中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1678-1687 DOI: 10.7536/PC210920 Previous Articles   Next Articles

• Review •

Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts

Bin Jia1,2, Xiaolei Liu1,2, Zhiming Liu1,2()   

  1. 1 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,Beijing 100029, China
    2 Beijing Center for Environmental Pollution Control and Resource Recovery, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: Zhiming Liu
  • Supported by:
    National Natural Science Foundation of China(21876009); Fundamental Research Funds for the Central Universities(JD2110)
Richhtml ( 36 ) PDF ( 455 ) Cited
Export

EndNote

Ris

BibTeX

The control of NOx is very important for the air quality improvement. Selective catalytic reduction of NOx by hydrogen (H2-SCR) has attracted much attention as an efficient and environmentally benign deNOx technology. In this review, we summarize the research development in the H2-SCR of NOx over noble metal catalysts. The typical H2-SCR reaction mechanisms are introduced first. Then the factors affecting the H2-SCR performance of noble metal catalysts, such as the active metal, support type, the added promoter and the nature of active metal, and the structure-activity relationship have been discussed. Finally, the challenges and the prospects for future development of H2-SCR catalyst are proposed.

Contents

1 Introduction

2 The reaction mechanisms of H2-SCR

2.1 Redox mechanism

2.2 Adsorption/dissociation of NO

2.3 Bifunction mechanism

3 Noble metal H2-SCR catalyst

3.1 Effect of active metal

3.2 Effect of the support

3.3 Effects of the additives

3.4 Alloy catalyst

3.5 Single atom catalyst

4 Conclusion and perspective

Fig. 1 Mechanism of surface diffusion reaction of H species on Pt/MgO-CeO2 catalyst[7]
Fig. 2 Schematic diagram of NO adsorption and dissociation over the Pt/La0.5Ce0.5MnO3 catalyst[14]
Fig. 3 Reaction scheme of H2-SCR of NOx on Pd/V2O5/TiO2-Al2O3 catalyst[15]
Fig. 4 Reaction routes of Pt/SSZ-13 catalyst at different temperatures[19]
Fig. 5 Reaction routes of Pt/h-ZSM-5 catalyst in the different ranges of temperature[18]
Fig. 6 Mechanism diagram of H2-SCR reaction on Pt-HY catalyst[20]
Fig. 7 Relationship between the TOF of NO and the Pd particle size[25]
Fig. 8 Scheme for the preparation of Pt/TiO2 catalyst using the sacrificial carbon layer strategy[27]
Fig. 9 Comparison of the activities of Pt/TiO2 and Pt/TiO2-M catalysts[27]
Fig. 10 Schematic illustration of the synthesis of MOF-derived porous Pt/ZrO2@C nano-octahedra[43]
Fig. 11 H2-SCR performance of Pt/HZSM-5 and Pt-W/HZSM-5 catalysts. Reaction conditions:[NO] = 1000 ppm, [H2] =5000 ppm, [O2] = 10%[48]
Fig. 12 HAADF-STEM images of (a)Pt-SAC and (b)Pt-nano catalysts[62]
[1]
Liu Z M, Woo S I, Catal. Rev. Sci. Eng., 2006, 48: 43.

doi: 10.1080/01614940500439891
[2]
Wang J H, Zhao H W, Haller G, Li Y D. Appl. Catal. B Environ., 2017, 202: 346.

doi: 10.1016/j.apcatb.2016.09.024
[3]
Zhang C B, He H, Shuai S J, Wang J X. Environ. Pollut., 2007, 147(2): 415.

doi: 10.1016/j.envpol.2006.05.030
[4]
Liu Z M, Wu J P, Hardacre C. Catal. Surv. Asia, 2018, 22(3): 146.

doi: 10.1007/s10563-018-9248-3
[5]
Yuan L, Zheng X, Duan K J, Hu H, Wang J G, Woo S I, Liu Z M. Front. Environ. Sci. Eng., 2013, 7(3): 457.

doi: 10.1007/s11783-013-0512-5
[6]
Hu Z, Yang R T. Ind. Eng. Chem. Res., 2019, 58(24): 10140.
[7]
Savva P G, Efstathiou A M. J. Catal., 2008, 257(2): 324.

doi: 10.1016/j.jcat.2008.05.010
[8]
Wang L F, Yin C Y, Yang R T. Appl. Catal. A Gen., 2016, 514: 35.

doi: 10.1016/j.apcata.2016.01.013
[9]
Costa C N, Angelos M, Efstathiou A M. Appl. Catal. B Environ., 2007, 72: 240.

doi: 10.1016/j.apcatb.2006.11.010
[10]
Machida M, Ikeda S, Kurogi D, Kijima T. Appl. Catal. B Environ., 2001, 35(2): 107.

doi: 10.1016/S0926-3373(01)00243-0
[11]
Burch R, Watling T C. Catal. Lett., 1996, 37(1/2): 51.

doi: 10.1007/BF00813519
[12]
Shustorovich E, Bell A T. Surf. Sci., 1993, 289: 127.

doi: 10.1016/0039-6028(93)90892-N
[13]
Peng Z Z, Li Z Y, Liu Y Q, Yan S, Tong J N, Wang D, Ye Y Y, Li S R. Chem. Commun., 2017, 53(44): 5958.

doi: 10.1039/C7CC02235B
[14]
Costa C N, Stathopoulos V N, Belessi V C, Efstathiou A M. J. Catal., 2001, 197(2): 350.

doi: 10.1006/jcat.2000.3101
[15]
Qi G, Yang R T, Rinaldi F C. J. Catal., 2006, 237(2): 381.

doi: 10.1016/j.jcat.2005.11.025
[16]
Jin X, Wen H, Liu J Y. J. Phys. Chem. C, 2020, 124(18): 9908.

doi: 10.1021/acs.jpcc.0c00308
[17]
Hong Z, Sun X Y, Wang Z, Zhao G Q, Li X B, Zhu Z R. Catal. Sci. Technol., 2019, 9(15): 3994.

doi: 10.1039/c9cy00898e
[18]
Hong Z, Wang Z, Chen D, Sun Q, Li X B. Appl. Surf. Sci., 2018, 440: 1037.

doi: 10.1016/j.apsusc.2018.01.239
[19]
Komatsubara M, Koga A, Tanaka M, Hagiwara R, Iwamoto M. Catal. Sci. Technol., 2016, 6(20): 7398.

doi: 10.1039/C6CY01166G
[20]
Zhang X X, Wang X P, Zhao X J, Xu Y Z, Gao H, Zhang F F. Chem. Eng. J., 2014, 252: 288.

doi: 10.1016/j.cej.2014.05.006
[21]
Brigitta F, Gerhard E, Albert R. Appl. Catal. B Environ., 1998, 19: 45.

doi: 10.1016/S0926-3373(98)00057-5
[22]
Park S M, Kim M Y, Kim E S, Han H S, Seo G. Appl. Catal. A Gen., 2011, 395(1/2): 120.

doi: 10.1016/j.apcata.2011.01.033
[23]
Granger P, Dhainaut F, Pietrzik S, Malfoy P, Mamede A S, Leclercq L, Leclercq G. Top. Catal., 2006, 39(1/2): 65.

doi: 10.1007/s11244-006-0039-0
[24]
Ueda A, Nakao T, Azuma M, Kobayashi T. Catal. Today, 1998, 45(1/4): 135.

doi: 10.1016/S0920-5861(98)00261-2
[25]
Savva Z, Petallidou K C, Damaskinos C M, Olympiou G G, Stathopoulos V N, Efstathiou A M. Appl. Catal. A Gen., 2021, 615: 118062.
[26]
Burch R, Coleman M D. Appl. Catal. B Environ., 1999, 23: 115.

doi: 10.1016/S0926-3373(99)00073-9
[27]
Liu Z M, Jia B, Zhang Y Y, Haneda M. Ind. Eng. Chem. Res., 2020, 59(31): 13916.
[28]
Costa C N, Efstathiou A M. J. Phys. Chem. C, 2007, 111(7): 3010.

doi: 10.1021/jp064952o
[29]
Liu Y, Tursun M, Yu H B, Wang X P. Mol. Catal., 2019, 464: 22.

doi: 10.1016/j.mcat.2018.12.015
[30]
Itoh M, Motoki K, Saito M, Iwamoto J, Machida K I. Bull. Chem. Soc. Jpn., 2009, 82(9): 1197.

doi: 10.1246/bcsj.82.1197
[31]
Li X Y, Zhang X X, Xu Y Z, Liu Y, Wang X P. Chin. J. Catal., 2015, 36(2): 197.

doi: 10.1016/S1872-2067(14)60197-2
[32]
Qi G, Yang R T, Thompson L T. Appl. Catal. A Gen., 2004, 259(2): 261.

doi: 10.1016/j.apcata.2003.09.040
[33]
Sun W, Qiao K, Liu J Y, Cao L M, Gong X Q, Yang J. ACS Comb. Sci., 2016, 18(4): 195.

doi: 10.1021/acscombsci.5b00193
[34]
Costa C N, Savva P G, Andronikou C, Lambrou P S, Polychronopoulou K, Belessi V C, Stathopoulos V N, Pomonis P J, Efstathiou A M. J. Catal., 2002, 209(2): 456.

doi: 10.1006/jcat.2002.3645
[35]
Zhang C, Gao Y S, Yan Q H, Wang Q. Catal. Today, 2020, 355: 450.

doi: 10.1016/j.cattod.2019.07.006
[36]
Yu Q, Richter M, Kong F X, Li L D, Wu G J, Guan N J. Catal. Today, 2010, 158(3/4): 452.

doi: 10.1016/j.cattod.2010.06.031
[37]
Yang S F, Wang X P, Chu W L, Song Z N, Zhao S. Appl. Catal. B Environ., 2011, 107(3/4): 380.

doi: 10.1016/j.apcatb.2011.08.001
[38]
Cao L M, Wang Q, Yang J. J. Environ. Chem. Eng., 2020, 8(1): 103631.
[39]
Li L D, Wu P, Yu Q, Wu G J, Guan N J. Appl. Catal. B Environ., 2010, 94(3/4): 254.

doi: 10.1016/j.apcatb.2009.11.016
[40]
Wu P, Li L D, Yu Q, Wu G J, Guan N J. Catal. Today, 2010, 158(3/4): 228.

doi: 10.1016/j.cattod.2010.03.023
[41]
Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, Young M D, Yuan D Q, Zhao D, Zhuang W J, Zhou H C. Coord. Chem. Rev., 2009, 253(23/24): 3042.

doi: 10.1016/j.ccr.2009.05.019
[42]
Xue Y J, Sun W, Wang Q, Cao L M, Yang J. Chem. Eng. J., 2018, 335: 612.

doi: 10.1016/j.cej.2017.11.011
[43]
Wang Q, Sun W, Xie T Y, Cao L M, Yang J. Chem. Asian J., 2019, 14(3): 416.

doi: 10.1002/asia.201801680
[44]
Machida M, Watanabe T. Appl. Catal. B Environ., 2004, 52(4): 281.

doi: 10.1016/j.apcatb.2004.05.001
[45]
Li L D, Zhang F X, Guan N J, Schreier E, Richter M. Catal. Commun., 2008, 9(9): 1827.

doi: 10.1016/j.catcom.2008.02.019
[46]
Zhang Y Y, Zeng H, Jia B, Liu Z M. Catal. Today, 2021, 360: 213.

doi: 10.1016/j.cattod.2020.05.042
[47]
Liu Z M, Lu Y N, Yuan L, Ma L L, Zheng L R, Zhang J, Hu T D. Appl. Catal. B Environ., 2016, 188: 189.

doi: 10.1016/j.apcatb.2016.02.008
[48]
Zhang X X, Wang X P, Zhao X J, Xu Y Z, Liu Y, Yu Q. Chem. Eng. J., 2015, 260: 419.

doi: 10.1016/j.cej.2014.09.030
[49]
Burch R, Coleman M D. J. Catal., 2002, 208(2): 435.

doi: 10.1006/jcat.2002.3596
[50]
Yu Q, Richter M, Li L D, Kong F X, Wu G J, Guan N J. Catal. Commun., 2010, 11(11): 955.

doi: 10.1016/j.catcom.2010.03.021
[51]
Hu Z, Yong X, Li D, Yang R T. J. Catal., 2020, 381: 204.

doi: 10.1016/j.jcat.2019.11.006
[52]
MacLeod N, Lambert R M. Catal. Lett., 2003, 90(3/4): 111.

doi: 10.1023/B:CATL.0000004113.89067.1d
[53]
Borchers M, Keller K, Lott P, Deutschmann O. Ind. Eng. Chem. Res., 2021, 60(18): 6613.

doi: 10.1021/acs.iecr.0c05630
[54]
Duan K J, Chen B H, Zhu T L, Liu Z M. Appl. Catal. B Environ., 2015, 176/177: 618.

doi: 10.1016/j.apcatb.2015.04.048
[55]
Duan K J, Liu Z M, Yuan L. Chin. Sci. Bull., 2014, 59(31): 3973.

doi: 10.1007/s11434-014-0473-5
[56]
Tu B S, Sun W, Xue Y J, Zaman W Q, Cao L M, Yang J. ACS Sustainable Chem. Eng., 2017, 5(6): 5200.

doi: 10.1021/acssuschemeng.7b00540
[57]
Sun W, Wang Z Q, Wang Q, Zaman W Q, Cao L M, Gong X Q, Yang J. Chem. Commun., 2018, 54(68): 9502.

doi: 10.1039/C8CC05279D
[58]
Duan K J, Liu Z M, Li J H, Yuan L, Hu H, Woo S I. Catal. Commun., 2014, 57: 19.

doi: 10.1016/j.catcom.2014.07.033
[59]
Duan K J, Wang Z H, Hardacre C, Liu Z M, Chansai S, Stere C. Catal. Today, 2019, 332: 69.

doi: 10.1016/j.cattod.2018.06.022
[60]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095
[61]
Wang L, Zhang S R, Zhu Y, Patlolla A, Shan J J, Yoshida H, Takeda S, Frenkel A I, Tao F F. ACS Catal., 2013, 3(5): 1011.

doi: 10.1021/cs300816u
[62]
Lin J, Qiao B T, Li N, Li L, Sun X C, Liu J Y, Wang X D, Zhang T. Chem. Commun., 2015, 51(37): 7911.

doi: 10.1039/C5CC00714C
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[5] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[6] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[7] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[10] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[11] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[12] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[13] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[14] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[15] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.