中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 836-850 DOI: 10.7536/PC190924 Previous Articles   Next Articles

• Review •

Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials

Changfan Xu1, Xin Fang1, Jing Zhan1,**(), Jiaxi Chen1, Feng Liang2,**()   

  1. 1. School of Metallurgy and Environment, National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, Central South University, Changsha 410083, China
    2. Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: Jing Zhan, Feng Liang
  • Supported by:
    the National Natural Science Foundation of China(51704136); the National Natural Science Foundation of China(11765010); the National Natural Science Foundation of China(51974378); the Scientific and Technological Breakthrough and Major Achievements Transformation of Strategic Emerging Industries of Hunan Province(2018GK4001); the Fundamental Research Funds for the Central Universities of Central South University(2019zzts502)
Richhtml ( 68 ) PDF ( 1633 ) Cited
Export

EndNote

Ris

BibTeX

Metal-carbon dioxide(Me-CO2) batteries can not only fix carbon dioxide effectively, but also serve as clean energy storage devices, which are considered as potential candidates for the next generation of energy conversion and storage, as well as carbon dioxide capture and utilization. However, due to the slow electrochemical reaction of the cathode, the instability of the electrolyte, and the difficult reversible conversion of the discharge product, the current Me-CO2 batteries are impeded by low capacity and rate capability, high polarizability, low energy conversion efficiency, and short cycle life. In this paper, we provide insights on the current main research progress of Me-CO2 batteries based on metal(lithium, sodium, aluminum, zinc, potassium) anodes, including discharge/charging mechanism, CO2 electrode and electrocatalysts, electrolyte materials and metal electrodes, etc. Considerable emphasis is placed on the effects of function material on the stability and rate of electrode reaction. In addition, the prospects and directions for the rational construction of materials are prospected to improve the electrochemical performance of Me-CO2 batteries and provide guidance for the development of Me-CO2 batteries.

Contents

1 Introduction
2 Mechanism for metal-CO2 batteries

2.1 Li-CO2 batteries

2.2 Na-CO2 batteries

2.3 Al-CO2 batteries

2.4 Zn-CO2 batteries

2.5 K-CO2 batteries

3 CO2 electrode/catalysts

3.1 Carbon/heteroatom doped carbon catalysts

3.2 Precious catalysts

3.2 Non-Precious catalysts

4 Electrolytes

4.1 Non-aqueous electrolytes

4.2 Quasi-solid/solid electrolytes

4.3 Hybrid electrolytes

5 Metal anode
6 Conclusion and outlook
Table 1 Possible reactions of the decomposition of Li2CO3 and the reversible potential of the corresponding reactions[19]
Fig. 1 Schematic illustration of a reversible Me-CO2 battery
Fig. 2 (a) The schematic representation of Li-CO2 battery with a BN-hG cathode.(b) Full discharge/charge curves,(c) discharge end voltage and (d) polarization curves at different current densities,(e) long-term cycling performance[38]
Fig. 3 Schematic diagram of the (a) reaction mechanism of the charging process of the Li-CO2 battery without the Ru catalyst, (b) possible charging mechanism of the Li-CO2 battery with the Ru catalyst and (c) discharging process of the Li-CO2 battery[22];(d) Discharge-charge voltage profiles and (e) Cyclability of two Al-CO2 batteries with NPG@Pd or NPG as cathodes, in which the current density was fixed at 333 mA·g-1[30]
Fig. 4 Rechargeable aqueous Zn-CO2 batteries with NiPG catalyst cathode.(a) The LSV curves for CO2 reduction reaction.(b) CO and H2 Faradaic efficiency at several discharge currents.(c) Galvanostatic discharge and charge potentials at 1.5 and 0.5 mA, respectively.(d) Galvanostatic discharge-charge cycling curves with 0.5 mA of discharge and 0.25 mA of charge[53]
Fig. 5 (a) The effect of dielectric constant of electrolyte solvent on the reaction pathway of Li-O2/CO2 battery[37];(b) Schematic illustrations of the formation mechanism of final discharge product(Li2CO3) in dilute LiTFSI-DMSO electrolyte;(c) Schematic illustrations of the formation mechanism of final discharge product(C2O62-) in super-concentrated LiTFSI-DMSO electrolyte[14]
Fig. 6 (a) Schematic illustration of the proposed hybrid Na-CO2 battery with N-SWCNH as a catalyst.(b) Discharge-charge voltage curves,(c) discharge capacities curves,(d) the cycling performance of hybrid Na-CO2 battery with N-SWCNH as catalyst at a current density of 0.1 mA·cm-2,(e) In-situ Raman characterization of the hybrid Na-CO2 battery during discharge and recharge,(f) Ex-situ XRD pattern of the CO2 electrode after discharge and charge[76]
Fig. 7 Design and characterization of rGO-Na anode(A~C) SEM images with corresponding inset photographs of GO foam(A), rGO foam reduced by molten Na(B), and rGO-Na anode surface(C).(D) FTIR of GO foam and rGO foam. a.u., arbitrary units. XPS spectra of O 1 s(E) and C 1 s(F) of GO foam and rGO foam.(G) XRD of rGO and rGO-Na anode.(H) Cyclic voltammograms of Na+ plating/stripping in a rGO-Na or Na/CPE/stainless steel cell with a sweep speed of 0.5 V·s-1.(I) Fast discharge/charge profiles of quasi-solid state Na-CO2 batteries in Ar atmosphere using rGO-Na and pure Na anodes. Rate, 0.3 mA·cm-2; voltage range, 1 to 4 V. Inset: SEM images of rGO-Na and pure Na anode surfaces after 450 cycles[71]
Table 2 Summary of Metal-CO2 batteries and their performances
Battery type Cathode Electrolyte Full discharge capacity
(mAh·g-1)
Cyclability/
cycles
Voltage
gap/V
ref
Li-CO2/O2 (1∶1) Ketjen Black 1 M LiTFSI/EC:DEC(3∶7 v/v) 6750(0.1 mA·cm-2) - - 13
Li-CO2 Ketjen Black 1 M LiTFSI/EC:DEC(3∶7 v/v) 66(0.2 mA·cm-2) - - 13
Li-CO2/O2(2∶1) Ketjen Black LiCF3SO3/TEGDME(1∶4) 1808(30 mA·g-1) 10(30 mA·g-1) ~1.6 16
Li-CO2 Ketjen Black LiCF3SO3/TEGDME(1∶4) 1032(30 mA·g-1) 7(30 mA·g-1) ~1.6 16
Li-CO2 Ketjen black 1 M LiTFSI/TEGDME+LiBr 11 500(50 mA·g-1) 38(50 mA·g-1) ~1.4 83
Li-CO2 Super P 1 M LiTFSI/([bmim][Tf2N]) ~0(0.05 mA·cm-1) - - 15
Li-CO2 Super P LiCF3SO3/TEGDME(1∶4) 6062(100 mA·g-1) 20(100 mA·g-1) ~2 22
Li-CO2 high surface area carbon 1 M LiTFSI/([bmim][Tf2N]) ~750(0.05 mA·cm-1) - - 15
Li-CO2 CNTs Composite polymer electrolyte 993.2 mAh(2.5 mA) 100(100 mA·g-1) ~2.1 73
Li-CO2 CNTs Gel Polymer Electrolyte 8536(50 mA·g-1) 60(100 mA·g-1) ~1.65 72
Li-CO2 CNTs Polymer electrolyte 12 000(100 mA·g-1) 60(100 mA·g-1) ~1.65 84
Li-CO2 CNTs 1 M LiTFSI/TEGDME 8379(50 mA·g-1) 29(50 mA·g-1) ~1.5 17
Li-CO2 CNT 1 M LiCF3SO3/TEGDME ~2850 μAh/20 uA - ~1.4 18
Li-CO2 Graphene 1 M LiTFSI/TEGDME 14 722(50 mA·g-1) 20(50 mA·g-1) ~1.23 17
Li-CO2 pencil-trace Bi-CoPc-GPE 27 196(100 mA·g-1) 120(200 mA·g-1) 1.14 85
Li-CO2 B,N-hG 1 M LiTFSI/TEGDME 14 996(300 mA·g-1) 200(1.0 A g-1) ~1.0 38
Li-CO2 CQD/hG 1 M LiTFSI+0.3 M LiNO3/DMSO 12 300(500 mA·g-1) 235(1.0 A g-1) ~1.02 42
Li-CO2 Ru@super P LiCF3SO3/TEGDME(1∶4) 8229(100 mA·g-1) 70(100 mA·g-1) ~1.71 22
Li-CO2/2% O2 Ru@GNSs 0.1 M LiClO4/DMSO 4742(0.08 mA·cm-2) 67(0.16 mA·cm-2) ~1.3 43
Li-CO2 Ru-Cu-G 1 M LiTFSI/TEGDME 13 698(200 mA·g-1) 100(100 mA·g-1) ~0.88 86
Li-CO2 RuO2/LDO 1 M LiTFSI/TEGDME 5455(100 mA·g-1) 60(166 mA·g-1) ~0.6 44
Li-CO2 /O2 (4∶1) Ru/N-CNT 1 M LITFSI/TEGDME 10 200(100 mA·g-1) 184(100 mA·g-1) ~1.2 87
Li-CO2 /O2 (2∶1) Ru/N-CNT 1 M LITFSI/TEGDME 12 000(100 mA·g-1) 190(100 mA·g-1) ~1.2 87
Li-CO2 Ru/N-CNT 1 M LITFSI/TEGDME 9300(100 mA·g-1) 150(100 mA·g-1) ~1.8 87
Li-CO2 Ru/ACNF 1 M LITFSI/TEGDME 11 495(200 mA·g-1) 50(100 mA·g-1) ~1.43 88
Li-CO2 Ru nanosheet 1 M LiTFSI/TEGDME 9502(100 mA·g-1) 100(200 mA·g-1) ~1.2 89
Li-CO2 RuP2-NPCF 1 M LiTFSI/TEGDME 11 951(100 mA·g-1) 200(200 mA·g-1) ~1.77 21
Li-CO2 CNT@RuO2 LiCF3SO3/TEGDME(1∶4) 2187(50 mA·g-1) 30(50 mA·g-1) ~1.4 90
Li-CO2 Ir-NSs-CNFs 1 M LITFSI/TEGDME 7666.7(166.7 mA·g-1) 400(500 mA·g-1) ~1.05 48
Li-CO2 IrO2/δ-MnO2 1 M LiClO4/TEGDME 6604(100 mA·g-1) 378(400 mA·g-1) ~1.3 47
Li-CO2/O2 (1∶1) Au NPs LiTFSI/DMSO(1∶3) 753(400 mA·g-1) 100(100 mA·g-1) ~0.6 14
Li-CO2 Ru/CNT flexible wood 1 M LiTFSI/TEGDME 11 mAh·cm-2 200(100 mA·g-1) ~1.5 66
Li-CO2 Ir/CNFs 1 M LiTFSI/TEGDME 21 528(50 mA·g-1) 45(50 mA·g-1) ~1.4 67
Li-CO2 Mn2(dobdc) 1 M LiTFSI/TEGDME 18 022(50 mA·g-1) 50(200 mA·g-1) ~1.35 20
Li-CO2 Mn(HCOO)2 1 M LiTFSI/TEGDME 15 510(50 mA·g-1) 50(200 mA·g-1) ~1.4 20
Li-CO2 MnCO3 1 M LiTFSI/TEGDME 11 110(50 mA·g-1) 25(200 mA·g-1) ~1.7 20
Li-CO2 MnO@NC-G 1 M LITFSI/TEGDME 25 021(50 mA·g-1) 206(0.1 A g-1) ~0.88 56
Li-CO2 Porous Mn2O3 0.5 M LiClO4/TEGDME 9434(50 mA·g-1) 45(50 mA·g-1) ~1.4 91
Li-CO2 NiO-CNT 1 M LiTFSI/TEGDME 9000(50 mA·g-1) 42(50 mA·g-1) ~1.4 64
Li-CO2 NiO nanofibers 1 M LiCF3SO3/TEGDME 11 288(100 mA·g-1) 134(100 mA·g-1) ~1.6 92
Li-CO2 Ni-NG 1 M LiTFSI/TEGDME 17 625(100 mA·g-1) 100(100 mA·g-1) ~1.6 50
Li-CO2 Ni/r-GO 1 M LiTFSI/TEGDME 8991(0.1 mA·cm-2) 100(100 mA·g-1) ~1.05 65
Li-CO2 NiFe@NC/PPC 1 M LiCF3SO3/TEGDME 6.8 mAh·cm-2(0.05 mA·cm-2) 109(0.05 mA·cm-2) ~1.85 93
Li-CO2 Cu-NG 1 M LiTFSI/TEGDME 14 864(200 mA·g-1) 50(200 mA·g-1) ~1.3 55
Li-CO2 CoPPc 1 M LITFSI/TEGDME 13.6 mAh·cm-2
(0.05 mA·cm-2)
50(0.05 mA·cm-2) ~1.3 94
Li-CO2 Mo2C/CNT 1 M LiCF3SO3/TEGDME 1150 μAh/20 μA 40(20 μA) ~0.9 18
Li-CO2 CC@Mo2C NPs Gel polymer electrolyte(GPE) 3415 μAh·cm-2(50 μA·cm-2) 40(20 μA·cm-2) ~0.65 54
Li-CO2 /trace O2 MFCN 1 M LiTFSI/TEGDME 8827(100 mA·g-1) 90(100 mA·g-1) ~1.04 95
Li-CO2 N-CNTs@Ti 1 M LiTFSI/TEGDME 9292.3(50 mA·g-1) 25(50 mA·g-1) ~1.51 96
Li-CO2 TiO2-NP/CNT/CNF 1 M LiTFSI/DMSO 1950 μAh·cm-2 20(0.05 mA·cm-2) ~1.4 97
Li-CO2 i-Ru4Cu1/CNFs 1 M LiTFSI/DMSO 15 753(300 mA·g-1) 110(500 mA·g-1) ~ 1.45 98
Li-CO2 Co0.2Mn0.8O2/CC 1 M LiTFSI/TEGDME 8203(100 mA·g-1) 500(100 mA·g-1) ~0.73 99
Li-CO2 MoS2 nanoflakes 0.1 M LiTFSI/EMIM-BF4/DMSO 60 000(100 mA·g-1) 500(500 mA·g-1) ~0.7 100
Li-CO2 ZnS QDs/N-rGO 1 M LiTFSI/TEGDME 10 310(100 mA·g-1) 190(400 mA·g-1) 1.21 101
Li-CO2 B-NCNT 1 M LiTFSI/TEGDME 23 328(50 mA·g-1) 360(1000 mA·g-1) 1.21~1.96 102
Li-CO2 COFs 1 M LiTFSI/TEGDME 27 348(200 mA·g-1) 200(1000 mA·g-1) 1.24 103
Li-CO2 adjacent Co/GO 1 M LiTFSI/TEGDME 17 358(100 mA·g-1) 100(100 mA·g-1) ~1.8 104
Li-CO2 Graphene@COF 1 M LiTFSI/TEGDME 27 833(75 mA·g-1) 56(500 mA·g-1) ~1.08 105
Li-CO2 MoS2-NS 1 M LiTFSI/DMSO 846 μAh·cm-2 50(0.05 mA·cm-2) ~1.0 106
Na-CO2 Super P 1 M NaClO4/TEGDME 173 mAh·g-1 - - 25
Na-CO2/O2 (3∶2) Super P 1 M NaClO4/TEGDME 2882(70 mA·g-1) - - 25
Na-CO2 Super P 0.75 M NaCF3SO3/IL 183 mAh·g-1 - - 25
Na-CO2/O2 (2∶3) Super P 0.75 M NaCF3SO3/IL 3500(70 mA·g-1) - - 25
Na-CO2/O2 (1∶1) porous carbon SiO2-IL-TFSI/PC-NaTFSI - 20(200 mA·g-1) ~2.2 26
Na-CO2 a-MWCNTs 1 M NaClO4/TEGDME 60 000(1000 mA·g-1) 200(1.0 A g-1) 0.6 27
Na-CO2 Na2CO3/CNTs 1 M NaClO4/TEGDME 350 mAh·g-1 100(0.05 mA·cm-2) ~1.7 28
Na-CO2 t-MCNT Composite polymer electrolyte 5000(50 mA·g-1) 400(500 mA·g-1) ~1.75 71
Na-CO2 CMO@CF 1 M NaClO4/TEGDME 8448(200 mA·g-1) 75 ~1.77 58
Na-CO2 CO@CF 1 M NaClO4/TEGDME 7427(200 mA·g-1) ~46 ~1.90 58
Na-CO2 MO@CF 1 M NaClO4/TEGDME 6634(200 mA·g-1) ~44 ~1.85 58
Na-CO2 MWCNTs SN-based electrolyte 7624(50 mA·g-1) 100(200 mA·g-1) ~2.08 107
Na-CO2 Ru@KB 1 M NaClO4/TEGDME 11 537(100 mA·g-1) 130(200 mA·g-1) ~2.0 108
Al-CO2/O2(4∶1) Ketjenblack ([EMIm]Cl/AlCl3 13 000(70 mA·g-1) - - 29
Al-CO2 NPG@Pd AlCl3/([EMim]Cl 26 739.9(333 mA·g-1) 30(333 mA·g-1) 0.091 30
Aqueous Zn-CO2 3D porous Pd double-electrolyte - 100(0.56 mA·cm-2) ~0.19 31
Aqueous Zn-CO2 Ir@Au double-electrolyte - 90(5 mA·cm-2) ~2.2 32
[1]
Shakun J D, Clark P U, He F, Marcott S A, Mix A C, Liu Z, Ottobliesner B, Schmittner A, Bard E . Nature, 2012,484: 49. https://www.ncbi.nlm.nih.gov/pubmed/22481357

doi: 10.1038/nature10915 pmid: 22481357
[2]
Yang W, Dastafkan K, Chen J, Zhao C . Advanced Materials Technologies, 2018,3: 1700377.
[3]
Zhao F, Bae J W, Zhou X Y, Guo Y H, Yu G H . Advanced Materials, 2018,30: 1801796.
[4]
Long C, Li X, Guo J, Shi Y N, Liu S Q, Tang Z Y . Small Methods, 2019,3: 1800369.
[5]
Zhu D D, Liu J L, Qiao S Z . Advanced Materials, 2016,28: 3423. https://www.ncbi.nlm.nih.gov/pubmed/26996295

pmid: 26996295
[6]
Leung D Y C, Caramanna G, Marotovaler M M . Renewable & Sustainable Energy Reviews, 2014,39: 426.
[7]
常世磊( Chang S L), 梁风(Liang F), 姚耀春(Yao Y C), 马文会(Ma W H), 杨斌(Yang B), 戴永年(Dai Y N) . 化学学报( Acta Chimica Sinica), 2018,76: 515.
[8]
Khurram A, He M, Gallant B M . Joule, 2018,2: 2649. https://linkinghub.elsevier.com/retrieve/pii/S2542435118304057

doi: 10.1016/j.joule.2018.09.002
[9]
Cai F, Hu Z, Chou S L . Advanced Sustainable Systems, 2018,2: 1800060. http://doi.wiley.com/10.1002/adsu.v2.8-9

doi: 10.1002/adsu.v2.8-9
[10]
Mu X, Pan H, He P, Zhou H . Advanced Materials, 2019: 1903790.
[11]
Xie J, Wang Y . Accounts of Chemical Research, 2019,52: 1721. https://www.ncbi.nlm.nih.gov/pubmed/31120728

pmid: 31120728
[12]
Xiao X, Shang W, Yu W, Ma Y, Tan P, Chen B, Kong W, Xu H, Ni M . International Journal of Energy Research, 2019,1.
[13]
Takechi K, Shiga T, Asaoka T . Chemical Communications, 2011,47: 3463. https://www.ncbi.nlm.nih.gov/pubmed/21305097

pmid: 21305097
[14]
Qiao Y, Yi J, Guo S, Sun Y, Wu S, Liu X, Yang S, He P, Zhou H . Energy & Environmental Science, 2018,11: 1211.
[15]
Xu S, Das S K, Archer L A . RSC Advances, 2013,3: 6656. e9dd3c7d-473a-4238-8c2c-4d6606d1b1ffhttp://dx.doi.org/10.1039/c3ra40394g

doi: 10.1039/c3ra40394g
[16]
Liu Y, Wang R, Lyu Y, Li H, Chen L . Energy & Environmental Science, 2014,7: 677.
[17]
Zhang Z, Zhang Q, Chen Y, Bao J, Zhou X, Xie Z, Wei J, Zhou Z . Angewandte Chemie International Edition, 2015,54: 6550. https://www.ncbi.nlm.nih.gov/pubmed/25968053

doi: 10.1002/anie.201501214 pmid: 25968053
[18]
Hou Y, Wang J, Liu L, Liu Y, Chou S, Shi D, Liu H, Wu Y, Zhang W, Chen J . Advanced Functional Materials, 2017,27: 1700564. http://doi.wiley.com/10.1002/adfm.v27.27

doi: 10.1002/adfm.v27.27
[19]
Yang S, He P, Zhou H . Energy and Environmental Science, 2016,9: 1650.
[20]
Li S, Dong Y, Zhou J, Liu Y, Wang J, Gao X, Han Y, Qi P, Wang B . Energy & Environmental Science, 2018,11: 1318.
[21]
Guo Z, Li J, Qi H, Sun X, Li H, Tamirat A G, Liu J, Wang Y, Wang L . Small, 2018,15: 1803246. https://onlinelibrary.wiley.com/toc/16136829/15/29

doi: 10.1002/smll.v15.29
[22]
Yang S, Qiao Y, He P, Liu Y, Cheng Z, Zhu J J, Zhou H . Energy & Environmental Science, 2017,10: 972.
[23]
Qiao Y, Yi J, Wu S, Liu Y, Yang S, He P, Zhou H . Joule, 2017,1: 3590.
[24]
Mahne N, Renfrew S E , McCloskey B D, Freunberger S A. Angewandte Chemie International Edition, 2018,57: 5529. https://www.ncbi.nlm.nih.gov/pubmed/29543372

doi: 10.1002/anie.201802277 pmid: 29543372
[25]
Das S K, Xu S, Archer L A . Electrochemistry Communications, 2013,27: 59. https://linkinghub.elsevier.com/retrieve/pii/S1388248112004742

doi: 10.1016/j.elecom.2012.10.036
[26]
Xu S, Lu Y, Wang H, Abru H D, Archer L A . Journal of Materials Chemistry A, 2014,2: 17723. 656092c9-ff05-4f7b-a056-4afce365eb2ehttp://dx.doi.org/10.1039/c4ta04130e

doi: 10.1039/c4ta04130e
[27]
Hu X, Sun J, Li Z, Zhao Q, Chen C, Chen J . Angewandte Chemie, 2016,55: 6482. https://www.ncbi.nlm.nih.gov/pubmed/27089434

pmid: 27089434
[28]
Sun J, Lu Y, Yang H, Han M, Shao L, Chen J . Research, 2018,2018: 6914626.
[29]
Al Sadat W I, Archer L A . Science Advances, 2016,2: e1600968. https://www.ncbi.nlm.nih.gov/pubmed/27453949

doi: 10.1126/sciadv.1600968 pmid: 27453949
[30]
Ma W, Liu X, Li C, Yin H, Xi W, Liu R, He G, Zhao X, Luo J, Ding Y . Advanced Materials, 2018,30: 1801152.
[31]
Xie J, Wang X, Lv J, Huang Y, Wu M, Wang Y B, Yao J . Angewandte Chemie, 2018,130: 17242.
[32]
Wang X, Xie J, Ghausi M A, Lv J, Huang Y, Wu M, Wang Y, Yao J . Advanced Materials, 2019,31: 1807807.
[33]
Zhang L, Tang Y, Liu Q, Yang T, Du C, Jia P, Wang Z, Tang Y, Li Y, Shen T D . Nano Energy, 2018,53: 544.
[34]
Hu A, Shu C, Xu C, Liang R, Li J, Zheng R, Li M, Long J . Journal of Materials Chemistry A, 2019,7: 21605.
[35]
Chang Z, Xu J, Zhang X . Advanced Energy Materials, 2017,7: 1700875.
[36]
Zhang P, Zhao Y, Zhang X . Chemical Society Reviews, 2018,47: 2921. http://xlink.rsc.org/?DOI=C8CS00009C

doi: 10.1039/C8CS00009C
[37]
Lim H K, Lim H D, Park K Y, Seo D H, Gwon H, Hong J, Goddard W A, Kim H, Kang K . Journal of the American Chemical Society, 2013,135: 9733. https://www.ncbi.nlm.nih.gov/pubmed/23758262

doi: 10.1021/ja4016765 pmid: 23758262
[38]
Qie L, Lin Y, Connell J W, Xu J, Dai L M . Angewandte Chemie International Edition, 2017,56: 6970. https://www.ncbi.nlm.nih.gov/pubmed/28510337

pmid: 28510337
[39]
Zhang X, Zhang Q, Zhang Z, Chen Y, Xie Z, Wei J, Zhou Z . Chemical Communications, 2015,51: 14636. https://www.ncbi.nlm.nih.gov/pubmed/26290015

doi: 10.1039/c5cc05767a pmid: 26290015
[40]
Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L . Nature materials, 2010,9: 430. https://www.ncbi.nlm.nih.gov/pubmed/20190771

doi: 10.1038/nmat2711 pmid: 20190771
[41]
Banhart F, Kotakoski J, Krasheninnikov A V . ACS Nano, 2010,5: 26. https://www.ncbi.nlm.nih.gov/pubmed/21090760

doi: 10.1021/nn102598m pmid: 21090760
[42]
Jin Y, Hu C, Dai Q, Xiao Y, Lin Y, Connell J W, Chen F, Dai L . Advanced Functional Materials, 2018,28: 1804630.
[43]
Wang L, Dai W, Ma L, Gong L, Lyu Z, Zhou Y, Liu J, Lin M, Lai M, Peng Z . ACS Omega, 2017,2: 9280. https://www.ncbi.nlm.nih.gov/pubmed/31457440

pmid: 31457440
[44]
Xu S M, Ren Z C, Liu X, Liang X, Wang K X, Chen J S . Energy Storage Materials, 2018,15: 291. https://linkinghub.elsevier.com/retrieve/pii/S2405829718301995

doi: 10.1016/j.ensm.2018.05.015
[45]
Song S, Xu W, Zheng J, Luo L, Engelhard M H, Bowden M E, Liu B, Wang C M, Zhang J G . Nano letters, 2017,17: 1417. https://www.ncbi.nlm.nih.gov/pubmed/28186765

doi: 10.1021/acs.nanolett.6b04371 pmid: 28186765
[46]
Bie S Y, Du M L, He W X, Zhang H G, Yu Z T, Liu J G, Liu M, Yan W W, Zhou L, Zou Z G . ACS Applied Materials & Interfaces, 2019,11: 5146. https://www.ncbi.nlm.nih.gov/pubmed/30640419

doi: 10.1021/acsami.8b20573 pmid: 30640419
[47]
Mao Y, Tang C, Tang Z, Xie J, Chen Z, Tu J, Cao G, Zhao X . Energy Storage Materials, 2018,18: 405.
[48]
Xing Y, Yang Y, Li D, Luo M, Chen N, Ye Y, Qian J, Li L, Yang D, Wu F . Advanced Materials, 2018,30: 1803124.
[49]
Wu Y Q, Qiu X C, Liang F, Zhang Q K, Koo A, Dai Y N, Lei Y, Sun X L . Applied Catalysis B -Environmental, 2019,241: 407.
[50]
Zhang Z, Wang X G, Zhang X, Xie Z, Chen Y N, Ma L, Peng Z, Zhou Z . Advanced Science, 2018,5: 1700567. https://www.ncbi.nlm.nih.gov/pubmed/29619304

pmid: 29619304
[51]
Wang R, Yu X Q, Bai J M, Li H, Huang X J, Chen L Q, Yang X Q . Journal of Power Sources, 2012,218: 113.
[52]
Hong M, Choi H C, Byon H R . Chemistry of Materials, 2015,27: 2234.
[53]
Yang R, Xie J F, Liu Q, Huang Y Y, Lv J Q, Ghausi M A, Wang X Y, Peng Z, Wu M X, Wang Y B . Journal of Materials Chemistry A, 2019,7: 2575.
[54]
Zhou J, Li X, Yang C, Li Y, Guo K, Cheng J, Yuan D, Song C, Lu J, Wang B . Advanced Materials, 2018,31: 1804439. https://onlinelibrary.wiley.com/toc/15214095/31/3

doi: 10.1002/adma.v31.3
[55]
Zhang Z, Zhang Z, Liu P, Xie Y, Cao K, Zhou Z . Journal of Materials Chemistry A, 2018,6: 3218.
[56]
Li S, Liu Y, Zhou J, Hong S, Dong Y, Wang J, Gao X, Qi P, Han Y, Wang B . Energy & Environmental Science, 2019,12: 1046.
[57]
Kang Y, Zou D, Zhang J Y, Liang F, Hayashi K, Wang H, Xue D F, Chen K F, Adair K R, Sun X L . Electrochimica Acta, 2017,244: 222. https://linkinghub.elsevier.com/retrieve/pii/S0013468617310964

doi: 10.1016/j.electacta.2017.05.100
[58]
Fang C, Luo J, Jin C, Yuan H, Sheng O, Huang H, Gan Y, Xia Y, Liang C, Zhang J . ACS Applied Materials & Interfaces, 2018,10: 17240. https://www.ncbi.nlm.nih.gov/pubmed/29701452

doi: 10.1021/acsami.8b04034 pmid: 29701452
[59]
Xie J, Liu Q, Huang Y, Wu M, Wang Y B . Journal of Materials Chemistry A, 2018,6: 13952.
[60]
Bryantsev V S, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase G V . The Journal of Physical Chemistry A, 2011,115: 12399. https://pubs.acs.org/doi/10.1021/jp2073914

doi: 10.1021/jp2073914
[61]
McCloskey B D, Speidel A, Scheffler R, Miller D, Viswanathan V, Hummelshøj J, Nørskov J, Luntz A . The Journal of Physical Chemistry Letters, 2012,3: 997. https://www.ncbi.nlm.nih.gov/pubmed/26286562

pmid: 26286562
[62]
Yin W, Grimaud A, Lepoivre F, Yang C, Tarascon J M . The Journal of Physical Chemistry Letters, 2016,8: 214. https://www.ncbi.nlm.nih.gov/pubmed/27960058

pmid: 27960058
[63]
Aurbach D , McCloskey B D, Nazar L F, Bruce P G. Nature Energy, 2016,1: 16128.
[64]
Zhang X, Wang C, Li H, Wang X G, Chen Y N, Xie Z, Zhou Z . Journal of Materials Chemistry A, 2018,6: 2792.
[65]
Qiao Y, Liu Y, Chen C, Xie H, Yao Y, He S, Ping W, Liu B, Hu L . Advanced Functional Materials, 2018,28: 1805899.
[66]
Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L . Energy & Environmental Science, 2018,11: 3231
[67]
Wang C, Zhang Q, Zhang X, Wang X G, Xie Z, Zhou Z . Small, 2018,14: 1800641. http://doi.wiley.com/10.1002/smll.v14.28

doi: 10.1002/smll.v14.28
[68]
Kang Y, Liang F, Hayashi K . Electrochimica Acta, 2016,218: 119.
[69]
Wang X G, Wang C, Xie Z, Zhang X, Chen Y, Wu D, Zhou Z . ChemElectroChem, 2017,4: 2145.
[70]
Yin W, Grimaud A, Azcarate I, Yang C, Tarascon J M . The Journal of Physical Chemistry C, 2018,122: 6546.
[71]
Hu X, Li Z, Zhao Y, Sun J, Zhao Q, Wang J, Tao Z, Chen J . Science Advances, 2017,3: e1602396. https://www.ncbi.nlm.nih.gov/pubmed/28164158

doi: 10.1126/sciadv.1602396 pmid: 28164158
[72]
Li C, Guo Z, Yang B, Liu Y, Wang Y, Xia Y . Angewandte Chemie International Edition, 2017,56: 9126. https://www.ncbi.nlm.nih.gov/pubmed/28612470

doi: 10.1002/anie.201705017 pmid: 28612470
[73]
Hu X, Li Z, Chen J . Angewandte Chemie, 2017,129: 5879.
[74]
Wang X, Zhang X, Lu Y, Yan Z, Tao Z, Jia D, Chen J . ChemElectroChem, 2018,5: 3628.
[75]
Kim C, Kim J, Joo S, Bu Y, Liu M, Cho J, Kim G . Science, 2018,9: 278.
[76]
Xu C, Zhang K, Zhang D, Chang S, Liang F, Yan P, Yao Y, Qu T, Zhan J, Ma W . Nano Energy, 2019: 104318.
[77]
Zhang D, Ye K, Yao Y C, Liang F, Qu T, Ma W H, Yang B, Dai Y N, Watanabe T . Carbon, 2019,142: 278.
[78]
Kang Y, Su F, Zhang Q, Liang F, Adair K R, Chen K, Xue D, Hayashi K, Cao S C, Yadegari H . ACS Applied Materials & Interfaces, 2018,10: 23748. https://www.ncbi.nlm.nih.gov/pubmed/29932623

doi: 10.1021/acsami.8b04278 pmid: 29932623
[79]
Asadi M, Sayahpour B, Abbasi P, Ngo A T, Karis K, Jokisaari J R, Liu C, Narayanan B, Gerard M, Yasaei-Khojin P . Nature, 2018,555: 502. https://www.ncbi.nlm.nih.gov/pubmed/29565358

doi: 10.1038/nature25984 pmid: 29565358
[80]
Liang F, Qiu X C, Zhang Q K, Kang Y, Koo A, Hayashi K, Chen K F, Xue D F, Hui K N, Yadegari H, Sun X L . Nano Energy, 2018,49: 574. https://linkinghub.elsevier.com/retrieve/pii/S2211285518303045

doi: 10.1016/j.nanoen.2018.04.074
[81]
Qiu F, Ren S, Mu X, Liu Y, Zhang X, He P, Zhou H . Energy Storage Materials, 2020,26: 443.
[82]
Li L, Chang Z W, Zhang X B . Advanced Sustainable Systems, 2017,1: 1700036.
[83]
Wang X G, Wang C, Xie Z, Zhang X, Chen Y, Wu D, Zhou Z . ChemElectroChem, 2017,4: 2145.
[84]
Mushtaq M, Guo X W, Bi J P, Wang Z X, Yu H J . Rare Metals, 2018,37: 520.
[85]
Li J, Zhao H, Qi H, Sun X, Song X, Guo Z, Tamirat A G, Liu J, Wang L, Feng S . Advanced Functional Materials, 2019,29: 1806863.
[86]
Zhang Z, Yang C, Wu S, Wang A, Zhao L, Zhai D, Ren B, Cao K, Zhou Z . Advanced Energy Materials, 2018: 1802805.
[87]
Zhang P F, Lu Y Q, Wu Y J, Yin Z W, Li J T, Zhou Y, Hong Y H, Li Y Y, Huang L, Sun S G . Chemical Engineering Journal, 2019,363: 224.
[88]
Qiao Y, Xu S, Liu Y, Dai J, Xie H, Yao Y, Mu X, Chen C, Kline D J, Hitz E M, Liu B, Song J, He P, Zachariah M R, Hu L . Energy & Environmental Science, 2019,12: 1100.
[89]
Zhao H, Li D, Li H, Tamirat A G, Song X, Zhang Z, Wang Y, Guo Z, Wang L, Feng S . Electrochimica Acta, 2019,299: 592.
[90]
Bie S, Du M, He W, Zhang H, Yu Z, Liu J, Liu M, Yan W, Zhou L, Zou Z . ACS Applied Materials & Interfaces, 2019,11: 5146. https://www.ncbi.nlm.nih.gov/pubmed/30640419

pmid: 30640419
[91]
Ma W, Lu S, Lei X, Liu X, Ding Y . Journal of Materials Chemistry A, 2018,6: 20829.
[92]
Lu S, Shang Y, Ma S, Lu Y, Liu Q C, Li Z J . Electrochimica Acta, 2019,319: 958.
[93]
Liang H, Zhang Y, Chen F, Jing S, Yin S, Tsiakaras P . Applied Catalysis B: Environmental, 2019,244: 559.
[94]
Chen J, Zou K, Ding P, Deng J, Zha C, Hu Y, Zhao X, Wu J, Fan J, Li Y . Advanced Materials, 2019,31: 1805484.
[95]
Zhu Q, Xu S, Cai Z, Harris M M, Wang K, Chen J . Energy Storage Materials, 2017,7: 209.
[96]
Li Y, Zhou J, Zhang T, Wang T, Li X, Jia Y, Cheng J, Guan Q, Liu E, Peng H . Advanced Functional Materials, 2019,29: 1808117.
[97]
Pipes R, Bhargav A, Manthiram A . ACS Applied Materials & Interfaces, 2018,10: 37119. https://www.ncbi.nlm.nih.gov/pubmed/30299075

pmid: 30299075
[98]
Jin Y, Chen F, Wang J, Johnston R L . Chemical Engineering Journal, 2019,375: 121978.
[99]
Ge B, Sun Y, Guo J, Yan X, Fernandez C, Peng Q . Small, 2019: 1902220.
[100]
Ahmadiparidari A, Warburton R E, Majidi L, Asadi M, Chamaani A, Jokisaari J R, Rastegar S, Hemmat Z, Sayahpour B, Assary R S . Advanced Materials, 2019,31: 1902518. https://onlinelibrary.wiley.com/toc/15214095/31/40

doi: 10.1002/adma.v31.40
[101]
Wang H, Xie K, You Y, Hou Q, Zhang K, Li N, Yu W, Loh K P, Shen C, Wei B . Advanced Energy Materials, 2019: 1901806.
[102]
Li X, Zhou J, Zhang J, Li M, Bi X, Liu T, He T, Cheng J, Zhang F, Li Y . Advanced Materials, 2019,31: 1903852.
[103]
Li X, Wang H, Chen Z, Xu H S, Yu W, Liu C, Wang X, Zhang K, Xie K, Loh K P . Advanced Materials, 2019,1905879.
[104]
Zhang B W, Jiao Y, Chao D L, Ye C, Wang Y X, Davey K, Liu H K, Dou S X, Qiao S Z . Advanced Functional Materials, 2019,1904206.
[105]
Huang S, Chen D, Meng C, Wang S, Ren S, Han D, Xiao M, Sun L, Meng Y . Small, 2019,1904830.
[106]
Pipes R, He J, Bhargav A, Manthiram A . ACS Applied Energy Materials, 2019,2: 8685. https://pubs.acs.org/doi/10.1021/acsaem.9b01653

doi: 10.1021/acsaem.9b01653
[107]
Lu Y, Cai Y, Zhang Q, Liu L, Niu Z, Chen J . Chemical Science, 2019,10: 4306. https://www.ncbi.nlm.nih.gov/pubmed/31057757

doi: 10.1039/c8sc05178j pmid: 31057757
[108]
Guo L, Li B, Thirumal V, Song J . Chemical Communications, 2019,55: 7946. https://www.ncbi.nlm.nih.gov/pubmed/31219113

doi: 10.1039/c9cc02737h pmid: 31219113
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[5] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[6] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[7] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[8] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[9] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[10] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[11] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[12] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[13] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[14] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[15] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.