中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1362-1377 DOI: 10.7536/PC200747 Previous Articles   Next Articles

• Review •

The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals

Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv(), Runfeng Chen()   

  1. Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Wenzhen Lv, Runfeng Chen
  • Supported by:
    National Natural Science Foundation of China(21304049); National Natural Science Foundation of China(21674049); National Natural Science Foundation of China(21001065); National Natural Science Foundation of China(21274065); National Natural Science Foundation of China(21601091); Natural Science Foundation of Jiangsu Province of China(BK20160891); Startup Foundation for Talents(NY216028); 1311 Talents Program of Nanjing University of Posts and Telecommunications
Richhtml ( 49 ) PDF ( 916 ) Cited
Export

EndNote

Ris

BibTeX

All-inorganic cesium lead halide perovskite CsPbX3(X = Cl, Br, I) nanocrystals, as a new generation of low cost and direct band gap semiconductor materials, have attracted extensive attention of researchers owing to their outstanding photoluminescence(PL) performance, solution processability, and defect tolerance. Especially, this new emerged materials show arresting optoelectronic properties, such as high absorption coefficient, size- and composition-dependent tunable band gaps from the violet to near-infrared, extremely narrow full width at half-maximum, and high photoluminescence quantum yields(PLQY). Many potential optoelectronic applications have been demonstrated as illumination, energy, information storage and detection. In this review, we mainly focus on the related crystal structure characteristics of CsPbX3 nanocrystals, the various colloidal synthesis of monodisperse CsPbX3 nanocrystals including the high temperature hot-injection method, room-temperature recrystallization method, solvothermal method, droplet-based microfluidic method, postsynthetic halide anion exchange reaction, and so on. We also summarize the common strategies for efficiently controlling different morphology and size via controlling the temperature and the capping ligands. The related methods to enhance the stability are also summarized. In addition, we carefully conclude the optoelectronic device of CsPbX3 nanocrystals in white light-emitting diodes(WLEDs), electroluminescent light emitting diodes(LEDs), lasers especially in low-threshold amplified spontaneous emission, photodetectors, high-efficiency solar cells, and other optoelectronics fields. Finally, the existing problems and prospects are also provided in detail.

Contents

1 Introduction

2 Crystal structures of CsPbX3

3 Synthesis methods of CsPbX3 nanocrystals

3.1 High temperature hot-injection method

3.2 Room-temperature reprecipitation method

3.3 Droplet-based microfluidic method

3.4 Solvothermal method

3.5 Anion exchange reaction

3.6 Microwave assisted approach

3.7 Ultrasonic synthesis

4 The morphology and size control of CsPbX3 nanocrystals

4.1 Reaction temperature

4.2 Capping ligands

5 Strategies for enhancing the stability of CsPbX3 nanocrystals

6 Optoelectronic applications of CsPbX3 nanocrystals

6.1 White light emitting diodes(WLEDs)

6.2 Electroluminescent light emitting diodes(LEDs)

6.3 Lasers

6.4 Photodetectors

6.5 Solar cells

7 Conclusion and outlook

Fig. 1 Structural phase transition of CsPbBr3 nanocrystals[13]
Fig. 2 Diagram of(a) High temperature hot-injection method;(b) Room-temperature recrystallization method[4,24]
Fig. 3 Diagram of(a) Droplet-based microfluidic method;(b) Solvothermal method;(c) Anion exchange method[14,34,35]
Fig. 4 The effect of surface ligands and temperature on the morphology of CsPbX3 nanocrystals[50]
Fig. 5 (a) Photoluminescence spectra of CsPbBr3 nanocrystals and CsPbBr3/PDMS film;(b) Schematic of WLED device structure;(c) Photoluminescence spectra of WLED device;(d) Color coordinates of WLED in CIE 1931 chart[67]
Fig. 6 (a) Schematic of LED device structure;(b) Electroluminescence spectrum of LED device;(c) Curve of current density with voltage;(d) Curve of the EQE with current density[75]
Fig. 7 Related measurement for CsPbBr3 nanowires laser. (a) The emission wavelength with pump fluence;(b) The photoluminescence intensity vs FWHM with pump fluence;(c) The time-resolved spectroscopy;(d) The light stability test[11]
Fig. 8 (a) Schematic of CsPbBr3 nanowires photodetector structure;(b) Time-dependent photocurrent measurement for CsPbBr3 nanowires photodetector under different laser intensity(λ = 400 nm)[82]
Fig. 9 (a) Schematic of perovskite solar cell structure;(b) Curve of current density with voltage and related parameters;(c) Curve of EQE and current density vs wavelength[89]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r
[2]
Liu Z H, Qiu L B, Juarez-Perez E J, Hawash Z, Kim T, Jiang Y, Wu Z F, Raga S R, Ono L K, Liu S Z, Qi Y B. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[3]
Sutherland B R, Sargent E H. Nat. Photonics, 2016, 10(5): 295.

doi: 10.1038/nphoton.2016.62
[4]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15(6): 3692.

doi: 10.1021/nl5048779 pmid: 25633588
[5]
Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015, 6(13): 2452.

doi: 10.1021/acs.jpclett.5b00968
[6]
Song J Z, Li J H, Li X M, Xu L M, Dong Y H, Zeng H B. Adv. Mater., 2015, 27(44): 7162.

doi: 10.1002/adma.201502567
[7]
Song J Z, Xu L M, Li J H, Xue J, Dong Y H, Li X M, Zeng H B. Adv. Mater., 2016, 28(24): 4861.

doi: 10.1002/adma.v28.24
[8]
Li X M, Yu D J, Cao F, Gu Y, Wei Y, Wu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(32): 5903.

doi: 10.1002/adfm.v26.32
[9]
Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A. Angew. Chem. Int. Ed., 2015, 54(51): 15424.
[10]
Eaton S W, Lai M L, Gibson N A, Wong A B, Dou L T, Ma J, Wang L W, Leone S R, Yang P D. PNAS, 2016, 113(8): 1993.

doi: 10.1073/pnas.1600789113
[11]
Fu Y P, Zhu H M, Stoumpos C C, Ding Q, Wang J, Kanatzidis M G, Zhu X Y, Jin S. ACS Nano, 2016, 10(8): 7963.

doi: 10.1021/acsnano.6b03916
[12]
Møller C K. Nature, 1958, 182(4647): 1436.
[13]
Cottingham P, Brutchey R L. Chem. Mater., 2018, 30(19): 6711.

doi: 10.1021/acs.chemmater.8b02295
[14]
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V. Nano Lett., 2015, 15(8): 5635.

doi: 10.1021/acs.nanolett.5b02404
[15]
Cottingham P, Brutchey R L. Chem. Commun., 2016, 52(30): 5246.

doi: 10.1039/C6CC01088A
[16]
Liu Z K, Bekenstein Y, Ye X C, Nguyen S C, Swabeck J, Zhang D D, Lee S T, Yang P D, Ma W L, Alivisatos A P. J. Am. Chem. Soc., 2017, 139(15): 5309.

doi: 10.1021/jacs.7b01409
[17]
Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J. Angew. Chem. Int. Ed., 2016, 55(44): 13887.
[18]
Zeng P, Wei L F, Zhao H F, Zhang R, Chen H T, Liu M Z. J. Mater. Chem. C, 2020, 8(27): 9358.

doi: 10.1039/D0TC01604G
[19]
Ruan L J, Tang B, Ma Y. J. Phys. Chem. C, 2019, 123(18): 11959.
[20]
Rana P J S, Swetha T, Mandal H, Saeki A, Bangal P R, Singh S P. J. Phys. Chem. C, 2019, 123(27): 17026.
[21]
Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R. J. Phys. Chem. C, 2019, 123(29): 18103.
[22]
Li Q Y, Yang Y W, Que W X, Lian T Q. Nano Lett., 2019, 19(8): 5620.

doi: 10.1021/acs.nanolett.9b02145
[23]
Zheng C, Bi C H, Huang F, Binks D, Tian J J. ACS Appl. Mater. Interfaces, 2019, 11(28): 25410.
[24]
Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(15): 2435.

doi: 10.1002/adfm.v26.15
[25]
Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K. Chem. Mater., 2017, 29(12): 5168.

doi: 10.1021/acs.chemmater.7b00692
[26]
Imran M, Caligiuri V, Wang M J, Goldoni L, Prato M, Krahne R de Trizio L, Manna L. J. Am. Chem. Soc., 2018, 140(7): 2656.

doi: 10.1021/jacs.7b13477
[27]
Luo C, Yan C, Li W, Chun F J, Xie M L, Zhu Z H, Gao Y, Guo B L, Yang W Q. Adv. Funct. Mater., 2020, 30(19): 2000026.
[28]
de Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z. ACS Nano, 2016, 10(2): 2071.

doi: 10.1021/acsnano.5b06295
[29]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Science, 2016, 354(6308): 92.

doi: 10.1126/science.aag2700
[30]
Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D’Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L de Angelis F, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(3): 1010.

doi: 10.1021/jacs.5b12124 pmid: 26726764
[31]
Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T. ACS Nano, 2016, 10(3): 3648.

doi: 10.1021/acsnano.5b08193
[32]
Wei S, Yang Y C, Kang X J, Wang L, Huang L J, Pan D C. Chem. Commun., 2016, 52(45): 7265.

doi: 10.1039/C6CC01500J
[33]
Ng C K, Yin W P, Li H C, Jasieniak J J. Nanoscale, 2020, 12(8): 4859.

doi: 10.1039/C9NR10726F
[34]
Lignos I, Stavrakis S, Nedelcu G, Protesescu L, de Mello A J, Kovalenko M V. Nano Lett., 2016, 16(3): 1869.

doi: 10.1021/acs.nanolett.5b04981
[35]
Chen M, Zou Y T, Wu L Z, Pan Q, Yang D, Hu H C, Tan Y S, Zhong Q X, Xu Y, Liu H Y, Sun B Q, Zhang Q. Adv. Funct. Mater., 2017, 27(23): 1701121.
[36]
Zhai W, Lin J, Li C, Hu S M, Huang Y, Yu C, Wen Z K, Liu Z Y, Fang Y, Tang C C. Nanoscale, 2018, 10(45): 21451.
[37]
Chen M, Hu H C, Yao N, Yuan X L, Zhong Q X, Cao M H, Xu Y, Zhang Q. J. Mater. Chem. C, 2019, 7(46): 14493.
[38]
Liu C, Lin J, Zhai W, Wen Z K, He X, Yu M M, Huang Y, Guo Z L, Yu C, Tang C C. RSC Adv., 2019, 9(67): 39315.
[39]
Sun C, Gao Z Y, Liu H X, Wang L, Deng Y C, Li P, Li H R, Zhang Z H, Fan C, Bi W G. Chem. Mater., 2019, 31(14): 5116.

doi: 10.1021/acs.chemmater.9b01010
[40]
Chen D Q, Zhou S, Fang G L, Chen X, Zhong J S. ACS Appl. Mater. Interfaces, 2018, 10(46): 39872.
[41]
Li Y X, Huang H, Xiong Y, Richter A F, Kershaw S V, Feldmann J, Rogach A L. ACS Nano, 2019, 13(7): 8237.

doi: 10.1021/acsnano.9b03508
[42]
Liu Y, Li F, Li Q, Yang K, Guo T, Li X, Zeng H. ACS Photonics, 2018, 5: 4504.

doi: 10.1021/acsphotonics.8b00966
[43]
Loiudice A, Strach M, Saris S, Chernyshov D, Buonsanti R. J. Am. Chem. Soc., 2019: 9b02061.
[44]
Chen Y C, Chou H L, Lin J C, Lee Y C, Pao C W, Chen J L, Chang C C, Chi R Y, Kuo T R, Lu C W, Wang D Y. J. Phys. Chem. C, 2019, 123(4): 2353.

doi: 10.1021/acs.jpcc.8b11535
[45]
Lv W, Tang X X, Li L, Xu L G, Li M G, Chen R F, Huang W. J. Phys. Chem. C, 2019, 123(39): 24313.
[46]
Long Z, Ren H, Sun J H, Ouyang J, Na N. Chem. Commun., 2017, 53(71): 9914.

doi: 10.1039/C7CC04862A
[47]
Pan Q, Hu H C, Zou Y T, Chen M, Wu L Z, Yang D, Yuan X L, Fan J, Sun B Q, Zhang Q. J. Mater. Chem. C, 2017, 5(42): 10947.
[48]
Tong Y, Yao E P, Manzi A, Bladt E, Wang K, Döblinger M, Bals S, Müller-Buschbaum P, Urban A S, Polavarapu L, Feldmann J. Adv. Mater., 2018, 30(29): 1801117.
[49]
Li C H, Li Y, Zhou T L, Xie R J. Opt. Mater., 2019, 94: 41.

doi: 10.1016/j.optmat.2019.04.053
[50]
Pan A Z, He B, Fan X Y, Liu Z K, Urban J J, Alivisatos A P, He L, Liu Y. ACS Nano, 2016, 10(8): 7943.

doi: 10.1021/acsnano.6b03863
[51]
Imran M, di Stasio F, Dang Z Y, Canale C, Khan A H, Shamsi J, Brescia R, Prato M, Manna L. Chem. Mater., 2016, 28(18): 6450.

doi: 10.1021/acs.chemmater.6b03081
[52]
Imran M, Ijaz P, Baranov D, Goldoni L, Petralanda U, Akkerman Q, Abdelhady A L, Prato M, Bianchini P, Infante I, Manna L. Nano Lett., 2018, 18(12): 7822.

doi: 10.1021/acs.nanolett.8b03598
[53]
Bekenstein Y, Koscher B A, Eaton S W, Yang P D, Alivisatos A P. J. Am. Chem. Soc., 2015, 137(51): 16008.
[54]
Dutta A, Behera R K, Pal P, Baitalik S, Pradhan N. Angew. Chem. Int. Ed., 2019, 58(17): 5552.

doi: 10.1002/anie.v58.17
[55]
Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R. ACS Appl. Mater. Interfaces, 2016, 8(42): 28824.
[56]
Shamsi J, Dang Z Y, Bianchini P, Canale C di Stasio F, Brescia R, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(23): 7240.

doi: 10.1021/jacs.6b03166 pmid: 27228475
[57]
Lu C, Wright M W, Ma X, Li H, Itanze D S, Carter J A, Hewitt C A, Donati G L, Carroll D L, Lundin P M, Geyer S M. Chem. Mater., 2019, 31(1): 62.

doi: 10.1021/acs.chemmater.8b04876
[58]
Lv W, Li L, Xu M C, Hong J X, Tang X X, Xu L G, Wu Y H, Zhu R, Chen R F, Huang W. Adv. Mater., 2019, 31(28): 1900682.
[59]
Tang B, Ruan L J, Qin C Y, Shu A, He H M, Ma Y. Adv. Optical Mater., 2020, 8(16): 2000498.
[60]
Akkerman Q A, Meggiolaro D, Dang Z Y, de Angelis F, Manna L. ACS Energy Lett., 2017, 2(9): 2183.

doi: 10.1021/acsenergylett.7b00707 pmid: 29142911
[61]
Wang Y N, Dong Y J, Liu Q, Guo X, Zhang M J, Li Y F. Nano Energy, 2020, 78: 105150.
[62]
Wang P J, Wang B L, Liu Y C, Li L, Zhao H, Chen Y H, Li J Y, Liu S F, Zhao K. Angew. Chem. Int. Ed., 2020, 59(51): 23100.
[63]
Li Z T, Song C J, Li J S, Liang G W, Rao L S, Yu S D, Ding X R, Tang Y, Yu B H, Ou J Z, Lemmer U, Gomard G. Adv. Mater. Technol., 2020, 5(2): 1900941.
[64]
Duan Y Y, Ezquerro C, Serrano E, Lalinde E, García-Martínez J, Berenguer J R, Costa R D. Adv. Funct. Mater., 2020, 30(40): 2005401.
[65]
Huang H, Chen B K, Wang Z G, Hung T F, Susha A S, Zhong H Z, Rogach A L. Chem. Sci., 2016, 7(9): 5699.

doi: 10.1039/c6sc01758d pmid: 30034709
[66]
Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C, Chen C Y, Lee Y C, Tsai T L, Liu R S. Angew. Chem. Int. Ed., 2016, 55(28): 7924.

doi: 10.1002/anie.201603698
[67]
Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G. Chem. Mater., 2018, 30(23): 8546.

doi: 10.1021/acs.chemmater.8b03442
[68]
Ye S, Sun J Y, Han Y H, Zhou Y Y, Zhang Q Y. ACS Appl. Mater. Interfaces, 2018, 10(29): 24656.
[69]
Lv W, Li L, Li M, Xu L, Huang W, Chen R. Adv. Opt. Mater., 2020, 8.
[70]
Yoon H C, Kang H, Lee S, Oh J H, Yang H, Do Y R. ACS Appl. Mater. Interfaces, 2016, 8(28): 18189.
[71]
Li G R, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S C, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Adv. Mater., 2016, 28(18): 3528.

doi: 10.1002/adma.201600064
[72]
Zhang X Y, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, Rogach A L. Nano Lett., 2016, 16(2): 1415.

doi: 10.1021/acs.nanolett.5b04959
[73]
Zhang X Y, Sun C, Zhang Y, Wu H, Ji C Y, Chuai Y H, Wang P, Wen S P, Zhang C F, Yu W W. J. Phys. Chem. Lett., 2016, 7(22): 4602.

doi: 10.1021/acs.jpclett.6b02073
[74]
Pan J, Quan L N, Zhao Y B, Peng W, Murali B, Sarmah S P, Yuan M J, Sinatra L, Alyami N M, Liu J K, Yassitepe E, Yang Z Y, Voznyy O, Comin R, Hedhili M N, Mohammed O F, Lu Z H, Kim D H, Sargent E H, Bakr O M. Adv. Mater., 2016, 28(39): 8718.

doi: 10.1002/adma.201600784
[75]
Pan G C, Bai X, Xu W, Chen X, Zhai Y, Zhu J Y, Shao H, Ding N, Xu L, Dong B, Mao Y L, Song H W. ACS Appl. Mater. Interfaces, 2020, 12(12): 14195.
[76]
He Y D, Gong J H, Zhu Y Y, Feng X C, Peng H, Wang W, He H Y, Liu H, Wang L. Opt. Mater., 2018, 80: 1.

doi: 10.1016/j.optmat.2018.04.009
[77]
Kondo S, Takahashi K, Nakanish T, Saito T, Asada H, Nakagawa H. Curr. Appl. Phys., 2007, 7(1): 1.

doi: 10.1016/j.cap.2005.08.001
[78]
Yakunin S, Protesescu L, Krieg F, Bodnarchuk M I, Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W, Kovalenko M V. Nat. Commun., 2015, 6(1): 1.
[79]
Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G C, Yu W W, Wang X Y, Zhang Y, Xiao M. J. Am. Chem. Soc., 2016, 138(11): 3761.

doi: 10.1021/jacs.5b12662
[80]
Li R X, Yu J H, Wang S, Shi Y Q, Wang Z J, Wang K, Ni Z H, Yang X Y, Wei Z P, Chen R. Nanoscale, 2020, 12(25): 13360.
[81]
Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S. Chem. Commun., 2016, 52(10): 2067.

doi: 10.1039/C5CC08643D
[82]
Tong G Q, Jiang M W, Son D Y, Qiu L B, Liu Z H, Ono L K, Qi Y B. ACS Appl. Mater. Interfaces, 2020, 12(12): 14185.
[83]
Grätzel M. Nat. Mater., 2014, 13(9): 838.

doi: 10.1038/nmat4065
[84]
Ono M, Nishihara T, Ihara T, Kikuchi M, Tanaka A, Suzuki M, Kanemitsu Y. Chem. Sci., 2014, 5(7): 2696.

doi: 10.1039/c4sc00436a
[85]
Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. J. Phys. Chem. Lett., 2016, 7(5): 746.

doi: 10.1021/acs.jpclett.6b00002
[86]
Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. J. Mater. Chem. A, 2015, 3(39): 19688.
[87]
Luo P F, Xia W, Zhou S W, Sun L, Cheng J G, Xu C X, Lu Y W. J. Phys. Chem. Lett., 2016, 7(18): 3603.

doi: 10.1021/acs.jpclett.6b01576
[88]
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X. Science, 2019, 365(6453): 591.

doi: 10.1126/science.aav8680
[89]
Chen K Q, Jin W, Zhang Y P, Yang T Q, Reiss P, Zhong Q H, Bach U, Li Q T, Wang Y W, Zhang H, Bao Q L, Liu Y L. J. Am. Chem. Soc., 2020, 142(8): 3775.

doi: 10.1021/jacs.9b10700
[90]
Ling X F, Zhou S J, Yuan J Y, Shi J W, Qian Y L, Larson B W, Zhao Q, Qin C C, Li F C, Shi G Z, Stewart C, Hu J X, Zhang X L, Luther J M, Duhm S, Ma W L. Adv. Energy Mater., 2019, 9(28): 1900721.
[91]
Yao Z, Jin Z W, Zhang X R, Wang Q, Zhang H, Xu Z, Ding L M, Liu S F. J. Mater. Chem. C, 2019, 7(44): 13736.
[92]
Shi J W, Li F C, Yuan J Y, Ling X F, Zhou S J, Qian Y L, Ma W L. J. Mater. Chem. A, 2019, 7(36): 20936.
[93]
Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X. Angew. Chem. Int. Ed., 2019, 58(46): 16691.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[3] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[4] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[5] Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang, Yougen Tang. Preparation and Applications of Mn-Ce Binary Oxides [J]. Progress in Chemistry, 2019, 31(6): 811-830.
[6] Yadi Liu, Feng Liu, Cheng Wang, Bo Zhao, Jianlong Wang. Oxygen Evolution Catalyst of Solid Polymer Electrolysis [J]. Progress in Chemistry, 2018, 30(9): 1434-1444.
[7] Qingyang Xi, Jinsong Liu, Ziquan Li, Kongjun Zhu, Guoan Tai, Ruogu Song. Etching Methods and Application of Molybdenum Disulfide Film [J]. Progress in Chemistry, 2018, 30(6): 847-863.
[8] Guoqiang Wang, Min Jiang*, Qiang Zhang, Rui Wang, Xiaoling Qu, Guangyuan Zhou*. Polyesters Containing Furan Rings Based on Renewable Resources [J]. Progress in Chemistry, 2018, 30(6): 719-736.
[9] Yuanyuan Qi, Mingguang Li, Honglei Wang, Wen Zhang, Runfeng Chen*, Wei Huang*. Applications of Novel Hole-Transporting Material Copper(Ⅰ) Thiocyanate (CuSCN) in Optoelectronic Devices [J]. Progress in Chemistry, 2018, 30(6): 785-796.
[10] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[11] Yuanchao Du, Zheng Hua, Feng Liang, Yongmei Li, Yongnian Dai, Yaochun Yao. Synthesis of Lithium Iron Phosphate Cathode Material by Liquid State Method [J]. Progress in Chemistry, 2017, 29(1): 137-148.
[12] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[13] Zeng Tian, You Yuncheng, Wang Xufeng, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals [J]. Progress in Chemistry, 2016, 28(4): 459-470.
[14] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[15] Huang Qitong, Lin Xiaofeng, Li Feiming, Weng Wen, Lin Liping, Hu Shirong. Synthesis and Applications of Carbon Dots [J]. Progress in Chemistry, 2015, 27(11): 1604-1614.