中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2103-2115 DOI: 10.7536/PC200877 Previous Articles   Next Articles

• Review •

The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis

Andong Hu, Shungui Zhou, Jie Ye()   

  1. College of Resources and Environment, Fujian Agriculture and Forestry University,Fuzhou 350002, China
  • Received: Revised: Online: Published:
  • Contact: Jie Ye
  • Supported by:
    National Natural Science Foundation of China(41925028); National Natural Science Foundation of China(41977281)
Richhtml ( 34 ) PDF ( 703 ) Cited
Export

EndNote

Ris

BibTeX

Semi-artificial photosynthetic system could realize the solar-to-chemical energy conversion by utilizing the synergistic effects of key functional components of artificial and natural photosynthetic systems. The biohybrid mediated semi-artificial photosynthetic system(BMSAPS) can effectively trigger the specific solar-to-chemical conversion due to the excellent light-harvesting properties of photosensitizers and highly-efficient biological catalytic abilities of biocatalysts. Enhancing the photoelectron generation, transfer and utilization on the micro-interface of photosensitizer-biocatalyst hybrids is considered to be crucial for improving the performance of BMSAPS. This review innovatively concludes the key scientific issues and research status on the BMSAPS construction based on its constituent elements. Meanwhile, the relevant mechanisms and research methods for the photogenerated electron transport in the BMSAPS are also described. In addition, the research progress of the BMSAPS on different fields such as the renewable energy conversion and CO2 emission reduction are summarized, followed by the future research directions. This review is expected to deepen the understanding of the BMSAPS, thereby providing the theoretical foundation and technical support for further optimizing its application in the field of energy production and environmental restoration.

Contents

1 Introduction

2 The basic principles of BMSAPS

3 The BMSAPS construction

3.1 Photosensitizers

3.2 Biocatalysts

4 The typical BMSAPS

4.1 Photoelectrode-biohybrid system

4.2 Inorganic semiconductor-biohybrid system

4.3 Plasmon-biohybrid system

4.4 Research methods for typical biohybrid system

5 The BMSAPS application

5.1 Carbon dioxide fixation

5.2 Nitrogen fixation

5.3 Hydrogen production

6 Outlook

Table 1 Common biohybrid mediated semi-artificial photosynthetic system(BMSAPS)
Fig. 1 Schematic diagram of semiconductor photocatalysis(valence band, VB; conduction band, CB; band gap)
Fig. 2 The images of biocompatible photosensitizers bound to organisms.(a) CdS-M. thermoacetica hybrid system[24];(b) CdS-T. denitrificans hybrid system[46];(c) CdS-M. barkeri hybrid system[47];(d) AglnS2/In2S3-E. coli hybrid system[52];(e) PDI/PFP-M. thermoacetica hybrid system[53];(f) carbon dots-chloroplast hybrid system[54]
Fig. 3 Simplified band diagram of photosensitizer in BMSAPS
Fig. 4 Common bio-enzyme catalysts[51,74]
Fig. 5 Electron transfer schematic diagram of photelectrode-biohybrid system.(a) Schematic diagram of photoelectrochemical cell for the reduction of CO2 by p-type NiO[83];(b) schematic diagram of the production of methanol from CO2 by enzyme cascade[85];(c) schematics of the close-packed nanowire-bacteria hybrid system[87]
Fig. 6 Electron transfer mechanism diagram of inorganic semiconductor-biohybrid system.(a) Schematic of CdS-M. thermoacetica charge transfer[88];(b) schematic diagram of CdS-M. thermoacetica charge transfer and CO2 fixation pathway[89]
Fig. 7 Schematic diagram of plasma electron generation and utilization.(a) Schematic diagram of electron transfer of excited plasma gold nanoparticles[92];(b) schematic diagram of AuNCs-M. thermoacetica charge transfer and CO2 fixation pathway[31]
Table 2 The research methods of BMSAPS
Methods Roles Specific steps ref
Transient absorption(TA)
spectroscopy
Characterizing the electrons transfer Measuring with an Ultrafast
systems Helios TA system
88
Time-resolved infrared(TRIR)
spectroscopy
Characterizing the instantaneous lifetime changes of group Measuring with self-made device 88
NADH/NAD ratio Characterizing intracellular redox potential changes Measuring with MAK037,
Sigma-Aldrich kit
26
Incident photon-to-current
conversion efficiency(IPCE)
Characterizing photon-to-current conversion efficiency Measuring with a motorized monochromator(M10; Jasco Corp.) 42
Structure illumination microscopy(SIM) Characterizing intracellular gold nanoclusters Measuring with an ELYRA PS.1 system(Zeiss) 31
Intracellular ROS Characterizing intracellular reactive oxygen species Measuring with fluorometric intracellular ROS assay MAK143 Kit 31
Real-time polymerase chain reaction(PCR) Characterizing of gene expression Using kits to extract and measuring with LightCycler 96 46
Flow cytometry Characterizing of cell total protein, total nucleic acid, etc. Staining with green fluorescent dye and measuring with flow cytometer 47
Scanning electrochemical
microscopy(SECM)
Characterizing photocurrent of BMSAPS Measuring with a VersaSCAN
SECM instrument(AMETEK Inc., Berwyn, USA)
47
Fluorescence spectroscopy Characterizing synthesis of cadmium sulfide Measuring with fluorescence spectroscopy(FP-6500, JASCO) 97
Proteomics Characterizing protein expression of BMSAPS Extraction, digestion and quantitative analysis of extracellular proteins 89
Metabolomics Characterizing metabolites of BMSAPS Extracting intracellular metabolites and using LC-MS for quantitative analysis 89
Circular dichroic(CD) spectrum Characterizing secondary structure of protein Measuring with spectrometer(JASCO J-715) 100
Fig. 8 The analytical techniques for BMSAPS.(a) and(b) respectively represent schematic diagram and data characterization diagram of transient absorption spectroscopy[88,98];(c) and(d) respectively represent schematic diagram and data characterization image of the structure illumination microscopy[31,99];(e) and(f) respectively represent schematic diagram and data characterization images of scanning electrochemical microscopy[47]
[1]
Shih C F, Zhang T, Li J H, Bai C L. Joule, 2018, 2(10): 1925.

doi: 10.1016/j.joule.2018.08.016
[2]
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angew. Chem. Int. Ed., 2013, 52(29): 7372.

doi: 10.1002/anie.201207199
[3]
Amao Y. ChemCatChem, 2011, 3(3): 458.

doi: 10.1002/cctc.v3.3
[4]
Faunce T, Styring S, Wasielewski M R, Brudvig G W, Rutherford A W, Messinger J, Lee A F, Hill C L, de Groot H, Fontecave M, MacFarlane D R, Hankamer B, Nocera D G, Tiede D M, Dau H, Hillier W, Wang L Z, Amal R. Energy Environ. Sci., 2013, 6(4): 1074.

doi: 10.1039/c3ee40534f
[5]
Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440(7082): 295.

doi: 10.1038/440295a
[6]
Guo L J, Li R, Liu J X, Xi Q, Fan C M. Progress in Chemistry, 2020, 32(01): 46.
(郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 化学进展, 2020, 32(01): 46.)
[7]
Li Z S, Luo W J, Zhang M L, Feng J Y, Zou Z G. Energy Environ. Sci., 2013, 6(2): 347.

doi: 10.1039/C2EE22618A
[8]
Graetzel M, Janssen R A J, Mitzi D B, Sargent E H. Nature, 2012, 488(7411): 304.

doi: 10.1038/nature11476
[9]
Zhu X G, Long S P, Ort D R. Annu. Rev. Plant Biol., 2010, 61(1): 235.

doi: 10.1146/arplant.2010.61.issue-1
[10]
Wen F Y, Li C. Acc. Chem. Res., 2013, 46(11): 2355.

doi: 10.1021/ar300224u
[11]
Lee S H, Choi D S, Kuk S K, Park C B. Angew. Chem. Int. Ed., 2018, 57(27): 7958.

doi: 10.1002/anie.v57.27
[12]
Seel C J, Gulder T. ChemBioChem, 2019, 20(15): 1871.

doi: 10.1002/cbic.v20.15
[13]
Yan C Z, Xue X L, Zhang W J, Li X J, Liu J, Yang S Y, Hu Y, Chen R P, Yan Y P, Zhu G Y, Kang Z H, Kang D J, Liu J, Jin Z. Nano Energy, 2017, 39: 539.

doi: 10.1016/j.nanoen.2017.07.039
[14]
Zhang W J, Hu Y, Yan C Z, Hong D C, Chen R P, Xue X L, Yang S Y, Tian Y X, Tie Z X, Jin Z. Nanoscale, 2019, 11(18): 9053.

doi: 10.1039/C9NR01732A
[15]
Xue X L, Chen R P, Yan C Z, Zhao P Y, Hu Y, Zhang W J, Yang S Y, Jin Z. Nano Res., 2019, 12(6): 1229.

doi: 10.1007/s12274-018-2268-5
[16]
Andrei V, Reuillard B, Reisner E. Nat. Mater., 2020, 19(2): 189.

doi: 10.1038/s41563-019-0501-6
[17]
Xue X L, Chen R P, Chen H W, Hu Y, Ding Q Q, Liu Z T, Ma L B, Zhu G Y, Zhang W J, Yu Q, Liu J, Ma J, Jin Z. Nano Lett., 2018, 18(11): 7372.

doi: 10.1021/acs.nanolett.8b03655
[18]
Xue X L, Chen R P, Yan C Z, Hu Y, Zhang W J, Yang S Y, Ma L B, Zhu G Y, Jin Z. Nanoscale, 2019, 11(21): 10439.

doi: 10.1039/C9NR02279A
[19]
Hao Y C, Dong X L, Zhai S R, Ma H C, Wang X Y, Zhang X F. Chem. Eur. J., 2016, 22(52): 18722.

doi: 10.1002/chem.v22.52
[20]
Schreier M, Curvat L, Giordano F, Steier L, Abate A, Zakeeruddin S M, Luo J S, Mayer M T, Grätzel M. Nat. Commun., 2015, 6(1): 1.
[21]
Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Grätzel M. Science, 2014, 345(6204): 1593.

doi: 10.1126/science.1258307
[22]
Mao J, Li K, Peng T Y. Catal. Sci. Technol., 2013, 3(10): 2481.

doi: 10.1039/c3cy00345k
[23]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W. J. Am. Chem. Soc., 2012, 134(12): 5627.

doi: 10.1021/ja2116348
[24]
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268): 74.

doi: 10.1126/science.aad3317 pmid: 26721997
[25]
Sakimoto K K, Kornienko N, Cestellos-Blanco S, Lim J, Liu C, Yang P D. J. Am. Chem. Soc., 2018, 140(6): 1978.

doi: 10.1021/jacs.7b11135 pmid: 29364661
[26]
Wang B, Zeng C P, Chu K H, Wu D, Yip H Y, Ye L Q, Wong P K. Adv. Energy Mater., 2017, 7(20): 1700611.
[27]
Wang B, Zhao M M, Zhou Y, Yan S C, Zou Z G. Sci. Sin. Technol., 2017, 47(3): 286.

doi: 10.1360/N092016-00434
(王冰, 赵美明, 周勇, 闫世成, 邹志刚. 中国科学: 技术科学, 2017, 47(3): 286.)
[28]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416): 813.

doi: 10.1126/science.aat9777
[29]
Liu C, ColÓn B C, Ziesack M, Silver P A, Nocera D G. Science, 2016, 352(6290): 1210.

doi: 10.1126/science.aaf5039
[30]
Yang D, Zhang Y S, Zhang S H, Cheng Y Q, Wu Y Z, Cai Z Y, Wang X D, Shi J F, Jiang Z Y. ACS Catal., 2019, 9(12): 11492.

doi: 10.1021/acscatal.9b03462
[31]
Zhang H, Liu H, Tian Z Q, Lu D, Yu Y, Cestellos-Blanco S, Sakimoto K K, Yang P D. Nat. Nanotechnol., 2018, 13(10): 900.

doi: 10.1038/s41565-018-0267-z pmid: 30275495
[32]
Rowe S F, Le Gall G, Ainsworth E V, Davies J A, Lockwood C W J, Shi L, Elliston A, Roberts I N, Waldron K W, Richardson D J, Clarke T A, Jeuken L J C, Reisner E, Butt J N. ACS Catal., 2017, 7(11): 7558.

doi: 10.1021/acscatal.7b02736
[33]
Miller M, Robinson W E, Oliveira A R, Heidary N, Kornienko N, Warnan J, Pereira I A C, Reisner E. Angew. Chem., 2019, 131(14): 4649.

doi: 10.1002/ange.v131.14
[34]
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352(6284): 448.

doi: 10.1126/science.aaf2091
[35]
Honda Y, Hagiwara H, Ida S, Ishihara T. Angew. Chem. Int. Ed., 2016, 55(28): 8045.

doi: 10.1002/anie.201600177
[36]
Deng Y C, Li Z Y, Tang R D, Ouyang K, Liao C J, Fang Y, Ding C X, Yang L H, Su L, Gong D X. Environ. Sci.: Nano, 2020, 7(3): 702.

doi: 10.1021/es60080a906
[37]
Ran J R, Jaroniec M, Qiao S Z. Adv. Mater., 2018, 30(7): 1704649.
[38]
Cestellos-Blanco S, Zhang H, Kim J M, Shen Y X, Yang P D. Nat. Catal., 2020, 3(3): 245.

doi: 10.1038/s41929-020-0428-y
[39]
Chaudhary Y S, Woolerton T W, Allen C S, Warner J H, Pierce E, Ragsdale S W, Armstrong F A. Chem. Commun., 2012, 48(1): 58.

doi: 10.1039/C1CC16107E
[40]
Caputo C A, Wang L D, Beranek R, Reisner E. Chem. Sci., 2015, 6(10): 5690.

doi: 10.1039/C5SC02017D
[41]
Brown K A, Wilker M B, Boehm M, Hamby H, Dukovic G, King P W. ACS Catal., 2016, 6(4): 2201.

doi: 10.1021/acscatal.5b02850
[42]
Pang H, Zhao G X, Liu G G, Zhang H B, Hai X, Wang S Y, Song H, Ye J H. Small, 2018, 14(19): 1800104.
[43]
Meng J L, Tian Y, Li C F, Lin X, Wang Z Y, Sun L M, Zhou Y N, Li J S, Yang N, Zong Y C, Li F, Cao Y X, Song H. Catal. Sci. Technol., 2019, 9(8): 1911.

doi: 10.1039/C9CY00180H
[44]
Lu A H, Li Y, Jin S, Wang X, Wu X L, Zeng C P, Li Y, Ding H R, Hao R X, Lv M, Wang C Q, Tang Y Q, Dong H L. Nat. Commun., 2012, 3(1): 1.
[45]
Chava R K, Do J Y, Kang M. Appl. Surf. Sci., 2018, 433: 240.

doi: 10.1016/j.apsusc.2017.09.260
[46]
Chen M, Zhou X F, Yu Y Q, Liu X, Zeng R J X, Zhou S G, He Z. Environ. Int., 2019, 127: 353.

doi: S0160-4120(19)30049-2 pmid: 30954721
[47]
Ye J, Yu J, Zhang Y Y, Chen M, Liu X, Zhou S G, He Z. Appl. Catal. B: Environ., 2019, 257: 117916.
[48]
Wang B, Jiang Z F, Yu J C, Wang J F, Wong P K. Nanoscale, 2019, 11(19): 9296.

doi: 10.1039/c9nr02896j pmid: 31049528
[49]
Xu M Y, Tremblay P L, Jiang L L, Zhang T. Green Chem., 2019, 21(9): 2392.

doi: 10.1039/C8GC03695K
[50]
Cai Z H, Huang L P, Quan X, Zhao Z B, Shi Y, Li Puma G. Appl. Catal. B: Environ., 2020, 267: 118611.
[51]
Zheng D D, Zhang Y, Liu X H, Wang J Y. Photosynth. Res., 2020, 143(2): 221.

doi: 10.1007/s11120-019-00660-7
[52]
Jiang Z F, Wang B, Yu J C, Wang J F, An T C, Zhao H J, Li H M, Yuan S Q, Wong P K. Nano Energy, 2018, 46: 234.

doi: 10.1016/j.nanoen.2018.02.001
[53]
Gai P P, Yu W, Zhao H, Qi R L, Li F, Liu L B, Lv F, Wang S. Angew. Chem. Int. Ed., 2020, 59(18): 7224.

doi: 10.1002/anie.v59.18
[54]
Li W, Wu S S, Zhang H R, Zhang X J, Zhuang J L, Hu C F, Liu Y L, Lei B F, Ma L, Wang X J. Adv. Funct. Mater., 2018, 28(44): 1804004.
[55]
Zhai T Y, Fang X S, Bando Y, Dierre B, Liu B D, Zeng H B, Xu X J, Huang Y, Yuan X L, Sekiguchi T, Golberg D. Adv. Funct. Mater., 2009, 19(15): 2423.

doi: 10.1002/adfm.v19:15
[56]
Fan Y Z, Chen G P, Li D M, Li F, Luo Y H, Meng Q B. Mater. Res. Bull., 2011, 46(12): 2338.

doi: 10.1016/j.materresbull.2011.08.040
[57]
Sakimoto K K, Zhang S J, Yang P D. Nano Lett., 2016, 16(9): 5883.

doi: 10.1021/acs.nanolett.6b02740 pmid: 27537852
[58]
Wei W, Sun P Q, Li Z, Song K S, Su W Y, Wang B, Liu Y Z, Zhao J. Sci. Adv., 2018, 4(2): eaap9253. DOI: 10.1126/sciadv.aap9253.

doi: 10.1126/sciadv.aap9253
[59]
Wang B, Xiao K M, Jiang Z F, Wang J F, Yu J C, Wong P K. Energy Environ. Sci., 2019, 12(7): 2185.

doi: 10.1039/C9EE00705A
[60]
Lyu Y, Tian J Q, Li J C, Chen P, Pu K Y. Angew. Chem. Int. Ed., 2018, 57(41): 13484.

doi: 10.1002/anie.201806973
[61]
Wang B, Queenan B N, Wang S, Nilsson K P R, Bazan G C. Adv. Mater., 2019, 31(22): 1806701.
[62]
Inal S, Rivnay J, Suiu A O, Malliaras G G, McCulloch I. Acc. Chem. Res., 2018, 51(6): 1368.

doi: 10.1021/acs.accounts.7b00624
[63]
Ravetz B D, Pun A B, Churchill E M, Congreve D N, Rovis T, Campos L M. Nature, 2019, 565(7739): 343.

doi: 10.1038/s41586-018-0835-2
[64]
Zhou Q Q, Zou Y Q, Lu L Q, Xiao W J. Angew. Chem. Int. Ed., 2019, 58(6): 1586.

doi: 10.1002/anie.v58.6
[65]
Pitre S P, McTiernan C D, Ismaili H, Scaiano J C. ACS Catal., 2014, 4(8): 2530.

doi: 10.1021/cs5005823
[66]
Mukherjee A, Schroeder C M. Curr. Opin. Biotech., 2015, 31: 16.

doi: 10.1016/j.copbio.2014.07.010 pmid: 25151058
[67]
Greenwald E C, Mehta S, Zhang J. Chem. Rev., 2018, 118(24): 11707.

doi: 10.1021/acs.chemrev.8b00333 pmid: 30550275
[68]
Maksimov E G, Gostev T S, Kuz’minov F I, Sluchanko N N, Stadnichuk I N, Pashchenko V Z, Rubin A B. Nanotechnologies Russ., 2010, 5(7/8): 531.
[69]
Fang X, Kalathil S, Reisner E. Chem. Soc. Rev., 2020, 49(14): 4926.

doi: 10.1039/c9cs00496c pmid: 32538416
[70]
Armstrong F A, Hirst J. PNAS, 2011, 108: 14049.

doi: 10.1073/pnas.1103697108 pmid: 21844379
[71]
Reisner E, Powell D J, Cavazza C, Fontecilla-Camps J C, Armstrong F A. J. Am. Chem. Soc., 2009, 131(51): 18457.

doi: 10.1021/ja907923r pmid: 19928857
[72]
Woolerton T W, Sheard S, Pierce E, Ragsdale S W, Armstrong F A. Energy Environ. Sci., 2011, 4(7): 2393.

doi: 10.1039/c0ee00780c
[73]
Tran N H, Nguyen D, Dwaraknath S, Mahadevan S, Chavez G, Nguyen A, Dao T, Mullen S, Nguyen T A, Cheruzel L E. J. Am. Chem. Soc., 2013, 135(39): 14484.

doi: 10.1021/ja409337v
[74]
Hutton G A M, Reuillard B, Martindale B C M, Caputo C A, Lockwood C W J, Butt J N, Reisner E. J. Am. Chem. Soc., 2016, 138(51): 16722.

doi: 10.1021/jacs.6b10146
[75]
Zhou J, Yang Y, Zhang C Y. Chem. Rev., 2015, 115(21): 11669.

doi: 10.1021/acs.chemrev.5b00049
[76]
Li X, Chen S Y, Hu W L, Shi S K, Shen W, Zhang X, Wang H P. Carbohydr. Polym., 2009, 76(4): 509.

doi: 10.1016/j.carbpol.2008.11.014
[77]
Ye J, Ren G P, Kang L, Zhang Y Y, Liu X, Zhou S G, He Z. iScience, 2020, 23(7): 101287.
[78]
Youn W, Kim J Y, Park J, Kim N, Choi H, Cho H, Choi I S. Adv. Mater., 2020, 32(35): 1907001.
[79]
Park J H, Kim K, Lee J, Choi J Y, Hong D, Yang S H, Caruso F, Lee Y, Choi I S. Angew. Chem., 2014, 126(46): 12628.

doi: 10.1002/ange.201405905
[80]
Ji Z, Zhang H, Liu H, Yaghi O M, Yang P. PNAS, 2018, 115(42): 10582.

doi: 10.1073/pnas.1808829115
[81]
Liang K, Richardson J J, Cui J W, Caruso F, Doonan C J, Falcaro P. Adv. Mater., 2016, 28(36): 7910.

doi: 10.1002/adma.201602335
[82]
Su D Y, Qi J R, Liu X M, Wang L, Zhang H, Xie H, Huang X. Angew. Chem., 2019, 131(12): 4032.

doi: 10.1002/ange.v131.12
[83]
Bachmeier Andreas S J L. Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis. Cham: Springer International Publishing, 2017. 179.
[84]
Sokol K P, Robinson W E, Warnan J, Kornienko N, Nowaczyk M M, Ruff A, Zhang J Z, Reisner E. Nat. Energy, 2018, 3(11): 944.

doi: 10.1038/s41560-018-0232-y
[85]
Kuk S K, Singh R K, Nam D H, Singh R, Lee J K, Park C B. Angew. Chem. Int. Ed., 2017, 56(14): 3827.

doi: 10.1002/anie.201611379
[86]
Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nano Lett., 2015, 15(5): 3634.

doi: 10.1021/acs.nanolett.5b01254
[87]
Su Y D, Cestellos-Blanco S, Kim J M, Shen Y X, Kong Q, Lu D, Liu C, Zhang H, Cao Y H, Yang P D. Joule, 2020, 4(4): 800.

doi: 10.1016/j.joule.2020.03.001
[88]
Kornienko N, Sakimoto K K, Herlihy D M, Nguyen S C, Alivisatos A P, Harris C B, Schwartzberg A, Yang P D. PNAS, 2016, 113(42): 11750.

pmid: 27698140
[89]
Zhang R T, He Y, Yi J, Zhang L J, Shen C P, Liu S J, Liu L F, Liu B H, Qiao L. Chem, 2020, 6(1): 234.

doi: 10.1016/j.chempr.2019.11.002
[90]
Hou W B, Cronin S B. Adv. Funct. Mater., 2013, 23(13): 1612.

doi: 10.1002/adfm.v23.13
[91]
Cheng H F, Kamegawa T, Mori K, Yamashita H. Angew. Chem. Int. Ed., 2014, 53(11): 2910.

doi: 10.1002/anie.v53.11
[92]
Kim Y, Smith J G, Jain P K. Nat. Chem., 2018, 10(7): 763.

doi: 10.1038/s41557-018-0054-3
[93]
Yin Z, Wang Y, Song C Q, Zheng L H, Ma N, Liu X, Li S W, Lin L L, Li M Z, Xu Y, Li W Z, Hu G, Fang Z Y, Ma D. J. Am. Chem. Soc., 2018, 140(3): 864.

doi: 10.1021/jacs.7b11293 pmid: 29301395
[94]
Xiang Q J, Yu J G, Jaroniec M. Chem. Soc. Rev., 2012, 41(2): 782.

doi: 10.1039/C1CS15172J
[95]
Zeng Z, Mabe T, Zhang W D, Bagra B, Ji Z W, Yin Z Y, Allado K, Wei J J. ACS Appl. Bio Mater., 2019, 2(3): 1384.

doi: 10.1021/acsabm.8b00580
[96]
Xiong W, Feng J Y, Ma W M, Zhao J, Li C S, Zou Z G. Chinese Journal of Inorganic Chemistry, 2019, 35(9): 1521.

doi: 10.11862/CJIC.2019.186
(熊威, 冯建勇, 马为民, 赵劲, 李朝升, 邹志刚. 无机化学学报, 2019, 35(9): 1521.)
[97]
Zhang D K, Yamamoto T, Tang D L, Kato Y, Horiuchi S, Ogawa S, Yoshimura E, Suzuki M. Talanta, 2019, 195: 447.

doi: 10.1016/j.talanta.2018.11.092
[98]
Cook A R, Shen Y Z. Rev. Sci. Instrum., 2009, 80(7): 073106.
[99]
Allen J R, Ross S T, Davidson M W. ChemPhysChem, 2014, 15(4): 566.

doi: 10.1002/cphc.201301086 pmid: 24497374
[100]
Li S Y, Chen W J, Hu X T, Feng F D. ACS Appl. Bio Mater., 2020, 3(4): 2482.

doi: 10.1021/acsabm.0c00194
[101]
Yu M L, Wang J J, Tang L, Feng C Y, Liu H Y, Zhang H, Peng B, Chen Z M, Xie Q Q. Water Res., 2020, 175: 115673.
[102]
Xia D H, Ng T W, An T C, Li G Y, Li Y, Yip H Y, Zhao H J, Lu A H, Wong P K. Environ. Sci. Technol., 2013, 47(19): 11166.

doi: 10.1021/es402170b
[103]
Ng T W, Zhang L S, Liu J S, Huang G C, Wang W, Wong P K. Water Res., 2016, 90: 111.

doi: 10.1016/j.watres.2015.12.022
[104]
Liu C, Sakimoto K K, ColÓn B C, Silver P A, Nocera D G. PNAS, 2017, 114(25): 6450.

doi: 10.1073/pnas.1706371114
[105]
Lu S T, Guan X, Liu C. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7
[1] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[2] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[3] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[4] . Electron Transport and Recombination in Dye Sensitized Solar Cells [J]. Progress in Chemistry, 2010, 22(05): 822-828.
[5] Liu Weiqing Hu Linhua Huo Zhipeng Dai Songyuan. Development and Application of Intensity Modulate Photocurrent Spectroscopy and Intensity Modulate Photovoltage Spectroscopy [J]. Progress in Chemistry, 2009, 21(6): 1085-1093.
[6] Huang Lei,Zhao Fuqun,Huang Xin,Zhang Fushi**. Study of Photoimmunoconjugates [J]. Progress in Chemistry, 2007, 19(04): 527-534.
[7] Sheng Xianliang,Zhao Yong,Zhai Jin** |Zhu Daoben. Development and Application of ZnO Based Photo-Anode in Dye Sensitized Solar Cells* [J]. Progress in Chemistry, 2007, 19(01): 59-65.
[8] Li Yue**,Chen Zhilong. The Progress in the Research of Photoactivated Insecticides* [J]. Progress in Chemistry, 2004, 16(01): 110-.
[9] Ma Jinshi,Cheng Hao,Zhang Yi,Yan Fang. New Green Pesticides: Photoactivated Pesticides [J]. Progress in Chemistry, 1999, 11(04): 341-.