中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1203-1217 DOI: 10.7536/PC210520 Previous Articles   Next Articles

• Review •

Modification Mechanism of Zero-Valent Aluminum by Carbon Materials

Shiying Yang1,2,3(), Danyang Fan3, Xiaojuan Bao3, Peiyao Fu3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education,Qingdao 266100, China
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE),Qingdao 266100,China
    3. College of Environmental Science and Engineering, Ocean University of China,Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Contact: Shiying Yang
  • Supported by:
    National Natural Science Foundation of China(21677135); National Natural Science Foundation of Shandong Provincial(ZR2020MB093)
Richhtml ( 9 ) PDF ( 321 ) Cited
Export

EndNote

Ris

BibTeX

Zero-valent aluminum (ZVAl), an excellent electron donor due to its chemical properties of very low redox potential, which is a potential zero-valent metal in the field of environmental engineering. However, because of its strong reducibility, ZVAl can be easily to form a dense oxide layer, passivated again when expose to oxygen or water medium even if the surface oxide film has destroyed, and react with impurities in medium to reduce utilization of electrons, which will constrain the reaction with pollutants. The studies have shown that ZVAl modified by carbon materials could not only improve the reaction efficiency of ZVAl by initiating galvanic and intergranular corrosion, strengthening mass transfer; but also endow the composite with excellent mechanical strength, overcome its own disadvantages, shield against oxygen and corrosive media, maintaining the durability of composite; moreover, the adjustable hydrophobic properties, surface charge, functional groups of carbon materials improve the specific adsorption to pollutants, the high catalytic activity enables the substrate to achieve directional transformation, which improves the electron utilization efficiency of the ZVAl system. Above all, this paper systematically summarizes the effects of carbon materials such as activated carbon, graphite, carbon nanotubes and graphene on ZVAl under different modification methods; and discusses the influence by parameters that include the ratio and type of carbon materials, the type of process control agents temperature and time of heat treatment, the geometry of ZVAl during the modified process, furthermore based on accurately control processing parameters and deeply explore underlying mechanism to realize the selective preparation of functionalized composites to broaden their application value. Through the in-depth understanding of related fields of different disciplines to promote the further application of aluminum-carbon composites in the field of environmental pollution control.

Contents

1 Introduction

2 Carbon materials

2.1 Activated carbon

2.2 Graphite

2.3 Carbon nanotubes

2.4 Graphene

3 Major modification methods

3.1 Ball milling

3.2 Chemical vapor deposition

3.3 Ultrasonic atomization process

3.4 High pressure torsion

3.5 Friction stir processing

3.6 Melt method

3.7 Spark plasma sintering

4 Enhanced reaction activity

4.1 Galvanic cells

4.2 Local corrosion

4.3 Accelerating electron transfer

5 Maintaining long-term effectiveness

5.1 Improving mechanical properties

5.2 Improving stability

6 Increased the efficiency of electronic utilization

6.1 Channels for electron transfer to target

6.2 Hydrophilic or hydrophobic surface

6.3 Catalyzer

7 Fabricated parameters

7.1 Type of carbon material

7.2 Carbon material ratio

7.3 Process control agents

7.4 Temperature and time of heat treatment

7.5 The geometry of ZVAl

8 Conclusion and outlook

Fig. 1 Diagram of the Al-Gr porous materials[33]
Fig. 2 Diagram of the synthesis procedure of Al0-CNTs-Cu2O composite[35]
Fig. 3 Scheme of the process for fabricating composite film[73]
Fig. 4 Fabrication procedures for synthesizing CNT/Al composite powders[89]
Table 1 Typical cases study of carbon material modification ZVAl in aqueous media
Mechanism Carbon Methods Results ref
Increased electronic utilization AC mixing Promoting cementation and recovered over 99% of dissolved Au from the thiosulfate solution. 55
Gr(10 wt%) ball milling ( 400 r/min, 3 h ) + heat-treated ( 600~
720 ℃, 0.5 ~ 2 h )
High efficient production of H2O2 through selective O2 reduction at a wide pH range. 33
MWCNTs ball milling ( 400 r/min, 4 h ) + heat-treated ( 500~
920 ℃, 1 h )
The removal efficiency of TOC and total phosphorus was 68.35% and 73.27%, respectively
The accumulative concentration of H2O2 reached 947?mg L-1 in Al-CNTs/O2 system
34
35
AC (5 wt%) ball milling ( 300 r/min, 1 h ) The AC@mZVAlbm/NaCl enables a novel two-step adsorption and reductive degradation process for treating HBCD 36
Enhanced reaction activity Bi-NPs@GO ball milling ( 800 r/min, 4 h ) The better hydrogen generation performance and reacted with tap water even at 0 ℃ 37
Gr (10 wt%) high pressure torsion ( P = 6 GPa, N = 1, 5, 10 ) The hydrogen generation rate as fast as 270 mL·min-1·g-1 in water 38
Gr (23 wt%) ball milling ( 450 r/min ) The maximum hydrogen generation rate of 40 cm3·min-1·g-1 39
EG ball milling + heat-treated ( 550 ℃, 0.5h ) The C@Al-EG composites exhibited high capacity, excellent cycle stability and rate performance 57
rGO(50 wt%) ultrasonic atomization process The high-efficiency hydrogen production in pure water under the infrared light irradiation 40
GNS (2.5 wt%) ball milling ( 800r/min, 4h ) The maximum hydrogen generation rate could reach 23.3 mL·s-1·g-1 at 30 ℃ 56
CNTs (0.5 vol%) spark plasma sintering ( P = 20 MPa ) The maximum hydrogen generation rate of 120 ml/min g without any undesirable CO 41
Maintain long-term effectiveness of material GO spin-coating method The water contact angle on the surface was (153.7 ± 2)° with mechanical abrasion and corrosion resistance 45
rGO-Ag pulsed laser (850 mJ) Enhancing the current density to 96.60 μA·cm-2 and corrosion potential to -395.4 mV 72
SLG chemical vapor deposited The corrosion protection of aluminum alloys even after 120 days of exposure to seawater 74
rGO-SnO2 self-assembly and hydrothermal methods The resulting protection efficiency was up to 99.7% 73
CNTs (2.13 wt%) hot-pressing The composites enhanced strength, which was almost two times that of the matrix. 89
CNTs polymer pyrochemical chemical vapor deposited ( 600 ℃ ) + high energy ball milling The results show that the CNTs in CNT-Al composite powder synthesized at 600 ℃ showed the highest crystallinity with a reinforcement content of 7 wt% 90
CNTs ball milling ( 423 r/min ) The composite with tensile strength of 435 MPa and plasticity of 6% was fabricated 79
CNT(1.5 vol%) vacuum induction melting technique The strengthening efficiency of composites improved by ~ 80% compared to the unreinforced pure Al 91
GNP (1.0 wt%) ball milling + hot pressing + hot extrusion The strength and ultimate tensile strength of the composite were increased by 50% compared with Al5083. 78
GE (0.1 wt%) hot accumulative roll bonding Tensile strength and hardness were increased up to 25% and 20% respectively in comparison to Al 92
rGO (0.3 wt%) thermal annealing The harness over baseline compacted pure Al samples of 32% 76
GNS (0.15 wt%) Sintering The harness over baseline sintered pure Al samples of 43%
GNS (0.5 vol%) ball milling ( 200 r, 6 h + 500 r, 0.5 h ) Exceptional properties were achieved with a good ductility of 13.5% at a tensile strength of 295 MPa 46
Fig. 5 Defects of graphene films promote the corrosion of metals[86]
Fig. 6 Barrier effect on corrosive media of graphene[86]
Fig. 7 Diagram of possible electron transfer mechanism between ZVAl and activated carbon[55]
Fig. 8 Diagram of situ generation of H2O2 using MWCNT-Al0/O2 system[34]
Fig. 9 The mechanism of enhancing the Al-water reaction by wrapping graphene[40]
Fig. 10 Diagram of degradation of pollutants using Al0-CNT-Cu2O/O2 system[35]
[1]
Lien H L, Yu C C, Lee Y C. Chemosphere, 2010, 80(8): 888.

doi: 10.1016/j.chemosphere.2010.05.013
[2]
Fu F L, Han W J, Cheng Z H, Tang B. Desalination Water Treat., 2016, 57(12): 5592.

doi: 10.1080/19443994.2015.1006259
[3]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016, 28(5): 754.
(杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016, 28(5): 754.)

doi: 10.7536/PC151047
[4]
Yang S Y, Zhang Y S, Zheng D, Xin J. Progress in Chemistry, 2017, 29(8): 879.
(杨世迎, 张艺萱, 郑迪, 辛佳, 化学进展, 2017, 29(8): 879.)

doi: 10.7536/PC170537
[5]
Zhang Y X, Yang S Y, Zhang Y Q, Wu S, Xin J. Chem. Eng. J., 2018, 353: 760.

doi: 10.1016/j.cej.2018.07.174
[6]
Zhang Y Q, Yang S Y, Ren T F, Zhang Y X, Jiang Y T, Xue Y C, Wang M Q, Chen H, Chen Y Y. J. Clean. Prod., 2019, 238: 117943.

doi: 10.1016/j.jclepro.2019.117943
[7]
Yuan C, Li L, Sun Y L, Wang B D, Xu H, Wang Y. Research of Environmental Sciences, 2016, (7): 1067.
(袁超, 李磊, 孙应龙, 王邦达, 徐辉, 王毅. 环境科学研究, 2016, (7): 1067.)
[8]
Jiang Y T, Yang S Y, Liu J Q, Ren T F, Zhang Y X, Sun X R. Chemosphere, 2020, 244: 125536.

doi: 10.1016/j.chemosphere.2019.125536
[9]
Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H, Lin C. Water Res., 2009, 43(20): 5015.

doi: 10.1016/j.watres.2009.08.015 pmid: 19729183
[10]
Jiang B, Xin S S, Gao L, Luo S Y, Xue J L, Wu M B. Chem. Eng. J., 2017, 308: 588.

doi: 10.1016/j.cej.2016.09.098
[11]
Lin K Y A, Lin C H. Chem. Eng. J., 2016, 297: 19.

doi: 10.1016/j.cej.2016.03.136
[12]
Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24(2): 314.

doi: 10.1016/S1001-0742(11)60769-9
[13]
Wu S, Yang S Y, Li Q F, Wang M Q, Xue Y C, Zhao D Y. Chemosphere, 2021, 274: 129767.

doi: 10.1016/j.chemosphere.2021.129767
[14]
Wang A Q, Guo W L, Hao F F, Yue X X, Leng Y Q. Ultrason. Sonochemistry, 2014, 21(2): 572.

doi: 10.1016/j.ultsonch.2013.10.015
[15]
Cai M Q, Wei X Q, Song Z J, Jin M C. Ultrason. Sonochemistry, 2015, 22: 167.

doi: 10.1016/j.ultsonch.2014.06.023
[16]
Wu C C, Hus L C, Chiang P N, Liu J C, Kuan W H, Chen C C, Tzou Y M, Wang M K, Hwang C E. Water Res., 2013, 47(7): 2583.

doi: 10.1016/j.watres.2013.02.024 pmid: 23497977
[17]
Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96: 22.

doi: 10.1016/j.watres.2016.03.020
[18]
Fan J H, Liu X, Ma L M. Chem. Eng. J., 2015, 263: 71.

doi: 10.1016/j.cej.2014.10.082
[19]
Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16): 16686.

doi: 10.1007/s11356-016-6628-y
[20]
Cheng Z H, Fu F L, Pang Y S, Tang B, Lu J W. Chem. Eng. J., 2015, 260: 284.

doi: 10.1016/j.cej.2014.09.012
[21]
Arslan-Alaton I, Olmez-Hanci T, Khoei S, Fakhri H. Catal. Today, 2017, 280: 199.

doi: 10.1016/j.cattod.2016.04.039
[22]
Ren T F, Yang S Y, Jiang Y T, Sun X R, Zhang Y X. Chem. Eng. J., 2018, 348: 350.

doi: 10.1016/j.cej.2018.04.216
[23]
Zhang B, Jiang X, Li S, Wu C Z, Xu X H. Chinese Journal of Environmental Engineering, 2016, (8): 4271.
(张波, 蒋霞, 李顺, 吴春笃, 许小红. 环境工程学报, 2016, (8): 4271.)
[24]
Yang S Y, Zheng D, Ren T F, Zhang Y X, Xin J. Water Res., 2017, 123: 704.

doi: 10.1016/j.watres.2017.07.013
[25]
Qian J S, Gao X, Pan B C. Environ. Sci. Technol., 2020, 54(14): 8509.

doi: 10.1021/acs.est.0c01065
[26]
Chauhan D S, Quraishi M A, Ansari K R, Saleh T A. Prog. Org. Coat., 2020, 147: 105741.
[27]
Gong X Z, Liu G Z, Li Y S, Yu D Y W, Teoh W Y. Chem. Mater., 2016, 28(22): 8082.

doi: 10.1021/acs.chemmater.6b01447
[28]
Dong G H, Ai Z H, Zhang L Z. RSC Adv., 2014, 4(11): 5553.

doi: 10.1039/c3ra46068a
[29]
Wang S C, Song Y D, Sun Y K. Progress in Chemistry, 2019, 31(2/3): 422.
(王舒畅, 宋亚丹, 孙远奎, 化学进展, 2019, 31(2/3): 422.)

doi: 10.7536/PC180726
[30]
Yang S Y, Ren T F, Zhang Y S, Zheng D, Xin J. Progress in Chemistry, 2017, 29(4): 388.
(杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.)

doi: 10.7536/PC170133
[31]
Gao J, Wang W, Rondinone A J, He F, Liang L Y. J. Hazard. Mater., 2015, 300: 443.

doi: 10.1016/j.jhazmat.2015.07.038
[32]
Chen Y L, Ai Z H, Zhang L Z. J. Hazard. Mater., 2012, 235/236: 92.

doi: 10.1016/j.jhazmat.2012.07.015
[33]
Liu Y, Guo J R, Chen Y, Tan N, Wang J L. Environ. Sci. Technol., 2020, 54(21): 14085.

doi: 10.1021/acs.est.0c05974
[34]
Tan N, Yang Z, Gong X B, Wang Z R, Fu T, Liu Y. Sci. Total. Environ., 2019, 650: 2567.

doi: 10.1016/j.scitotenv.2018.09.353
[35]
Liu Y, Tan N, Guo J R, Wang J L. J. Hazard. Mater., 2020, 396: 122751.

doi: 10.1016/j.jhazmat.2020.122751
[36]
Jiang Y T, Yang S Y, Wang M Q, Xue Y C, Liu J Q, Li Y, Zhao D Y. Chemosphere, 2021, 279: 130520.

doi: 10.1016/j.chemosphere.2021.130520
[37]
Xiao F, Yang R J, Li J M. Int. J. Hydrog. Energy, 2020, 45(11): 6082.

doi: 10.1016/j.ijhydene.2019.12.105
[38]
Zhang F, Edalati K, Arita M, Horita Z. Int. J. Hydrog. Energy, 2017, 42(49): 29121.

doi: 10.1016/j.ijhydene.2017.10.057
[39]
Huang X N, Lv C J, Wang Y, Shen H Y, Chen D, Huang Y X. Int. J. Hydrog. Energy, 2012, 37(9): 7457.

doi: 10.1016/j.ijhydene.2012.01.126
[40]
Zhang L Q, Tang Y S, Duan Y L, Hou L Q, Cui L S, Yang F, Zheng Y J, Li Y F, Huang J Y. Chem. Eng. J., 2017, 320: 160.

doi: 10.1016/j.cej.2017.03.025
[41]
Yu M, Kim M, Yoon B, Oh S, Nam D H, Kwon H. Int. J. Hydrog. Energy, 2014, 39(34): 19416.

doi: 10.1016/j.ijhydene.2014.09.109
[42]
Streletskii A N, Kolbanev I V, Borunova A B, Butyagin P Y. J. Mater. Sci., 2004, 39(16/17): 5175.

doi: 10.1023/B:JMSC.0000039205.46608.1a
[43]
Liu Y, Zeng Y P, Guo Q, Zhang J, Li Z Q, Xiong D B, Li X Y, Zhang D. Acta Mater., 2020, 196: 17.

doi: 10.1016/j.actamat.2020.06.018
[44]
Punith Kumar M K, Laxmeesha P M, Ray S, Srivastava C. Appl. Surf. Sci., 2020, 533: 147512.

doi: 10.1016/j.apsusc.2020.147512
[45]
Liu Y, Zhang J J, Li S Y, Wang Y M, Han Z W, Ren L Q. RSC Adv., 2014, 4(85): 45389.

doi: 10.1039/C4RA06051B
[46]
Jiang Y Y, Tan Z Q, Xu R, Fan G L, Xiong D B, Guo Q, Su Y S, Li Z Q, Zhang D. Compos. A: Appl. Sci. Manuf., 2018, 111: 73.

doi: 10.1016/j.compositesa.2018.05.022
[47]
Li H P, Kang J L, He C N, Zhao N Q, Liang C Y, Li B E. Mater. Sci. Eng. A, 2013, 577: 120.

doi: 10.1016/j.msea.2013.04.035
[48]
Kang K, Bae G, Kim B, Lee C. Mater. Chem. Phys., 2012, 133(1): 495.

doi: 10.1016/j.matchemphys.2012.01.071
[49]
Liu Z Y, Xiao B L, Wang W G, Ma Z Y. Carbon, 2012, 50(5): 1843.

doi: 10.1016/j.carbon.2011.12.034
[50]
Lim D K, Shibayanagi T, Gerlich A P. Mater. Sci. Eng. A, 2009, 507(1/2): 194.

doi: 10.1016/j.msea.2008.11.067
[51]
Esawi A M K, Morsi K, Sayed A, Taher M, Lanka S. Compos. A: Appl. Sci. Manuf., 2011, 42(3): 234.

doi: 10.1016/j.compositesa.2010.11.008
[52]
Ma J L, Zhang Y, Qin C H, Ren F Z, Wang G X. Int. J. Hydrog. Energy, 2020, 45(23): 13025.

doi: 10.1016/j.ijhydene.2020.02.222
[53]
Cao M, Luo Y Z, Xie Y Q, Tan Z Q, Fan G L, Guo Q, Su Y S, Li Z Q, Xiong D B. Adv. Mater. Interfaces, 2019, 6(13): 1900468.

doi: 10.1002/admi.201900468
[54]
Zhou W W, Zhou Z X, Kubota K, Ono H, Nomura N, Kawasaki A. Mater. Sci. Eng. A, 2020, 798: 140331.

doi: 10.1016/j.msea.2020.140331
[55]
Jeon S, Tabelin C B, Takahashi H, Park I, Ito M, Hiroyoshi N. Hydrometallurgy, 2020, 191: 105165.

doi: 10.1016/j.hydromet.2019.105165
[56]
Xiao F, Yang R J, Gao W B, Hu J H, Li J M. J. Alloys Compd., 2020, 817: 152800.

doi: 10.1016/j.jallcom.2019.152800
[57]
Zhao X, Zhao T K, Peng X R, Yang L, Shu Y, Jiang T, Ahmad I. Nanotechnol. Rev., 2020, 9(1): 436.

doi: 10.1515/ntrev-2020-0033
[58]
Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106(3): 1105.

doi: 10.1021/cr050569o
[59]
Polizu, Stefania, Savadogo, Oumarou, Poulin, Philippe, Yahia, L’Hocine. Journal of Nanoscience and Nanotechnology. 2006, 6: 7.
[60]
Ruoff R S, Lorents D C. Carbon, 1995, 33(7): 925.

doi: 10.1016/0008-6223(95)00021-5
[61]
Lau K T, Lu M, Lam C K, Cheung H Y, Sheng F L, Li H L. Compos. Sci. Technol., 2005, 65(5): 719.

doi: 10.1016/j.compscitech.2004.10.005
[62]
Salvetat-Delmotte J P, Rubio A. Carbon, 2002, 40(10): 1729.

doi: 10.1016/S0008-6223(02)00012-X
[63]
Thostenson E T, Ren Z F, Chou T W. Compos. Sci. Technol., 2001, 61(13): 1899.

doi: 10.1016/S0266-3538(01)00094-X
[64]
Esawi A, Morsi K. Compos. A: Appl. Sci. Manuf., 2007, 38(2): 646.

doi: 10.1016/j.compositesa.2006.04.006
[65]
Kondoh K, Fukuda H, Umeda J, Imai H, Fugetsu B. Carbon, 2014, 72: 15.

doi: 10.1016/j.carbon.2014.01.013
[66]
Liu Z Y, Zhao K, Xiao B L, Wang W G, Ma Z Y. Mater. Des., 2016, 97: 424.

doi: 10.1016/j.matdes.2016.02.121
[67]
Jiang L, Fan G L, Li Z Q, Kai X Z, Zhang D, Chen Z X, Humphries S, Heness G, Yeung W Y. Carbon, 2011, 49(6): 1965.

doi: 10.1016/j.carbon.2011.01.021
[68]
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115: 4744.

doi: 10.1021/cr500304f pmid: 26012488
[69]
Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8): 1178.

doi: 10.1016/j.pmatsci.2011.03.003
[70]
Galashev A Y, Rakhmanova O R. Phys. Lett. A, 2020, 384(31): 126790.

doi: 10.1016/j.physleta.2020.126790
[71]
Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321(5887): 385.

doi: 10.1126/science.1157996
[72]
Alwahib A A, Muttlak W H, Mahdi B S, Mohammed A Z. Surf. Interfaces, 2020, 20: 100557.
[73]
Yang L H, Wan Y X, Qin Z L, Xu Q J, Min Y L. Corros. Sci., 2018, 130: 85.

doi: 10.1016/j.corsci.2017.10.031
[74]
Yu F, Camilli L, Wang T, MacKenzie D M A, Curioni M, Akid R, Bøggild P. Carbon, 2018, 132: 78.

doi: 10.1016/j.carbon.2018.02.035
[75]
Zhang L, Hou G M, Zhai W, Ai Q, Feng J K, Zhang L, Si P C, Ci L J. J. Alloys Compd., 2018, 748: 854.

doi: 10.1016/j.jallcom.2018.03.237
[76]
Liu J H, Khan U, Coleman J, Fernandez B, Rodriguez P, Naher S, Brabazon D. Mater. Des., 2016, 94: 87.

doi: 10.1016/j.matdes.2016.01.031
[77]
Zhao Z Y, Bai P K, Li L, Li J, Wu L Y, Huo P C, Tan L. Materials, 2019, 12(2): 330.

doi: 10.3390/ma12020330
[78]
Zhang H P, Xu C, Xiao W L, Ameyama K, Ma C L. Mater. Sci. Eng. A, 2016, 658: 8.

doi: 10.1016/j.msea.2016.01.076
[79]
Jiang L, Li Z Q, Fan G L, Cao L L, Zhang D. Carbon, 2012, 50(5): 1993.

doi: 10.1016/j.carbon.2011.12.057
[80]
Yu Z H, Yang W S, Zhou C, Zhang N B, Chao Z L liu H, Cao Y F, Sun Y, Shao P Z, Wu G H. Carbon, 2019, 141: 25.

doi: 10.1016/j.carbon.2018.09.041
[81]
PÉrezBustamante R, BolañosMorales D, BonillaMartínez J, EstradaGuel I, MartínezSánchez R. J. Alloys Compd., 2014, 615: S578.

doi: 10.1016/j.jallcom.2014.01.225
[82]
Wu Y F, Kim G Y, Russell A M. Mater. Sci. Eng. A, 2012, 538: 164.

doi: 10.1016/j.msea.2012.01.025
[83]
Xiao F, Yang R J, Li J M. J. Alloys Compd., 2018, 761: 24.

doi: 10.1016/j.jallcom.2018.05.087
[84]
Liu Z Y, Xu S J, Xiao B L, Xue P, Wang W G, Ma Z Y. Compos. A: Appl. Sci. Manuf., 2012, 43(12): 2161.

doi: 10.1016/j.compositesa.2012.07.026
[85]
Wu Y F, Kim G Y. J. Mater. Process Technol., 2011, 211(8): 1341.

doi: 10.1016/j.jmatprotec.2011.03.007
[86]
Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y. J. Alloys Compd., 2018, 764: 1039.

doi: 10.1016/j.jallcom.2018.06.133
[87]
Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Phys. Rev. Lett., 2008, 101(2): 026803.

doi: 10.1103/PhysRevLett.101.026803
[88]
Mišković-Stanković V, Jevremović I, Jung I, Rhee K. Carbon, 2014, 75: 335.

doi: 10.1016/j.carbon.2014.04.012
[89]
Cao L L, Li Z Q, Fan G L, Jiang L, Zhang D, Moon W J, Kim Y S. Carbon, 2012, 50(3): 1057.

doi: 10.1016/j.carbon.2011.10.011
[90]
Zhang Y P, Wang Q, Ramachandran C S. Diam. Relat. Mater., 2020, 104: 107748.

doi: 10.1016/j.diamond.2020.107748
[91]
Liu X H, Li J J, Liu E Z, Li Q Y, He C N, Shi C S, Zhao N Q. Mater. Sci. Eng. A, 2018, 718: 182.

doi: 10.1016/j.msea.2018.01.065
[92]
Tiwari J K, Mandal A, Rudra A, Mukherjee D, Sathish N. J. Alloys Compd., 2019, 801: 49.

doi: 10.1016/j.jallcom.2019.06.127
[93]
Mishra R S, Ma Z Y. Mater. Sci. Eng. R: Rep., 2005, 50(1/2): 1.

doi: 10.1016/j.mser.2005.07.001
[94]
Noguchi T, Magario A, Fukazawa S, Shimizu S, Beppu J, Seki M. Mater. Trans., 2004, 45(2): 602.

doi: 10.2320/matertrans.45.602
[95]
Zhang X X, Shen Y B, Deng C F, Wang D Z, Geng L. Key Eng. Mater., 2007, 353/358: 1414.

doi: 10.4028/www.scientific.net/KEM.353-358.1414
[96]
Zhan G D, Kuntz J D, Wan J L, Mukherjee A K. Nat. Mater., 2003, 2(1): 38.

doi: 10.1038/nmat793
[97]
Eom K S, Kwon J Y, Kim M J, Kwon H S. J. Mater. Chem., 2011, 21(34): 13047.

doi: 10.1039/c1jm11329a
[98]
Deng C F, Zhang X X, Wang D Z, Lin Q, Li A B. Mater. Lett., 2007, 6(8/9): 1725.
[99]
Wang X, Xiao W, Wang L G, Shi J M, Sun L, Cui J D, Wang J W. Phys. E: Low Dimensional Syst. Nanostructures, 2020, 123: 114172.

doi: 10.1016/j.physe.2020.114172
[100]
Park J K, Lucas J P. Scr. Mater., 1997, 37(4): 511.

doi: 10.1016/S1359-6462(97)00133-4
[101]
Schriver M, Regan W, Gannett W J, Zaniewski A M, Crommie M F, Zettl A. ACS Nano, 2013, 7(7): 5763.

doi: 10.1021/nn4014356 pmid: 23755733
[102]
Hu X Y, Zhu G Z, Zhang Y J, Wang Y M, Gu M S, Yang S, Song P X, Li X J, Fang H J, Jiang G S, Wang Z F. Int. J. Hydrog. Energy, 2012, 37(15): 11012.

doi: 10.1016/j.ijhydene.2012.04.141
[103]
Chaklader A, WO2002014213 A2, 2002.
[104]
Wu Y H, Zhu X Y, Zhao W J, Wang Y J, Wang C T, Xue Q J. J. Alloys Compd., 2019, 777: 135.

doi: 10.1016/j.jallcom.2018.10.260
[105]
Zhou N, Gong K D, Hu Q, Cheng X, Zhou J Y, Dong M Y, Wang N, Ding T, Qiu B, Guo Z H. Chemosphere, 2020, 242: 125235.

doi: 10.1016/j.chemosphere.2019.125235
[106]
Su J X, Zhang Z, Cao F H, Zhang J Q, Cao C N. Journal of Chinese Society for Corrosion and Protection, 2005, (3): 187.
(苏景新, 张昭, 曹发和, 张鉴清, 曹楚南. 中国腐蚀与防护学报, 2005, (3): 187.)
[107]
Brown R H, Fink W L, Hunter M S. Trans. AIME, 2021, 143.
[108]
Zhang D, Zhang Z, Pan Y L, Jiang Y B, Zhuang L Z, Zhang J S, Zhang X F. J. Mater. Sci. Technol., 2020, 53: 132.

doi: 10.1016/j.jmst.2020.01.071
[109]
Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C. ACS Nano, 2014, 8(1): 443.

doi: 10.1021/nn404756q pmid: 24359599
[110]
Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I. ACS Nano, 2012, 6(2): 1102.

doi: 10.1021/nn203507y
[111]
Zhou F, Li Z T, Shenoy G J, Li L, Liu H T. ACS Nano, 2013, 7(8): 6939.

doi: 10.1021/nn402150t
[112]
Awad M K, Metwally M S, Soliman S A, El-Zomrawy A A, Bedair M A. J. Ind. Eng. Chem., 2014, 20(3): 796.
[113]
Chen B, Li S F, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K. J. Alloys Compd., 2015, 651: 608.

doi: 10.1016/j.jallcom.2015.08.178
[114]
Hjortstam O, Isberg P, Söderholm S, Dai H. Appl. Phys. A, 2004, 78(8): 1175.

doi: 10.1007/s00339-003-2424-x
[115]
Araujo P T, Barbosa Neto N M, Sousa M E S, AngÉlica R S, Simões S, Vieira M F G, Dresselhaus M S, Leite dos Reis M. Carbon, 2017, 124: 348.

doi: 10.1016/j.carbon.2017.08.041
[116]
Seth R S, Woods S B. Phys. Rev. B, 1970, 2(8): 2961.

doi: 10.1103/PhysRevB.2.2961
[117]
Onishi T, Iwamura E, Takagi K, Yoshikawa K. J. Vac. Sci. Technol. A: Vac. Surf. Films, 1996, 14(5): 2728.

doi: 10.1116/1.580194
[118]
Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, Yao J. J. Phys. Chem. C, 2008, 112(22): 8192.

doi: 10.1021/jp710931h
[119]
Zhou W W, Bang S, Kurita H, Miyazaki T, Fan Y C, Kawasaki A. Carbon, 2016, 96: 919.

doi: 10.1016/j.carbon.2015.10.016
[120]
Awad A S, El-Asmar E, Tayeh T, Mauvy F, Nakhl M, Zakhour M, Bobet J L. Energy, 2016, 95: 175.

doi: 10.1016/j.energy.2015.12.004
[121]
Al Bacha S, Zakhour M, Nakhl M, Bobet J L. Int. J. Hydrog. Energy, 2020, 45(11): 6102.

doi: 10.1016/j.ijhydene.2019.12.162
[122]
Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L. Nano Lett., 2008, 8(8): 2458.

doi: 10.1021/nl801457b
[123]
Xiao F, Yang R J, Li J M. Energy, 2019, 170: 159.

doi: 10.1016/j.energy.2018.12.135
[124]
Xie Y Y, Hu X H, Zhang Y W, Wahid F, Chu L Q, Jia S R, Zhong C. Carbohydr. Polym., 2020, 229: 115456.

doi: 10.1016/j.carbpol.2019.115456
[125]
Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R. Appl. Catal. B: Environ., 2017, 209: 358.

doi: 10.1016/j.apcatb.2017.03.011
[126]
Hu S Z, Qu X Y, Li P, Wang F, Li Q, Song L J, Zhao Y F, Kang X X. Chem. Eng. J., 2018, 334: 410.

doi: 10.1016/j.cej.2017.10.016
[127]
Wang Z Y, Lv X, Chen Y T, Liu D, Xu X H, Palmore G T R, Hurt R H. Nanoscale, 2015, 7(22): 10267.

doi: 10.1039/C5NR00963D
[128]
Bakshi S R, Singh V, Seal S, Agarwal A. Surf. Coat. Technol., 2009, 203(10/11): 1544.

doi: 10.1016/j.surfcoat.2008.12.004
[129]
Liao J Z, Tan M J, Sridhar I. Mater. Des., 2010, 31: S96.

doi: 10.1016/j.matdes.2009.10.022
[130]
Kondoh K, Fukuda H, Umeda J, Imai H, Fugetsu B, Endo M. Mater. Sci. Eng. A, 2010, 527(16/17): 4103.

doi: 10.1016/j.msea.2010.03.049
[131]
Zhou W W, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A. Acta Mater., 2017, 125: 369.

doi: 10.1016/j.actamat.2016.12.022
[132]
Vanitha M, Joni I M, Panatarani C, Subramanian B. Diamond Relat. Mater., 2018, 88: 129.

doi: 10.1016/j.diamond.2018.07.009
[133]
Zhang W Y, Wei P G, Chen M F, Han L, Zhao Y X, Yan J C, Qian L B, Gu M Y, Li J. J. Hazard. Mater., 2021, 417: 125993.

doi: 10.1016/j.jhazmat.2021.125993
[134]
Zhu F, Wu Y Y, Liang Y K, Li H H, Liang W J. Chem. Eng. J., 2020, 389: 124276.

doi: 10.1016/j.cej.2020.124276
[135]
Liu Y, Chen Y, Deng J H, Wang J L. Appl. Catal. B: Environ., 2021, 297: 120407.

doi: 10.1016/j.apcatb.2021.120407
[136]
Lv H, Niu H Y, Zhao X L, Cai Y Q, Wu F C. Appl. Catal. B: Environ., 2021, 286: 119940.

doi: 10.1016/j.apcatb.2021.119940
[137]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.)

doi: 10.7536/PC170310
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[8] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[11] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[12] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[13] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[14] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[15] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.