中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (0203): 282-287 Previous Articles   Next Articles

• Special issues •

Heterogeneous Reaction of NO2 on the Surface of Mineral Dust Particles

Zhang Zefeng; Zhu Tong**; Zhao Defeng; Li Hongjun   

  1. (State Key Laboratory for Environmental Simulation and Pollution Control ,College of Environmental Science and Engineering , Peking University , Beijing 100871 , China)
  • Received: Online: Published:
  • Contact: Zhu Tong E-mail:tzhu@pku.edu.cn
PDF ( 2034 ) Cited
Export

EndNote

Ris

BibTeX

Heterogeneous reaction of NO2 on the surface of mineral dust particles could change the chemical composition, size, morphology, and hygroscopic properties of mineral dust particles, and hence their optical properties and cloud nucleation. Therefore, the heterogeneous reaction of NO2 on the surface of mineral dust particles will result in the changes of direct and indirect radiative forcing of mineral dust particles, and significantly impact on the atmospheric oxidizing capacity and climate change. This paper introduces the methodology and reaction systems used to study the heterogeneous reactions of reactive gases on particles, describes the findings of the heterogeneous reaction products and mechanisms of NO2 on the surfaces of oxide particles, summarizes literature of reported uptake coefficients of NO2 reaction on the surface of mineral dust particles, and discuss scientific questions about the reaction that needs further research.

Contents
1 Reaction systems and methodology
2 Reaction products and mechanism
2.1 Heterogeneous reaction of NO2 on the surface of SiO2 particles
2.2 Heterogeneous reaction of NO2 on the surface of Al2O3 particles
3 Uptake coefficients
4 Scientific questions need further research

CLC Number: 

[ 1 ]  Bjonas P R , Charlson R J , Rodhe H , et al . Climate Change 1994 :Radiation of Climate Change and An Evaluation of the Changes.( Eds. Houghton J T, Bruce J , Hoesung L , et al . ) Cambridge :Cambridge University Press , 1995. 127 —162.
[ 2 ]  Sullivan R C , Guazzotti S A , Prather K A , et al . Atmos. Chem.Phys. , 2007 , 7 : 1213 —1236
[ 3 ]  Underwood G M, Li P , Al-Abadleh H , Grassian V H. J . Phys.Chem. A , 2001 , 105 : 6609 —6620
[ 4 ]  Richter A , Burrows J P , Nuss H , et al . Nature , 2005 , 437 : 129 —130
[ 5 ]  Zhang Y, Carmichael G R. Journal of Applied Meteorology , 1999 ,38 : 353 —366
[ 6 ]  Pitts J N , Sanhueza E , Atkinson R , et al . International Journal of Chemical Kinetics , 1984 , 16 : 919 —939
[ 7 ]  Svensson R , Ljungstrom E , Lindqvist O. Atmospheric Environment ,1987 , 21 : 1529 —1539
[ 8 ]  Jenkin M E , Cox R A , Williams D J . Atmospheric Environment ,1988 , 22 : 487 —498
[ 9 ]  Baulch D L , Cox R A , Crutzen P J , et al . Journal of Physical and Chemical Reference Data 11 , 1982 , 2 : 327 —496
[10 ]  Liu Y J , Zhu T, Zhao D F , Zhang Z F. Atmos. Chem. Phys. ,2008 , 8 : 7205 —7215
[11 ]  Al2Abadleh H A , Krueger B J , Ross J L , et al . Chemical Communications , 2003 , 22 : 2796 —2797
[12 ]  Gibson E R , Hudson P K, Grassian V H. J . Phys. Chem. A ,2006 , 110 : 11785 —11799
[13 ]  陈立奇( Chen L Q) . 海洋学报(Acta Oceanologica Sinica ) ,1985 , 7 (42) : 554 —560
[14 ]  Judeikis H S , Wren A G. Atmospheric Environment , 1978 , 12 :2315 —2319
[15 ]  丁杰(Ding J ) , 朱彤( Zhu T) . 科学通报( Chinese Science Bulletin) , 2003 , 10 (13) : 2005 —2013
[16 ]  陈琦(Chen Q) , 朱彤(Zhu T) , 李宏军(Li HJ ) , 丁杰(Ding J ) ,李怡(Li Y) . 自然科学进展(Progress in Natural Science) , 2005 ,12 (15) : 1518 —1522
[17 ]  Usher C R , Michel A E , Grassian V H. Chemical Reviews , 2003 ,103 : 4883 —4939
[18 ]  Mamane Y, Gottlieb J . Atmospheric Environment Part A-General Topics , 1992 , 26 : 1763 —1769
[19 ]  Goodman A L , Miller T M, Grassian V H. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films , 1998 , 16 :2585 —2590
[20 ]  Miller TM, Grassian V H. Geophysical Research Letters , 1998 , 25 :3835 —3838
[21 ]  Goodman A L , Underwood GM, Grassian V H. J . Phys. Chem. A ,1999 , 103 : 7217 —7223
[22 ]  Underwood GM, Miller T M, Grassian V H. J . Phys. Chem. A ,1999 , 103 : 6184 —6190
[23 ]  Bêrensen C , Kirchner U , Scheer V , et al . J . Phys. Chem. A ,2000 , 104 : 5036 —5045
[24 ]  Underwood G M, Li P , Usher C R , et al . J . Phys. Chem. A ,2000 , 104 : 819 —829
[25 ]  Underwood G M, Song C H , Phadnis M, et al . Journal of Geophysical Research-Atmospheres , 2001 , 106 : 18055 —18066
[26 ]  Finlayson-Pitts B J , Wingen L M, Sumner A L , et al . Physical Chemistry Chemical Physics , 2003 , 5 : 223 —242
[27 ]  Ullerstam M, Johnson M S , Vogt R , et al . Atmospheric Chemistry and Physics , 2003 , 3 : 2043 —2051
[28 ]  Angelini M M, Garrard R J , Rosen S J , et al . J . Phys. Chem. A ,2007 , 111 : 3326 —3335
[29 ]  李宏军(Li HJ ) , 朱彤(Zhu T) , 李雷(Li L) , 徐冰烨(Xu B Y) .环境化学(Environmental Chemistry) , 2006 , 5 (3) : 266 —272
[30 ]  Li HJ , Zhu T, Ding J , Chen Q , Xu B Y. Science in China Series B : Chemistry , 2006 , 49 (4) : 371 —378
[31 ]  Liu Y, Gibson E R , Cain J P , Wang H , Grassian V H , Laskin A.J . Phys. Chem. A , 112 : 1561 —1571

[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[9] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[10] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[11] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[12] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[13] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[14] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[15] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.