCo2O4 catalysts in HCHO oxidation in RH=45% condition[120]. Copyright 2019, Elsevier
Fig.10 Schematic of the HCHO catalytic oxidation and halogen poisoning effect over the as-prepared samples[122]. Copyright 2015, Elsevier
[1]
Jiang C J, Li D D, Zhang P Y, Li J G, Wang J, Yu J G. Build. Environ., 2017, 117: 118.

doi: 10.1016/j.buildenv.2017.03.004
[2]
Maddalena R, Russell M, Sullivan D P, Apte M G. Environ. Sci. Technol., 2009, 43(15): 5626.

pmid: 19731654
[3]
Marsh G M, Youk A O. Regul. Toxicol. Pharmacol., 2005, 42(3): 275.

doi: 10.1016/j.yrtph.2005.05.003
[4]
Tang X J, Bai Y, Duong A, Smith M T, Li L Y, Zhang L P. Environ. Int., 2009, 35(8): 1210.

doi: 10.1016/j.envint.2009.06.002
[5]
Tang X J, Bai Y, Duong A, Smith M T, Li L Y, Zhang L P. Environ. Int., 2009, 35(8): 1210.

doi: 10.1016/j.envint.2009.06.002
[6]
Giese M, Bauer-Doranth U, Langebartels C, Sandermann H. Plant Physiol., 1994, 104(4): 1301.

pmid: 12232169
[7]
Gilbert N L, Guay M, Gauvin D, Dietz R N, Chan C C, Lévesque B. Atmos. Environ., 2008, 42(10): 2424.

doi: 10.1016/j.atmosenv.2007.12.017
[8]
Ye J W, Zhu X F, Cheng B, Yu J G, Jiang C J. Environ. Sci. Technol. Lett., 2017, 4(1): 20.

doi: 10.1021/acs.estlett.6b00426
[9]
Suresh S, Bandosz T J. Carbon, 2018, 137: 207.

doi: 10.1016/j.carbon.2018.05.023
[10]
Ma C J, Li X H, Zhu T L. Carbon, 2011, 49(8): 2873.

doi: 10.1016/j.carbon.2011.02.058
[11]
Le Y, Guo D P, Cheng B, Yu J G. Appl. Surf. Sci., 2013, 274: 110.

doi: 10.1016/j.apsusc.2013.02.123
[12]
Liang W J, Li J, Li J X, Zhu T, Jin Y Q. J. Hazard. Mater., 2010, 175(1/3): 1090.

doi: 10.1016/j.jhazmat.2009.10.034
[13]
Wan Y J, Fan X, Zhu T L. Chem. Eng. J., 2011, 171(1): 314.

doi: 10.1016/j.cej.2011.04.011
[14]
Kibanova D, Sleiman M, Cervini-Silva J, Destaillats H. J. Hazard. Mater., 2012, 211/212: 233.

doi: 10.1016/j.jhazmat.2011.12.008
[15]
Yu J G, Wang S H, Low J, Xiao W. Phys. Chem. Chem. Phys., 2013, 15(39): 16883.

doi: 10.1039/c3cp53131g
[16]
Zhang G X, Sun Z M, Duan Y W, Ma R X, Zheng S L. Appl. Surf. Sci., 2017, 412: 105.

doi: 10.1016/j.apsusc.2017.03.198
[17]
Kehr E, Riehl G, Hoferichter E, Roffael E, Dix B. Holz Als Roh Und Werkstoff, 1994, 52(4): 253.

doi: 10.1007/BF02619105
[18]
Sun D, Wageh S, Al-Ghamdi A A, Le Y, Yu J G, Jiang C J. Appl. Surf. Sci., 2019, 466: 301.

doi: 10.1016/j.apsusc.2018.10.044
[19]
Guo J H, Lin C X, Jiang C J, Zhang P Y. Appl. Surf. Sci., 2019, 475: 237.

doi: 10.1016/j.apsusc.2018.12.238
[20]
Cui W Y, Wang X Y, Tan N D, Fine Chem., 2020, 37: 1977.
(崔维怡, 王希越, 谭乃迪. 精细化工, 2020, 37: 1977.).
[21]
Huang H B, Leung D Y C. J. Catal., 2011, 280(1): 60.

doi: 10.1016/j.jcat.2011.03.003
[22]
Guo Y L, Sun Y J, Yang D P, Dai J J, Liu Z L, Chen Y S, Huang J L, Li Q B. ACS Appl. Mater. Interfaces, 2020, 12(2): 2469.

doi: 10.1021/acsami.9b18490
[23]
Yang J Y, Fan Y P, Li Z L, Peng Z K, Yang J H, Liu B Z, Liu Z Y. Mol. Catal., 2020, 492: 110992.
[24]
Zhang K Y, Dai L Y, Liu Y X, Deng J G, Jing L, Zhang K F, Hou Z Q, Zhang X, Wang J, Feng Y, Zhang Y X, Dai H X. Appl. Catal. B: Environ., 2020, 279: 119372.

doi: 10.1016/j.apcatb.2020.119372
[25]
Huang H, Dai Q G, Wang X Y. Appl. Catal. B: Environ., 2014, 158/159: 96.

doi: 10.1016/j.apcatb.2014.01.062
[26]
Zhao J, Xi W J, Tu C S, Dai Q G, Wang X Y. Appl. Catal. B: Environ., 2020, 263: 118237.

doi: 10.1016/j.apcatb.2019.118237
[27]
Lin Y, Sun J, Li S J, Wang D, Zhang C H, Wang Z, Li X B. Catal. Lett., 2020, 150(11): 3206.

doi: 10.1007/s10562-020-03217-9
[28]
Zhao S Z, Wen Y F, Liu X J, Pen X Y, Lü F, Gao F Y, Xie X Z, Du C C, Yi H H, Kang D J, Tang X L. Nano Res., 2020, 13(6): 1544.

doi: 10.1007/s12274-020-2765-1
[29]
Zhang C B, He H, Tanaka K I. Catal. Commun., 2005, 6(3): 211.

doi: 10.1016/j.catcom.2004.12.012
[30]
Wang R H, Li J H. Catal. Lett., 2009, 131(3/4): 500.

doi: 10.1007/s10562-009-9939-5
[31]
Yu F L, Qu Z P, Zhang X D, Fu Q, Wang Y. J. Energy Chem., 2013, 22(6): 845.

doi: 10.1016/S2095-4956(14)60263-1
[32]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, He Z C. J. Phys. Chem. C, 2012, 116(1): 851.

doi: 10.1021/jp208947e
[33]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem. Int. Ed., 2012, 51(38): 9628.

doi: 10.1002/anie.v51.38
[34]
Chen H Y, Rui Z B, Wang X Y, Ji H B. Catal. Today, 2015, 258: 56.

doi: 10.1016/j.cattod.2015.03.043
[35]
Qi L F, Cheng B, Yu J G, Ho W. J. Hazard. Mater., 2016, 301: 522.

doi: 10.1016/j.jhazmat.2015.09.026
[36]
Rasko J, Kecskes T, Kiss J. J. Catal., 2004, 226: 183.

doi: 10.1016/j.jcat.2004.05.024
[37]
Sun X C, Lin J, Guan H L, Li L, Sun L, Wang Y H, Miao S, Su Y, Wang X D. Appl. Catal. B: Environ., 2018, 226: 575.

doi: 10.1016/j.apcatb.2018.01.011
[38]
Camposeco R, Castillo S, Nava N, Maturano V, Zanella R. Catal. Lett., 2020, 150(11): 3342.

doi: 10.1007/s10562-020-03254-4
[39]
Huang H B, Leung D Y C. ACS Catal., 2011, 1(4): 348.

doi: 10.1021/cs200023p
[40]
Park S J, Bae I, Nam I S, Cho B K, Jung S M, Lee J H. Chem. Eng. J., 2012, 195/196: 392.

doi: 10.1016/j.cej.2012.04.028
[41]
Kim M S, Chung S H, Yoo C J, Lee M S, Cho I H, Lee D W, Lee K Y. Appl. Catal. B: Environ., 2013, 142/143: 354.

doi: 10.1016/j.apcatb.2013.05.033
[42]
Li H F, Zhang N, Chen P, Luo M F, Lu J Q. Appl. Catal. B: Environ., 2011, 110: 279.

doi: 10.1016/j.apcatb.2011.09.013
[43]
Liu B C, Li C Y, Zhang Y F, Liu Y, Hu W T, Wang Q, Han L, Zhang J. Appl. Catal. B: Environ., 2012, 111/112: 467.

doi: 10.1016/j.apcatb.2011.10.036
[44]
Li S P, Ezugwu C I, Zhang S P, Xiong Y, Liu S W. Appl. Surf. Sci., 2019, 487: 260.

doi: 10.1016/j.apsusc.2019.05.083
[45]
Qu Z P, Shen S J, Chen D, Wang Y. J. Mol. Catal. A: Chem., 2012, 356: 171.

doi: 10.1016/j.molcata.2012.01.013
[46]
Ma L, Wang D S, Li J H, Bai B Y, Fu L X, Li Y D. Appl. Catal. B: Environ., 2014, 148/149: 36.

doi: 10.1016/j.apcatb.2013.10.039
[47]
Fang R M, He M, Huang H B, Feng Q Y, Ji J, Zhan Y J, Leung D Y C, Zhao W. Chemosphere, 2018, 213: 235.

doi: 10.1016/j.chemosphere.2018.09.019
[48]
Lu S H, Wang X, Zhu Q Y, Chen C C, Zhou X F, Huang F L, Li K L, He L L, Liu Y X, Pang F J. RSC Adv., 2018, 8(26): 14221.

doi: 10.1039/C8RA01611A
[49]
Zhang C B, He H, Tanaka K I. Appl. Catal. B: Environ., 2006, 65(1/2): 37.

doi: 10.1016/j.apcatb.2005.12.010
[50]
Peng J X, Wang S D. Appl. Catal. B: Environ., 2007, 73(3/4): 282.

doi: 10.1016/j.apcatb.2006.12.012
[51]
Xu Q L, Lei W Y, Li X Y, Qi X Y, Yu J G, Liu G, Wang J L, Zhang P Y. Environ. Sci. Technol., 2014, 48(16): 9702.

doi: 10.1021/es5019477
[52]
Huang H B, Leung D Y C, Ye D Q. J. Mater. Chem., 2011, 21(26): 9647.

doi: 10.1039/c1jm10413f
[53]
Su Y, Ji K M, Xun J Y, Zhang K, Liu P, Zhao L. Chin. J. Chem. Eng., 2021, 29: 190.

doi: 10.1016/j.cjche.2020.04.024
[54]
Pei J J, Zhang J S S. Hvac&R Res., 2011, 17: 476.
[55]
Sidheswaran M A, Destaillats H, Sullivan D P, Larsen J, Fisk W J. Appl. Catal. B: Environ., 2011, 107(1/2): 34.

doi: 10.1016/j.apcatb.2011.06.032
[56]
Zhang C B, He H. Catal. Today, 2007, 126(3/4): 345.

doi: 10.1016/j.cattod.2007.06.010
[57]
Bai B Y, Qiao Q, Li J H, Hao J M. Chin. J. Catal., 2016, 37(1): 102.

doi: 10.1016/S1872-2067(15)61007-5
[58]
Sekine Y. Atmos. Environ., 2002, 36(35): 5543.

doi: 10.1016/S1352-2310(02)00670-2
[59]
Li S D, Zheng D S, Guo F. Modern Chem. Ind., 2020, 40: 52.
(李书典, 郑德山, 郭峰. 现代化工, 2020, 40: 52.).
[60]
Tian H, He J H. Chem. Bull., 2013, 76: 100.
(田华, 贺军辉. 化学通报, 2013, 76: 100.).
[61]
Robinson D M, Go Y B, Mui M, Gardner G, Zhang Z J, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes G C. J. Am. Chem. Soc., 2013, 135(9): 3494.

doi: 10.1021/ja310286h pmid: 23391134
[62]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5(4): 2305.

doi: 10.1039/C4CY01461H
[63]
Zhou J, Qin L F, Xiao W, Zeng C, Li N, Lv T, Zhu H. Appl. Catal. B: Environ., 2017, 207: 233.

doi: 10.1016/j.apcatb.2017.01.083
[64]
Rong S P, Zhang P Y, Liu F, Yang Y J. ACS Catal., 2018, 8(4): 3435.

doi: 10.1021/acscatal.8b00456
[65]
Chen T, Dou H Y, Li X L, Tang X F, Li J H, Hao J M. Microporous Mesoporous Mater., 2009, 122(1/3): 270.

doi: 10.1016/j.micromeso.2009.03.010
[66]
Wang M, Zhang L X, Huang W M, Xiu T P, Zhuang C G, Shi J L. Chem. Eng. J., 2017, 320: 667.

doi: 10.1016/j.cej.2017.03.098
[67]
Boyjoo Y, Rochard G, Giraudon J M, Liu J, Lamonier J F. Sustain. Mater. Technol., 2019, 20: e00091.
[68]
Bai B Y, Qiao Q, Li J H, Hao J M. Chin. J. Catal., 2016, 37(1): 27.

doi: 10.1016/S1872-2067(15)61026-9
[69]
Zhu D D, Huang Y, Cao J J, Lee S C, Chen M J, Shen Z X. Appl. Catal. B: Environ., 2019, 258: 117981.

doi: 10.1016/j.apcatb.2019.117981
[70]
Bai B Y, Arandiyan H, Li J H. Appl. Catal. B: Environ., 2013, 142/143: 677.

doi: 10.1016/j.apcatb.2013.05.056
[71]
Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458(7239): 746.

doi: 10.1038/nature07877
[72]
Ma C Y, Mu Z, Li J J, Jin Y G, Cheng J, Lu G Q, Hao Z P, Qiao S Z. J. Am. Chem. Soc., 2010, 132(8): 2608.

doi: 10.1021/ja906274t
[73]
Tang X F, Li Y G, Huang X M, de Xu Y, Zhu H Q, Wang J G, Shen W J. Appl. Catal. B: Environ., 2006, 62(3/4): 265.

doi: 10.1016/j.apcatb.2005.08.004
[74]
Wang Z, Wang W Z, Zhang L, Jiang D. Catal. Sci. Technol., 2016, 6(11): 3845.

doi: 10.1039/C5CY01709B
[75]
Wang Y, Zhu A M, Chen B B, Crocker M, Shi C. Catal. Commun., 2013, 36: 52.

doi: 10.1016/j.catcom.2013.03.007
[76]
Lu S H, Wang F, Chen C C, Huang F L, Li K L. J. Rare Earths, 2017, 35(9): 867.

doi: 10.1016/S1002-0721(17)60988-8
[77]
Jiang T T, Wang X, Chen J Z, Mai Y L, Liao B, Hu W. J. Mater. Sci.: Mater. Electron., 2020, 31(4): 3500.
[78]
Wu J M, Yi H H, Tang X L, Zhao S Z, Xu J L, Meng J X, Li Q. Mater. Chem. Phys., 2020, 240: 122123.

doi: 10.1016/j.matchemphys.2019.122123
[79]
Shi C, Wang Y, Zhu A M, Chen B B, Au C. Catal. Commun., 2012, 28: 18.

doi: 10.1016/j.catcom.2012.08.003
[80]
Shi C, Chen B B, Li X S, Crocker M, Wang Y, Zhu A M. Chem. Eng. J., 2012, 200/202: 729.

doi: 10.1016/j.cej.2012.06.103
[81]
Fan J W, Niu X F, Teng W, Zhang P, Zhang W X, Zhao D Y. J. Mater. Chem. A, 2020, 8(33): 17174.

doi: 10.1039/D0TA05473A
[82]
Kim S S, Park K H, Hong S C. Appl. Catal. A: Gen., 2011, 398(1/2): 96.

doi: 10.1016/j.apcata.2011.03.018
[83]
Yan Z X, Xu Z H, Yue L, Shi L, Huang L Y. Chin. J. Catal., 2018, 39(12): 1919.

doi: 10.1016/S1872-2067(18)63143-2
[84]
Su J F, Cheng C L, Guo Y P, Xu H, Ke Q F. J. Hazard. Mater., 2019, 380: 120890.

doi: 10.1016/j.jhazmat.2019.120890
[85]
Ding J J, Chen J S, Rui Z B, Liu Y L, Lv P, Liu X K, Li H Q, Ji H B. Catal. Today, 2018, 316: 107.

doi: 10.1016/j.cattod.2018.01.031
[86]
Ding J J, Rui Z B, Lyu P T, Liu Y L, Liu X K, Ji H B. Appl. Surf. Sci., 2018, 457: 670.

doi: 10.1016/j.apsusc.2018.06.302
[87]
Ma L Y, Liu C X, Guan Q X, Li W. Appl. Organomet. Chem., 2019, 33(11): e5217.
[88]
Huang Y, Liu Y, Wang W, Chen M J, Li H W, Lee S C, Ho W, Huang T T, Cao J J. Appl. Catal. B: Environ., 2020, 278: 119294.

doi: 10.1016/j.apcatb.2020.119294
[89]
Jiang X N, Yao W Y, Wang J T, Ling L C, Qiao W M. Ind. Eng. Chem. Res., 2018, 57(43): 14544.

doi: 10.1021/acs.iecr.8b03800
[90]
Lu L, Tian H, He J H, Yang Q W. J. Phys. Chem. C, 2016, 120(41): 23660.

doi: 10.1021/acs.jpcc.6b08312
[91]
Peng S, Yang X X, Strong J, Sarkar B, Jiang Q, Peng F, Liu D F, Wang H L. J. Hazard. Mater., 2020, 396: 122750.

doi: 10.1016/j.jhazmat.2020.122750
[92]
Chen D, Shi J, Yao Y B, Wang S W, Wu C L. React. Kinetics Mech. Catal., 2019, 127(1): 315.
[93]
Wang H C, Huang Z W, Jiang Z, Jiang Z, Zhang Y, Zhang Z X, Shangguan W F. ACS Catal., 2018, 8(4): 3164.

doi: 10.1021/acscatal.8b00309
[94]
Li H W, Huang T T, Lu Y F, Cui L, Wang Z Y, Zhang C F, Lee S, Huang Y, Cao J J, Ho W. Environ. Sci.: Nano, 2018, 5(5): 1130.
[95]
Wang C, Zou X H, Liu H B, Chen T H, Suib S L, Chen D, Xie J J, Li M X, Sun F W. Appl. Surf. Sci., 2019, 486: 420.

doi: 10.1016/j.apsusc.2019.04.257
[96]
Han Z Y, Wang C, Zou X H, Chen T H, Dong S W, Zhao Y, Xie J J, Liu H B. Appl. Surf. Sci., 2020, 502: 144201.

doi: 10.1016/j.apsusc.2019.144201
[97]
Rong S P, Zhang P Y, Wang J L, Liu F, Yang Y J, Yang G L, Liu S. Chem. Eng. J., 2016, 306: 1172.

doi: 10.1016/j.cej.2016.08.059
[98]
Qi L F, Ho W, Wang J L, Zhang P Y, Yu J G. Catal. Sci. Technol., 2015, 5(4): 2366.

doi: 10.1039/C4CY01712A
[99]
Yan Z X, Xu Z H, Yu J G, Jaroniec M. Appl. Catal. B: Environ., 2016, 199: 458.

doi: 10.1016/j.apcatb.2016.06.052
[100]
Li D D, Yang G L, Li P L, Wang J L, Zhang P Y. Catal. Today, 2016, 277: 257.

doi: 10.1016/j.cattod.2016.02.040
[101]
Yan Z X, Xu Z H, Yang Z H, Yue L, Huang L Y. Appl. Surf. Sci., 2019, 467/468: 277.

doi: 10.1016/j.apsusc.2018.10.123
[102]
Yang M, Li S, Wang Y, Herron J A, Xu Y, Allard L F, Lee S, Huang J, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2014, 346(6216): 1498.

doi: 10.1126/science.1260526
[103]
Yang M, Liu J L, Lee S, Zugic B, Huang J, Allard L F, Flytzani-Stephanopoulos M. J. Am. Chem. Soc., 2015, 137(10): 3470.

doi: 10.1021/ja513292k
[104]
Nie L H, Yu J G, Li X Y, Cheng B, Liu G, Jaroniec M. Environ. Sci. Technol., 2013, 47(6): 2777.

doi: 10.1021/es3045949
[105]
Xiang N, Hou Y Q, Han X J, Li Y L, Guo Y P, Liu Y J, Huang Z G. ChemCatChem, 2019, 11(20): 5098.

doi: 10.1002/cctc.201901039
[106]
Liu F, Shen J, Xu D F, Zhou W Y, Zhang S Y, Wan L. Chem. Eng. J., 2018, 334: 2283.

doi: 10.1016/j.cej.2017.11.114
[107]
Wang L, Yue H Q, Hua Z L, Wang H Y, Li X B, Li L C. Appl. Catal. B: Environ., 2017, 219: 301.
[108]
Huang Y C, Fan W J, Long B, Li H B, Qiu W T, Zhao F Y, Tong Y X, Ji H B. J. Mater. Chem. A, 2016, 4(10): 3648.

doi: 10.1039/C5TA09370H
[109]
Fang R M, Feng Q Y, Huang H B, Ji J, He M, Zhan Y J, Liu B Y, Leung D Y C. Catal. Today, 2019, 327: 154.

doi: 10.1016/j.cattod.2018.05.019
[110]
Rong S P, Li K Z, Zhang P Y, Liu F, Zhang J Y. Catal. Sci. Technol., 2018, 8(7): 1799.

doi: 10.1039/C7CY02121F
[111]
Fan Z Y, Zhang Z X, Fang W J, Yao X, Zou G C, Shangguan W F. Chin. J. Catal., 2016, 37(6): 947.

doi: 10.1016/S1872-2067(15)61086-5
[112]
Fan Z Y, Shi J, Zhang Z X, Chen M X. J. Chem. Technol. Biot., 2018, 93: 3562.
[113]
Li Y B, Chen X Y, Wang C Y, Zhang C B, He H. ACS Catal., 2018, 8(12): 11377.

doi: 10.1021/acscatal.8b03026
[114]
Shi Y Y, Qiao Z W, Liu Z L, Zuo J L. Catal. Lett., 2019, 149(5): 1319.

doi: 10.1007/s10562-019-02684-z
[115]
Cui W Y, Liu L, Yang J J, Tan N D. J. Dispers. Sci. Technol., 2020, 41(12): 1831.

doi: 10.1080/01932691.2019.1637752
[116]
Wu H C, Chen T C, Chen Y C, Lee J F, Chen C S. J. Catal., 2017, 355: 87.

doi: 10.1016/j.jcat.2017.08.029
[117]
Tian H, He J H, Liu L L, Wang D H, Hao Z P, Ma C Y. Microporous Mesoporous Mater., 2012, 151: 397.

doi: 10.1016/j.micromeso.2011.10.003
[118]
Zhou L, Zhang J, He J H, Hu Y C, Tian H. Mater. Res. Bull., 2011, 46(10): 1714.

doi: 10.1016/j.materresbull.2011.05.039
[119]
Kung H H, Kung M C. J. Catal., 2003, 216: 425.

doi: 10.1016/S0021-9517(02)00111-2
[120]
Ma C Y, Yang C G, Wang B, Chen C, Wang F B, Yao X L, Song M Y. Appl. Catal. B: Environ., 2019, 254: 76.

doi: 10.1016/j.apcatb.2019.04.085
[121]
Liu P, Wei G L, He H P, Liang X L, Chen H L, Xi Y F, Zhu J X. Appl. Surf. Sci., 2019, 464: 287.

doi: 10.1016/j.apsusc.2018.09.070
[122]
Zhu X, Cheng B, Yu J, Ho W. J. A. S. S., 2016, 364: 808.
[1] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[2] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[3] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[4] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[5] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[6] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[7] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[8] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[9] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[10] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[11] Zhe Liu, Xiaolan Zhang, Ting Cai, Jing Yua, Kunfeng Zhao, Dannong He. Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect [J]. Progress in Chemistry, 2019, 31(2/3): 311-321.
[12] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[13] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[14] Jing Wang, Nan Yao*. Ni-Based Catalysts for Syngas Methanation Reaction [J]. Progress in Chemistry, 2017, 29(12): 1509-1517.
[15] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.