中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1270-1279 DOI: 10.7536/PC200770 Previous Articles   Next Articles

• Review •

Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction

Yanmei Ren, Jiajun Wang, Ping Wang()   

  1. School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Contact: Ping Wang
  • Supported by:
    National Key R&D Program of China(2018YFB1502104); Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51621001); Natural Science Foundation of Guangdong Province(2016A030312011)
Richhtml ( 98 ) PDF ( 1248 ) Cited
Export

EndNote

Ris

BibTeX

Water splitting using the electricity from renewable energy sources offers a clean and sustainable way to produce H2 and meanwhile an advanced energy conversion technology. Thus it is expected to play a vital role in the future clean energy economy. Crucial to enabling this ideal vision is the development of high-performance and cost-effective electrocatalysts for the hydrogen evolution reaction(HER) and oxygen evolution reaction(OER). Molybdenum disulfide(MoS2) is a representative non-precious HER catalyst. A panoramic view of its researches and developments clearly shows that leading theoretical perspectives, logical material design, novel synthesis methods and advanced characterization technologies are the key components of a successful electrocatalyst implementation. At the same time, it also reflects the current research mode and points out the development directions of the electrocatalysts. This review covers a sequence of key discoveries and achievements that mark the development of MoS2 as a HER electrocatalyst, with special focuses on the implementation, effect and mechanism of the modification strategies including increasing the number of active edge sites, improvement of electrical conductivity and activation of inert basal planes. Finally, we briefly discuss the enlightenment from the studies of MoS2 electrocatalyst and look forward to the future trends of this appealing electrocatalytic material.

Contents

1 Introduction

2 Structure and properties of MoS2

3 The study of MoS2 electrocatalyst for HER

3.1 Theoretical discovery and experimental verification of MoS2 electrocatalysis for HER

3.2 The modification strategy to engineering active edge sites

3.3 The modification strategy to improving electrical conductivity

3.4 The modification strategy to activating basal planes

4 Several enlightenments from the studies of MoS2 electrocatalyst

5 Conclusion and outlook

Fig. 1 Crystal structures of 2H, 3R and 1T polytypes of MoS2[27]. Copyright 2014, ACS Catalysis
Fig. 2 (a) STM image of MoS2 nanoparticles on Au(111). Exchange current density versus(b) MoS2 area coverage and(c) MoS2 edge length[38]. Copyright 2007, Science
Table 1 A comparison of electrocatalytic performances of various MoS2-based catalysts towards the hydrogen evolution reaction
Fig. 3 (a) SEM image of MoS2 nanosheets with high edge/base ratio,(b) corresponding HER polarization curves and(c) Tafel plots[39]. Copyright 2013, ACS Catalysis; (d) SEM image of monolayer MoS2 with hydrogen treatment at high temperature,(e) corresponding HER polarization curves and(f) Tafel plots[55]. Copyright 2016, Nano Letters; (g) TEM image of edge-terminated MoS2 films with the layers aligned perpendicular to the substrate,(h) corresponding HER polarization curves and(i) Tafel plots[54]. Copyright 2013, Nano Letters
Fig. 4 (a) Schematic illustration for the preparation process of MoS2/RGO,(b) corresponding HER polarization curves and(c) Tafel plots[44]. Copyright 2011, Journal of the American Chemical Society; (d) Schematic illustration for the preparation process of MoO2@MoS2,(e) corresponding HER polarization curves and(c) Tafel plots[45]. Copyright 2016, Journal of Materials Chemistry B; (g) Model for the hopping process of electrons in the vertical direction of MoS2 layers and the exchange current density of the MoS2 film as a function of the layer number[64]. Copyright 2014, Nano Letters; (h) HER polarization curves of 1T and 2H MoS2 nanosheets,(i) corresponding Tafel plots[65]. Copyright 2013, Nano Letters
Fig. 5 (a) Schematic illustration for the chemical etching process to introduce single S-vacancies[52]. Copyright 2020, Journal of the American Chemical Society; (b) HRTEM image and corresponding FFTs and false-colored IFFTs image of MoS2 films with an ultra-high-density of grain boundaries,(c) corresponding HER polarization curves and(d) Tafel plots[71]. Copyright 2020, Nature Communications; (e) AFM image of multi-hierarchy MoS2 with boundaries,(f) corresponding HER polarization curves and(g) Tafel plots[53]. Copyright 2019, Nature Communications
[1]
West J J, Smith S J, Silva R A, Naik V, Zhang Y Q, Adelman Z, Fry M M, Anenberg S, Horowitz L W, Lamarque J F. Nat. Clim. Change, 2013, 3(10): 885.

doi: 10.1038/nclimate2009
[2]
Nicoletti G, Arcuri N, Nicoletti G, Bruno R. Energy Convers. Manag., 2015, 89: 205.

doi: 10.1016/j.enconman.2014.09.057
[3]
Mazloomi K, Gomes C. Renew. Sustain. Energy Rev., 2012, 16(5): 3024.

doi: 10.1016/j.rser.2012.02.028
[4]
Navarro R M, Peña M A, Fierro J L G. Chem. Rev., 2007, 107(10): 3952.

pmid: 17715983
[5]
Turner J A. Science, 2004, 305(5686): 972.

doi: 10.1126/science.1103197
[6]
Kibsgaard J, Chen Z B, Reinecke B N, Jaramillo T F. Nat. Mater., 2012, 11(11): 963.

doi: 10.1038/nmat3439 pmid: 23042413
[7]
Cheng L, Huang W J, Gong Q F, Liu C H, Liu Z, Li Y G, Dai H J. Angew. Chem. Int. Ed., 2014, 53(30): 7860.

doi: 10.1002/anie.201402315
[8]
Wu X L, Yang B, Li Z J, Lei L C, Zhang X W. RSC Adv., 2015, 5(42): 32976.
[9]
Liu P, Rodriguez J A. J. Am. Chem. Soc., 2005, 127(42): 14871.
[10]
Callejas J F, Read C G, Popczun E J, McEnaney J M, Schaak R E. Chem. Mater., 2015, 27(10): 3769.

doi: 10.1021/acs.chemmater.5b01284
[11]
Shi Y M, Zhang B. Chem. Soc. Rev., 2016, 45(6): 1529.

doi: 10.1039/C5CS00434A
[12]
Xie J F, Li S, Zhang X D, Zhang J J, Wang R X, Zhang H, Pan B C, Xie Y. Chem. Sci., 2014, 5(12): 4615.

doi: 10.1039/C4SC02019G
[13]
Gao D Q, Zhang J Y, Wang T T, Xiao W, Tao K, Xue D S, Ding J. J. Mater. Chem. A, 2016, 4(44): 17363.
[14]
Peng X, Pi C R, Zhang X M, Li S, Huo K F, Chu P K. Sustain. Energy Fuels, 2019, 3(2): 366.

doi: 10.1039/C8SE00525G
[15]
Wan C, Regmi Y N, Leonard B M. Angew. Chem. Int. Ed., 2014, 53(25): 6407.

doi: 10.1002/anie.v53.25
[16]
Michalsky R, Zhang Y J, Peterson A A. ACS Catal., 2014, 4(5): 1274.

doi: 10.1021/cs500056u
[17]
Gao Q S, Zhang W B, Shi Z P, Yang L C, Tang Y. Adv. Mater., 2019, 31(2): 1970009.
[18]
Gupta S, Patel N, Miotello A, Kothari D C. J. Power Sources, 2015, 279: 620.

doi: 10.1016/j.jpowsour.2015.01.009
[19]
Park H, Encinas A, Scheifers J P, Zhang Y M, Fokwa B P T. Angew. Chem. Int. Ed., 2017, 56(20): 5575.

doi: 10.1002/anie.v56.20
[20]
Zhang P L, Wang M, Yang Y, Yao T Y, Han H X, Sun L C. Nano Energy, 2016, 19: 98.

doi: 10.1016/j.nanoen.2015.11.020
[21]
Gong M, Zhou W, Tsai M C, Zhou J G, Guan M Y, Lin M C, Zhang B, Hu Y F, Wang D Y, Yang J, Pennycook S J, Hwang B J, Dai H J. Nat. Commun., 2014, 5: 4695.

doi: 10.1038/ncomms5695
[22]
Luo Z, Miao R, Huan T D, Mosa I M, Poyraz A S, Zhong W, Cloud J E, Kriz D A, Thanneeru S, He J K, Zhang Y S, Ramprasad R, Suib S L. Adv. Energy Mater., 2016, 6(16): 1600528.
[23]
Zang M J, Xu N, Cao G X, Chen Z J, Cui J, Gan L Y, Dai H B, Yang X F, Wang P. ACS Catal., 2018, 8(6): 5062.

doi: 10.1021/acscatal.8b00949
[24]
Deng J, Ren P J, Deng D H, Bao X H. Angew. Chem. Int. Ed., 2015, 54(7): 2100.

doi: 10.1002/anie.201409524
[25]
Zhang Q, Li P S, Zhou D J, Chang Z, Kuang Y, Sun X M. Small, 2017, 13(41): 1701648.
[26]
Kim M, Anjum M A R, Lee M, Lee B J, Lee J S. Adv. Funct. Mater., 2019, 29(10): 1809151.
[27]
Benck J D, Hellstern T R, Kibsgaard J, Chakthranont P, Jaramillo T F. ACS Catal., 2014, 4(11): 3957.

doi: 10.1021/cs500923c
[28]
Wilson J A, Yoffe A D. Adv. Phys., 1969, 18(73): 193.

doi: 10.1080/00018736900101307
[29]
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. Nat. Rev. Mater., 2017, 2: 17033.
[30]
Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135(28): 10274.
[31]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat. Nanotechnol., 2012, 7(11): 699.

doi: 10.1038/nnano.2012.193
[32]
Wypych F, Schöllhorn R. J. Chem. Soc., Chem. Commun., 1992(19): 1386.
[33]
Mattheiss L F. Phys. Rev. B, 1973, 8(8): 3719.

doi: 10.1103/PhysRevB.8.3719
[34]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nat. Chem., 2013, 5(4): 263.

doi: 10.1038/nchem.1589 pmid: 23511414
[35]
Lin Y C, Dumcenco D O, Huang Y S, Suenaga K. Nat. Nanotechnol., 2014, 9(5): 391.

doi: 10.1038/nnano.2014.64
[36]
Tributsch H, Bennett J C. J. Electroanal. Chem., 1977, 81(1): 97.

doi: 10.1016/S0022-0728(77)80363-X
[37]
Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I, Nørskov J K. J. Am. Chem. Soc., 2005, 127(15): 5308.

pmid: 15826154
[38]
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.

pmid: 17615351
[39]
Wu Z Z, Fang B Z, Wang Z P, Wang C L, Liu Z H, Liu F Y, Wang W, Alfantazi A, Wang D Z, Wilkinson D P. ACS Catal., 2013, 3(9): 2101.

doi: 10.1021/cs400384h
[40]
Yang L, Hong H, Fu Q, Huang Y F, Zhang J Y, Cui X D, Fan Z Y, Liu K H, Xiang B. ACS Nano, 2015, 9(6): 6478.

doi: 10.1021/acsnano.5b02188 pmid: 26030397
[41]
Gopalakrishnan D, Damien D, Shaijumon M M. ACS Nano, 2014, 8(5): 5297.

doi: 10.1021/nn501479e pmid: 24773177
[42]
Xu S J, Li D, Wu P Y. Adv. Funct. Mater., 2015, 25(7): 1127.

doi: 10.1002/adfm.v25.7
[43]
Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Nano Lett., 2013, 13(3): 1341.

doi: 10.1021/nl400258t
[44]
Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. J. Am. Chem. Soc., 2011, 133(19): 7296.

doi: 10.1021/ja201269b
[45]
Revannath D N, Ang-Yu L, Poonam A S, Kumar R, Yadav K, Li L J, Chen Y T. ACS Appl. Mater. Interfaces, 2015, 7(41): 23328.
[46]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(47): 17881.
[47]
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Adv. Energy Mater., 2017, 7(7): 1602086.
[48]
Deng S J, Luo M, Ai C Z, Zhang Y, Liu B, Huang L, Jiang Z, Zhang Q H, Gu L, Lin S W, Wang X L, Yu L, Wen J G, Wang J A, Pan G X, Xia X H, Tu J P. Angew. Chem. Int. Ed., 2019, 58(45): 16289.
[49]
Geng X M, Sun W W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H L, Watanabe F, Cui J B, Chen T P. Nat. Commun., 2016, 7: 10672.
[50]
Li H, Tsai C, Koh A L, Cai L L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, Nørskov J K, Zheng X L. Nat. Mater., 2016, 15(1): 48.

doi: 10.1038/nmat4465
[51]
Wu W Z, Niu C Y, Wei C, Jia Y, Li C, Xu Q. Angew. Chem. Int. Ed., 2019, 58(7): 2029.

doi: 10.1002/anie.v58.7
[52]
Wang X, Zhang Y W, Si H N, Zhang Q H, Wu J, Gao L, Wei X F, Sun Y, Liao Q L, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. J. Am. Chem. Soc., 2020, 142(9): 4298.

doi: 10.1021/jacs.9b12113 pmid: 31999446
[53]
Zhu J Q, Wang Z C, Dai H J, Wang Q Q, Yang R, Yu H, Liao M Z, Zhang J, Chen W, Wei Z, Li N, Du L J, Shi D X, Wang W L, Zhang L X, Jiang Y, Zhang G Y. Nat. Commun., 2019, 10: 1348.

doi: 10.1038/s41467-019-09269-9
[54]
Luo Z Y, Ouyang Y X, Zhang H, Xiao M L, Ge J J, Jiang Z, Wang J L, Tang D M, Cao X Z, Liu C P, Xing W. Nat. Commun., 2018, 9: 2120.

doi: 10.1038/s41467-018-04501-4
[55]
Ye G L, Gong Y J, Lin J H, Li B, He Y M, Pantelides S T, Zhou W, Vajtai R, Ajayan P M. Nano Lett., 2016, 16(2): 1097.

doi: 10.1021/acs.nanolett.5b04331
[56]
Lauritsen J V, Kibsgaard J, Olesen G H, Moses P G, Hinnemann B, Helveg S, Nørskov J K, Clausen B S, Topsøe H, Lægsgaard E, Besenbacher F. J. Catal., 2007, 249(2): 220.

doi: 10.1016/j.jcat.2007.04.013
[57]
Bonde J, Moses P G, Jaramillo T F, Nørskov J K, Chorkendorff I. Faraday Discuss., 2009, 140: 219.

doi: 10.1039/B803857K
[58]
Dolinska J, Chidambaram A, Adamkiewicz W, Estili M, Lisowski W, Iwan M, Palys B, Sudholter E J R, Marken F, Opallo M, Rassaei L. J. Mater. Chem. B, 2016, 4(8): 1448.

doi: 10.1039/c5tb02175h pmid: 32263111
[59]
Li D J, Maiti U N, Lim J, Choi D S, Lee W J, Oh Y, Lee G Y, Kim S O. Nano Lett., 2014, 14(3): 1228.

doi: 10.1021/nl404108a
[60]
Zhang X, Zhang Y, Yu B B, Yin X L, Jiang W J, Jiang Y, Hu J S, Wan L J. J. Mater. Chem. A, 2015, 3(38): 19277.
[61]
Chang Y H, Lin C T, Chen T Y, Hsu C L, Lee Y H, Zhang W J, Wei K H, Li L J. Adv. Mater., 2013, 25(5): 756.

doi: 10.1002/adma.201202920
[62]
Ge X B, Chen L Y, Zhang L, Wen Y R, Hirata A, Chen M W. Adv. Mater., 2014, 26(19): 3100.

doi: 10.1002/adma.201305678
[63]
Bollinger M V, Lauritsen J V, Jacobsen K W, Nørskov J K, Helveg S, Besenbacher F. Phys. Rev. Lett., 2001, 87(19): 196803.
[64]
Yu Y F, Huang S Y, Li Y P, Steinmann S N, Yang W T, Cao L Y. Nano Lett., 2014, 14(2): 553.

doi: 10.1021/nl403620g
[65]
Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13(12): 6222.

doi: 10.1021/nl403661s
[66]
Wang S, Zhang D, Li B, Zhang C, Du Z G, Yin H M, Bi X F, Yang S B. Adv. Energy Mater., 2018, 8(25): 1801345.
[67]
Duerloo K A N, Li Y, Reed E J. Nat. Commun., 2014, 5: 4214.

doi: 10.1038/ncomms5214
[68]
Lau T H M, Wu S, Kato R, Wu T S, Kulhavý J, Mo J Y, Zheng J W, Foord J S, Soo Y L, Suenaga K, Darby M T, Tsang S C E. ACS Catal., 2019, 9(8): 7527.

doi: 10.1021/acscatal.9b01503
[69]
Tsai C, Li H, Park S, Park J, Han H S, Nørskov J K, Zheng X L, Abild-Pedersen F. Nat. Commun., 2017, 8: 15113.
[70]
Ouyang Y X, Ling C Y, Chen Q, Wang Z L, Shi L, Wang J L. Chem. Mater., 2016, 28(12): 4390.

doi: 10.1021/acs.chemmater.6b01395
[71]
He Y M, Tang P Y, Hu Z L, He Q Y, Zhu C, Wang L Q, Zeng Q S, Golani P, Gao G H, Fu W, Huang Z Q, Gao C T, Xia J, Wang X L, Wang X W, Zhu C, Ramasse Q M, Zhang A, An B X, Zhang Y Z, Martí-Sánchez S, Morante J R, Wang L, Tay B K, Yakobson B I, Trampert A, Zhang H, Wu M H, Wang Q J, Arbiol J, Liu Z. Nat. Commun., 2020, 11: 57.

doi: 10.1038/s41467-019-13631-2
[72]
Petö J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, TapasztÓ L. Nat. Chem., 2018, 10(12): 1246.

doi: 10.1038/s41557-018-0136-2
[73]
Luo Z Y, Wang Y, Wang X, Jin Z, Wu Z J, Ge J J, Liu C P, Xing W. ACS Appl. Mater. Interfaces, 2019, 11(43): 39782.
[74]
Pandey A, Mukherjee A, Chakrabarty S, Chanda D, Basu S. ACS Appl. Mater. Interfaces, 2019, 11(45): 42094.
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[3] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[4] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[7] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[8] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[9] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[10] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[11] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[12] Xuqiang Zhang, Gongxuan Lu. Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting [J]. Progress in Chemistry, 2020, 32(9): 1368-1375.
[13] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[14] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[15] Honghong Wang, Wen Lei, Xiaojian Li, Zhong Huang, Quanli Jia, Haijun Zhang. Catalytic Reductive Degradation of Cr(Ⅵ) [J]. Progress in Chemistry, 2020, 32(12): 1990-2003.