中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (8): 846-858 DOI: 10.7536/PC170543 Previous Articles   Next Articles

• Review •

All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials

Ming Ge1,2*, Zhenlu Li1   

  1. 1. College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China;
    2. Hebei Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, Tangshan 063210, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Youth Foundation of Hebei Education Department (No. QN2017115, QN2014045) and the National Natural Science Foundation of China (No. 51504079).
PDF ( 2579 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalytic technology based on semiconductor materials is expected to use clean solar energy to control the environmental pollution and ease the energy shortages.In recent years, some silver-containing semiconductor materials with narrow band gap exhibit excellent oxidation and reduction ability under visible light irradiation, hence, silver-containing photocatalysts have become one of the focuses in the field of photocatalytic materials. Single silver-containing photocatalytic materials have high cost and poor stability, which limit their practical applications. As a result, the composite photocatalytic materials have been widely studied. Recently, simulating the photosynthesis process of green plants, all-solid-state Z-scheme photocatalytic systems are established, which can enhance the stability and reduce the cost of silver-containing photocatalytic materials as well as improve their photocatalytic performances. In this paper, we firstly describes the derivation and reaction mechanism about the all-solid-state Z-scheme photocatalytic systems, and then reviews the construction, application and reaction mechanism of silver-containing semiconductor materials-based all-solid-state Z-scheme photocatalytic systems so far.At last, we point out some existing problems about these silver-containing semiconductor materials-based Z-scheme photocatalytic systems, and their research prospects are also proposed.
Contents
1 Introduction
2 The derivation and reaction mechanism of all-solid-state Z-scheme photocatalytic systems
3 The research findings of silver-containing semiconductor materials-based Z-scheme
photocatalytic systems
3.1 AgX-based Z-scheme photocatalytic systems
3.2 Ag3PO4-based Z-scheme photocatalytic systems
3.3 Ag2CO3-based Z-scheme photocatalytic systems
3.4 Ag2MO4-based Z-scheme photocatalytic system
4 Conclusion

CLC Number: 

[1] 王鹏远(Wang P Y), 郭昌胜(Guo C S), 高建峰(Gao J F), 徐建(Xu J). 化学进展(Prog. Chem.), 2017, 29:241.
[2] 张圆正(Zhang Y Z), 谢利利(Xie L L), 周怡静(Zhou Y J), 殷立峰(Yin L F). 化学进展(Prog. Chem.), 2016, 28:1528.
[3] Chong M N, Jin B, Chow C W K, Saint C. Water Res., 2010, 44:2997.
[4] Dong H, Zeng G M, Tang L, Fan C Z, Zhang C, He X X, He Y. Water Res., 2015, 79:128.
[5] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39:4206.
[6] He R A, Cao S W, Zhou P, Yu J G. Chinese J. Catal., 2014, 35:989.
[7] 李二军(Li E J), 陈浪(Chen L), 章强(Zhang Q), 李文华(Li W H), 尹双凤(Yin S F). 化学进展(Prog. Chem.), 2010, 22:2282.
[8] 周丽(Zhou L), 邓慧萍(Deng H P), 张为(Zhang W). 化学进展(Prog. Chem.), 2015, 27:349.
[9] Li G P, Wang Y X, Mao L Q. RSC Adv., 2014, 4:53649.
[10] Ge M, Zhu N, Zhao Y P, Li J, Liu L. Ind. Eng. Chem. Res., 2012, 51:5167.
[11] Ge M, Tan M M, Cui G H. Acta Phys. -Chim. Sin., 2014, 30:2107.
[12] Jia C, Xie X W, Ge M, Zhao Y Q, Zhang H, Li Z L, Cui G H. Mater. Sci. Semicond. Proc., 2015, 36:71.
[13] Ge M, Hu Z. Ceram. Int., 2016,42:6510.
[14] Ge M, Chen Y, Liu M, Li M. J. Environ. Chem. Eng., 2015, 3:2809.
[15] Li H J, Zhou Y, Tu W G, Ye J H, Zou Z G. Adv. Funct. Mater., 2015, 25:998.
[16] Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M, He J. Nanoscale, 2013, 5:8326.
[17] Xiu Z L, Bo H, Wu Y Z, Hao X P. Appl. Surf. Sci., 2014, 289:394.
[18] Zhou P, Yu J G, Jaroniec M. Adv. Mater., 2014, 26:4920.
[19] Li H, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 3:1500389.
[20] Tachibana Y, Vayssieres L, Durrant J R. Nature Photon., 2012, 6:511.
[21] 李平(Li P), 李海金(Li H J), 涂文广(Tu W G), 周勇(Zhou Y), 邹志刚(Zou Z G). 物理学报(Acta Phys. Sin.), 2015, 64:094209.
[22] Wang X F, Li S F, Ma Y Q, Yu H G, Yu J G. J. Phys. Chem. C, 2011, 115:14648.
[23] Hou J G, Wang Z, Yang C, Zhou W L, Jiao S Q, Zhu H M. J. Phys. Chem. C, 2013, 117:5132.
[24] Hou J G, Yang C, Wang Z, Ji Q H, Li Y T, Huang G C, Jiao S Q, Zhu H M. Appl. Catal. B:Environ., 2013, 142/143:579.
[25] Zhang J, Niu C G, Ke J, Zhou L F, Zeng G M. Catal. Commun., 2015, 59:30.
[26] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J. Am. Chem. Soc., 2011, 133:6490.
[27] Li H Y, Sun Y J, Cai B, Gan S Y, Han D X, Niu L, Wu T S. Appl. Catal. B:Environ., 2015, 170/171:206.
[28] Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. ACS Catal., 2012, 2:1677.
[29] Yang Y X, Guo W, Guo Y N, Zhao Y H, Yuan X, Guo Y H. J. Hazard. Mater., 2014, 271:150.
[30] Xie R Y, Zhang L P, Xu H, Zhong Y, Sui X F, Mao Z P. J. Mol. Catal. A:Chem., 2015, 406:194.
[31] He J, Shao D W, Zheng L C, Zheng L J, Feng D Q, Xu J P, Zhang X H, Wang W C, Wang W H, Lu F, Dong H, Cheng Y H, Liu H, Zheng R K. Appl. Catal. B:Environ., 2017, 203:917.
[32] Putri L K, Ong W J, Chang W S, Chai S P. Appl. Surf. Sci., 2015, 358:2.
[33] Wan Y J, Liang C Y, Xia Y, Huang W, Li Z L. Appl. Surf. Sci., 2017, 396:48.
[34] Wang D, Yu Y, Zhang Z P, Fang H Y, Chen J M, He Z Q, Song S. Environ. Sci. Pollut. Res., 2016, 23:18369.
[35] Wang T Y, Quan W, Jiang D L, Chen L L, Li D, Meng S C, Chen M. Chem. Eng. J., 2016, 300:280.
[36] Chen Z H, Wang W L, Zhang Z G, Fang X M. J. Phys. Chem. C, 2013, 117:19346.
[37] Cui M, Yu J X, Lin H J, Wu Y, Zhao L H, He Y M. Appl. Surf. Sci., 2016, 387:912.
[38] Lin H L, Cao J, Luo B D, Xu B Y, Chen S F. Catal. Commun., 2012, 21:91.
[39] Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. Nat. Mater., 2010, 9:559.
[40] Martin D J, Liu G G, Moniz S J A, Bi Y P, Beale A M, Ye J H, Tang J W. Chem. Soc. Rev., 2015, 44:7808.
[41] Chen X J, Dai Y Z, Wang X Y. J. Alloys Compd., 2015, 649:910.
[42] Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116:7159.
[43] Chen X X, Huang X T, Yi Z G. Chem. Eur. J., 2014, 20:17590.
[44] Meng S G, Ning X F, Zhang T, Chen S F, Fu X L. Phys. Chem. Chem. Phys., 2015, 17:11577.
[45] Katsumata H, Sakai T, Suzuki T, Kaneco S. Ind. Eng. Chem. Res., 2014, 53:8018.
[46] Zhou L, Zhang W, Chen L, Deng H P. J. Colloid Interface Sci., 2017, 487:410.
[47] Tang C N, Liu E Z, Fan J, Hu X Y, Ma Y N, Wan J. RSC Adv., 2015, 5:91979.
[48] Yang X F, Chen Z P, Xu J S, Tang H, Chen K M, Jiang Y. ACS Appl. Mater. Inter., 2015, 7:15285.
[49] He Y M, Zhang L H, Teng B T, Fan M H. Environ. Sci. Technol., 2015, 49:649.
[50] Luo J, Zhou X S, Ma L, Xu L M, Xu X Y, Du Z H, Zhang J Q. Mater. Res. Bull., 2016, 81:16.
[51] Lu J S, Wang Y J, Liu F L, Zhang L, Chai S N. Appl. Surf. Sci., 2017, 393:180.
[52] Wang Z L, lv J L, Dai K, Lu L H, Liang C H, Geng L. Mater. Lett., 2016, 169:250.
[53] Wan J, Du X, Liu E Z, Hu Y, Fan J, Hu X J. Catal., 2017, 345:281.
[54] Shi W L, Guo F, Yuan S L. Appl. Catal. B:Environ., 2017, 209:720.
[55] Zhu C S, Zhang L, Jiang B, Zheng J T, Hu P, Li S J, Wu M B, Wu W T. Appl. Surf. Sci., 2016, 377:99.
[56] Chen X X, Li R, Pan X Y, Huang X T, Yi Z G. Chem. Eng. J., 2017, 320:644.
[57] Chen F, Yang Q, Li X M, Zeng G M, Wang D B, Niu C G, Zhao J W, An H X, Xie T, Deng Y C. Appl. Catal. B:Environ., 2017, 200:330.
[58] Cai T, Liu Y T, Wang L L, Zhang S Q, Zeng Y X, Yuan J L, Ma J H, Dong W Y, Liu C B, Luo S L. Appl. Catal. B:Environ., 2017, 208:1.
[59] Cui C, Wang Y P, Liang D Y, Cui W, Hu H H, Lu B Q, Xu S, Li X Y, Wang C, Yang Y. Appl. Catal. B:Environ., 2014, 158/159:150.
[60] Tang H, Fu Y H, Chang S F, Xie S Y, Tang G G. Chinese J. Catal., 2017, 38:337.
[61] Shi L, Liang L, Wang F X, Liu M S, Sun J L. J. Mater. Sci., 2015, 50:1718.
[62] Li J J, Xie Y L, Zhong Y J, Hu Y. J. Mater. Chem. A, 2015, 3:5474.
[63] Xiang Z, Zhong J B, Huang S T, Li J Z, Chen J F, Wang T, Li M J, Wang P. Mater. Sci. Semicon. Proc., 2016, 52:62.
[64] Song S Q, Meng A Y, Jiang S J, Cheng B, Jiang C J. Appl. Surf. Sci., 2017, 396:1368.
[65] Xu D F, Cheng B, Cao S W, Yu J G. Appl. Catal. B:Environ., 2015, 164:380.
[66] Yeh T F, Chan F F, Hsieh C T, Teng H. J. Phys. Chem. C, 2011, 115:22587.
[67] Deng Y C, Tang L, Zeng G M, Wang J J, Zhou Y Y, Wang J J, Tang J, Liu Y N, Peng B, Chen F. J. Mol. Catal. A:Chem., 2016, 421:209.
[68] Luo J, Zhou X S, Ma L, Xu X Y. Appl. Surf. Sci., 2016, 390:357.
[69] Zhu B C, Xia P F, Li Y, Ho W, Yu J G. Appl. Surf. Sci., 2017, 391:175.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[4] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[5] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[6] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[7] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[8] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[9] Junjian An, Mengling Wang, Mengxuan Huang, Peng Wang, Guangyan Zhang. Environmental Catalytic Performance of BiFeO3 and Its Modifier [J]. Progress in Chemistry, 2018, 30(9): 1298-1307.
[10] Xing Ding, Xianglong Yang, Zhongliang Xiong, Hao Chen, Lizhi Zhang. Environment Pollutants Removal with Bi-Based Photocatalysts [J]. Progress in Chemistry, 2017, 29(9): 1115-1126.
[11] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[12] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[13] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[14] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[15] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.