中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 301-318 DOI: 10.7536/PC210630 Previous Articles   Next Articles

• Review •

The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx

Bolin Zhang1,2, Shengyang Zhang1, Shengen Zhang1()   

  1. 1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing,Beijing 100083, China
    2 Shunde Graduate School, University of Science and Technology Beijing,Foshan 528399, China
  • Received: Revised: Online: Published:
  • Contact: Shengen Zhang
  • Supported by:
    National Natural Science Foundation of China(U2002212); Fundamental Research Funds for the Central Universities(FRF-IDRY-20-005); Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(2020BH012)
Richhtml ( 19 ) PDF ( 289 ) Cited
Export

EndNote

Ris

BibTeX

Nitrogen oxides (NOx) can be reduced by technology of selective catalytic reduction (SCR) with NH3, while the spent commercial V2O5/TiO2 catalysts with biotoxicity for SCR technology is recognized as hazardous wastes in China. Rare earths (REEs) possess unique 4f electron orbit ensuring superior performance of oxygen storage and release, which plays a significant role in catalytic reaction. Thus, REEs are the important research subject in SCR catalysts recently and the proposed substitutes for V2O5/TiO2 catalysts. This review mainly summarizes the progress of 12 REEs including Ce, Sm and La in novel SCR catalysts in recent 5 years, and there is seldom study on Sc, Lu, etc. We primarily review the effect of REEs on improving the catalytic activity, N2 selectivity and stability of Mn-, Fe-, V- and other based DeNOx catalysts. The REEs mainly improve the redox behavior via the formation of redox couples with other transition elements and providing more oxygen vacancies. In the aspect of resistance towards SO2, the REEs, such as Ce and Sm, could suppress the oxidation of SO2 to SO3 and attract the poison of SO2 from the main active components, thus improving the resistance towards SO2. We also review the molding and application of REEs-based catalysts. Additionally, the primitive design strategy of SCR catalysts is proposed, and the development prospect of REEs-based catalysts is forecast finally.

Contents

1 Introduction

2 Reaction mechanism and design of catalysts

3 Ce-based SCR catalysts

3.1 Single ceria-based catalysts

3.2 Mn-Ce based catalysts

3.3 Fe-Ce based catalysts

3.4 V-Ce based catalysts

3.5 Other Ce-containing catalysts

4 Sm, La and other REEs in SCR catalysts

4.1 Sm in SCR catalysts

4.2 La in SCR catalysts

4.3 Other REEs in SCR catalysts

5 Molding and application of REEs-based catalysts

6 Conclusion and outlook

Fig. 1 Schematic of acid circle and redox circle of SCR of NOx with NH3[2]. Copyright 2019, American Chemical Society
Fig. 2 NO conversion of NH3-SCR over CeO2 calcined in air, CeO2-Ar calcined in Ar and retested CeO2-Ar (reaction condition: 150 mg catalysts, [NO] = [NH3] = 650 ppm, [O2] = 5 vol% and flow rate of 300 mL·min-1)[8]. Copyright 2020, Elsevier
Fig. 3 Schematic of NH3-SCR reaction over sulfated CeTiOx catalyst[31].Copyright 2021, American Chemical Society
Fig. 4 Mechanism of Ce in promoting the SO2 poisoning resistance of the birnessite-MnO2 catalyst[40]. Copyright 2021, American Chemical Society
Fig. 5 Possible mechanism of the H2O/SO2 tolerance over MnCeOx@Z5 and MnCeOx/Z5[42]. Copyright 2020, Elsevier
Table 1 summary of catalytic activities of some Mn-Ce catalysts
Fig. 6 Reaction routes of (a) Fe2Ox/MWCNTs and (b) Fe2Ce0.5Ox/MWCNTs at 240 ℃[58]. Copyright 2018, American Chemical Society
Fig. 7 Schematization of surface acidity and redox properties and transient-response experiment results: NH3 adsorption (not shown) + transient NO pulse over pretreated (a) VOx/CeO2 (0.3 g), (b) H-SSZ-13 (0.03 g) and (c) mechanical mixture of VOx/CeO2 + H-SSZ-13 (0.3 g + 0.03 g). T = 473 K, O2 = H2O = 0%, NO = 350 ppm, ?ow rate = 3.33 cm3·s-1 NTP[26]. Copyright 2020, Elsevier
Fig. 8 TEM images and schematic illustrations of (a1-3) CeO2-R ({110}, {100}), (b1-3) CeO2-P ({111}) and (c1-3) CeO2-C ({100})[68]. Copyright 2021, China Academic Journal Electronic Publishing House
Fig. 9 Tentative mechanism of low-temperature NH3-SCR on V2O5/Ce1-xTixO2 catalysts[70]. Copyright 2017, American Chemical Society
Fig.10 Design strategy of arsenic resistance[76]. Copyright 2020, American Chemical Society
Fig. 11 (a) NO conversion of CeSi2 in the presence of 500 ppm SO2 at 225 ℃ (reaction condition: [NO] = [NH3] = 500 ppm, [O2] = 5 vol%); (b) NO conversion of fresh CeSi2 and the used CeSi2 (500 ppm of the SO2 resistance test at 225 ℃, WHSV = 48 000 mL·g-1·h-1, the used sample was denoted as CeSi2-225-500); (c) Scheme of the reaction mechanism and reaction performance on fresh and sulfated samples[82]. Copyright 2021, American Chemical Society
Fig.12 Effect of H2O and SO2 on the NH3-SCR activity of TiSmMn catalyst at 100 ℃[87]. Copyright 2020, American Chemical Society
Fig.13 Reaction and SO2 resistance mechanism on MnCeSmTiOx catalyst[90]. Copyright 2020, American Chemical Society
Fig.14 Structure of Ce/Sm doped Cu-SSZ-13 catalyst[92]. Copyright 2020, American Chemical Society
Fig.15 Micro-morphology of the membrane coated Mn-La-Ce-Ni-Ox catalyst and mechanism of reaction gas action on the surface of catalyst after injecting SO2 and H2O[102]. Copyright 2017, Elsevier
Fig.16 The promotional effect of Er modification on SO2 resistance over FeMn/TiO2 catalysts[124]. Copyright 2021, MDPI and the authors
[1]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.

doi: 10.1126/science.aan5630
[2]
Han L P, Cai S X, Gao M, Hasegawa J Y, Wang P L, Zhang J P, Shi L Y, Zhang D S. Chem. Rev., 2019, 119(19): 10916.

doi: 10.1021/acs.chemrev.9b00202
[3]
Wang X H, Liu C X, Song C F, Ma D G, Li Z G, Liu Q L. Progress in Chemistry, 2020, 32(12):1917.
( 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 化学进展, 2020, 32(12):1917.

doi: 10.7536/PC200325
[4]
Shao X Z, Wang H Y, Yuan M L, Yang J, Zhan W C, Wang L, Guo Y, Lu G Z. Rare Met., 2019, 38(4): 292.

doi: 10.1007/s12598-018-1176-x
[5]
Akah A. J. Rare Earths, 2017, 35(10): 941.

doi: 10.1016/S1002-0721(17)60998-0
[6]
Wang L Y, Yu X H, Wei Y C, Liu J, Zhao Z. J. Rare Earths, 2021, 39(10): 1151.

doi: 10.1016/j.jre.2021.05.001
[7]
Vargas M A L, Casanova M, Trovarelli A, Busca G. Appl. Catal. B Environ., 2007, 75(3/4): 303.

doi: 10.1016/j.apcatb.2007.04.022
[8]
Zhang B L, Zhang S G, Liu B. Appl. Surf. Sci., 2020, 529: 147068.

doi: 10.1016/j.apsusc.2020.147068
[9]
Zhang S G, Zhang B L, Liu B, Sun S L. RSC Adv., 2017, 7(42): 26226.

doi: 10.1039/C7RA03387G
[10]
Zhang B, Deng L, Liu B, Luo C, Liebau M, Zhang S, Gläser R. Rare Met., 2021, 41(1): 166.

doi: 10.1007/s12598-021-01790-5
[11]
Yang S J, Xiong S C, Liao Y, Xiao X, Qi F H, Peng Y, Fu Y W, Shan W P, Li J H. Environ. Sci. Technol., 2014, 48(17): 10354.

doi: 10.1021/es502585s
[12]
Topsøe N Y. Science, 1994, 265(5176): 1217.

pmid: 17787589
[13]
Nuguid R J G, Ferri D, Marberger A, Nachtegaal M, Kröcher O. ACS Catal., 2019, 9(8): 6814.

doi: 10.1021/acscatal.9b01514
[14]
He G Z, Lian Z H, Yu Y B, Yang Y, Liu K, Shi X Y, Yan Z D, Shan W P, He H. Sci. Adv., 2018, 4(11): eaau4637.

doi: 10.1126/sciadv.aau4637
[15]
Qu R Y, Gao X, Cen K F, Li J H. Appl. Catal. B Environ., 2013, 142/143: 290.

doi: 10.1016/j.apcatb.2013.05.035
[16]
Qu W Y, Liu X N, Chen J X, Dong Y Y, Tang X F, Chen Y X. Nat. Commun., 2020, 11: 1532.

doi: 10.1038/s41467-020-15261-5
[17]
Li X Y, Chen J, Lu C M, Luo G Q, Yao H. Fuel, 2021, 299: 120910.

doi: 10.1016/j.fuel.2021.120910
[18]
Zhang B L, Liebau M, Liu B, Li L, Zhang S G, Gläser R. J. Mater. Sci., 2019, 54(9): 6943.

doi: 10.1007/s10853-019-03369-z
[19]
Li G, Mao D S, Chao M X, Li G H, Yu J, Guo X M. J. Rare Earths, 2021, 39(7): 805.

doi: 10.1016/j.jre.2020.10.001
[20]
Wang H, Qu Z P, Liu L L, Dong S C, Qiao Y J. J. Hazard. Mater., 2021, 414: 125565.

doi: 10.1016/j.jhazmat.2021.125565
[21]
Zhou J, Guo R T, Zhang X F, Liu Y Z, Duan C P, Wu G L, Pan W G. Energy Fuels, 2021, 35(4): 2981.

doi: 10.1021/acs.energyfuels.0c04231
[22]
Geng Y, Shan W P, Liu F D, Yang S J. J. Hazard. Mater., 2021, 405: 124223.

doi: 10.1016/j.jhazmat.2020.124223
[23]
Zhang K, Wang J J, Guan P F, Li N, Gong Z J, Zhao R, Luo H J, Wu W F. Mater. Res. Bull., 2020, 128: 110871.

doi: 10.1016/j.materresbull.2020.110871
[24]
Chitsazi H, Zhang N Q, Li L C, Liu X J, Wu R, He J D, Song L Y, He H. J. Rare Earths, 2021, 39(5): 526.

doi: 10.1016/j.jre.2020.05.004
[25]
Kwon D W, Kim J, Ha H P. Appl. Surf. Sci., 2019, 481: 1503.

doi: 10.1016/j.apsusc.2019.03.218
[26]
Hu W S, Zou R Z, Dong Y, Zhang S, Song H, Liu S J, Zheng C H, Nova I, Tronconi E, Gao X. J. Catal., 2020, 391: 145.

doi: 10.1016/j.jcat.2020.08.002
[27]
Cong Q L, Chen L, Wang X X, Ma H Y, Zhao J K, Li S J, Hou Y, Li W. Chem. Eng. J., 2020, 379: 122302.

doi: 10.1016/j.cej.2019.122302
[28]
Chen L X, Agrawal V, Tait S L. Catal. Sci. Technol., 2019, 9(8): 1802.

doi: 10.1039/C8CY02590H
[29]
Abid R, Delahay G, Tounsi H. J. Rare Earths, 2020, 38(3): 250.

doi: 10.1016/j.jre.2019.09.005
[30]
Zeng Y Q, Wang Y N, Hongmanorom P, Wang Z G, Zhang S L, Chen J T, Zhong Q, Kawi S. Chem. Eng. J., 2021, 409: 128242.

doi: 10.1016/j.cej.2020.128242
[31]
Liu B, Liu J, Xin L, Zhang T, Xu Y B, Jiang F, Liu X H. ACS Catal., 2021, 11(13): 7613.

doi: 10.1021/acscatal.1c00311
[32]
Zhang W J, Liu G F, Jiang J, Tan Y C, Wang Q, Gong C H, Shen D K, Wu C F. Chemosphere, 2020, 243: 125419.

doi: 10.1016/j.chemosphere.2019.125419
[33]
Xu H M, Yan N Q, Qu Z, Liu W, Mei J, Huang W J, Zhao S J. Environ. Sci. Technol., 2017, 51(16): 8879.

doi: 10.1021/acs.est.6b06079
[34]
Zhang B L. Doctoral Dissertation of University of Science and Technology Beijing, 2020.
( 张柏林. 北京科技大学博士论文, 2020.)..
[35]
Zhang B L, Liebau M, Suprun W, Liu B, Zhang S G, Gläser R. Catal. Sci. Technol., 2019, 9(17): 4759.

doi: 10.1039/C9CY01156K
[36]
Yang J, Su Z H, Ren S, Long H M, Kong M, Jiang L J. J. Energy Inst., 2019, 92(4): 883.

doi: 10.1016/j.joei.2018.08.001
[37]
Li Q, Li X, Li W, Zhong L, Zhang C, Fang Q Y, Chen G. Chem. Eng. J., 2019, 369: 26.

doi: 10.1016/j.cej.2019.03.054
[38]
Yan D J, Yu Y, Xu Y, Huang X M. Chem. Ind. Eng. Prog., 2015, 34(6): 1652.
( 闫东杰, 玉亚, 徐颖, 黄学敏. 化工进展, 2015, 34(6): 1652.)
[39]
Jin R B, Liu Y, Wang Y, Cen W L, Wu Z B, Wang H Q, Weng X L. Appl. Catal. B Environ., 2014, 148/149: 582.

doi: 10.1016/j.apcatb.2013.09.016
[40]
Fang X, Liu Y J, Cheng Y, Cen W L. ACS Catal., 2021, 11(7): 4125.

doi: 10.1021/acscatal.0c05697
[41]
Chen J Y, Fu P, Lv D F, Chen Y, Fan M L, Wu J L, Meshram A, Mu B, Li X, Xia Q B. Chem. Eng. J., 2021, 407: 127071.

doi: 10.1016/j.cej.2020.127071
[42]
Yan R, Lin S X, Li Y L, Liu W M, Mi Y Y, Tang C J, Wang L, Wu P, Peng H G. J. Hazard. Mater., 2020, 396: 122592.

doi: 10.1016/j.jhazmat.2020.122592
[43]
Yan D J, Yu Y, Huang X M, Liu S J, Liu Y H. J. Fuel Chem. Technol., 2016, 44(2): 232.

doi: 10.1016/S1872-5813(16)30011-1
( 闫东杰, 玉亚, 黄学敏, 刘树军, 刘颖慧. 燃料化学学报, 2016, 44(2): 232.)
[44]
Yang L, Tan Y, Sheng Z Y, Zhou A Y, Hu Y F, Dan Y X. Journal of Chemical Engineering of Chinese Universities, 2015, 29(6): 1438.
( 杨柳, 谭月, 盛重义, 周爱奕, 胡宇峰, 单云霞. 高校化学工程学报, 2015, 29(6): 1438.)
[45]
Wu X M, Yu X L, He X Y, Jing G H. J. Phys. Chem. C, 2019, 123(17): 10981.

doi: 10.1021/acs.jpcc.9b01048
[46]
Liang Y Z, Wang X T, Zhang Q Y, Luo S F, Zhou Y F. Journal of Fuel Chemistry and Technology, 2020, 48(2):205.
( 梁彦正, 王学涛, 张乾蔚, 罗绍峰, 周瑜枫. 燃料化学学报, 2020, 48(2):205.)
[47]
Zhang X L, Zhang X C, Hu X R, Wu X P, Fang C, Xiao K S. Environ. Chem., 2021, 40(2): 632.
( 张先龙, 张新成, 胡晓芮, 吴雪平, 方城, 肖客松. 环境化学, 2021, 40(2): 632.)
[48]
Chu Y H, Gai Z P, Wang T Z, Liu Z, Yao Y, Yin H Q, Guo J X. Advanced Engineering Sciences, 2015, 47(3): 180.
( 楚英豪, 盖志谱, 王天泽, 刘正, 姚远, 尹华强, 郭家秀. 四川大学学报(工程科学版), 2015, 47(3): 180.)
[49]
Jiang L J, Liu Q C, Ran G J, Kong M, Ren S, Yang J, Li J L. Chem. Eng. J., 2019, 370: 810.

doi: 10.1016/j.cej.2019.03.225
[50]
Yang J, Ren S, Zhang T S, Su Z H, Long H M, Kong M, Yao L. Chem. Eng. J., 2020, 379: 122398.

doi: 10.1016/j.cej.2019.122398
[51]
Chen L, Wang X X, Cong Q L, Ma H Y, Li S J, Li W. Chem. Eng. J., 2019, 369: 957.

doi: 10.1016/j.cej.2019.03.055
[52]
Ma S B, Zhao X Y, Li Y S, Zhang T R, Yuan F L, Niu X Y, Zhu Y J. Appl. Catal. B Environ., 2019, 248: 226.

doi: 10.1016/j.apcatb.2019.02.015
[53]
Shu Y, Aikebaier T, Quan X, Chen S, Yu H T. Appl. Catal. B Environ., 2014, 150/151: 630.

doi: 10.1016/j.apcatb.2014.01.008
[54]
Zhang W S, Shi X Y, Shan Y L, Liu J J, Xu G Y, Du J P, Yan Z D, Yu Y B, He H. Catal. Sci. Technol., 2020, 10(3): 648.

doi: 10.1039/C9CY02292A
[55]
Zhang G X, Zhou A Q, Fan H Y, Wang J Q, Chi Z H. J. Fuel Chem. Technol., 2015, 43(10): 1267.
( 张光学, 周安琪, 范海燕, 王进卿, 池作和. 燃料化学学报, 2015, 43(10): 1267.)
[56]
Liu H, Wu Y H, Liu L H, Chu B X, Qin Z Z, Jin G Z, Tong Z F, Dong L H, Li B. Appl. Surf. Sci., 2019, 498: 143780.

doi: 10.1016/j.apsusc.2019.143780
[57]
Yang L C, Luo H J, Li B W, Zhang K, Wu W F. Chinese Journal of Rare Metals, 2021, 45(2): 187.
( 杨利超, 罗慧娟, 李保卫, 张凯, 武文斐. 稀有金属, 2021, 45(2): 187.)
[58]
Ma Y G, Zhang D Y, Sun H M, Wu J F, Liang P, Zhang H W. Ind. Eng. Chem. Res., 2018, 57(9): 3187.

doi: 10.1021/acs.iecr.8b00015
[59]
Zhang X J, Zhang T J, Song Z X, Liu W, Xing Y. Journal of Fuel Chemistry and Technology, 2021:1.
( 张学军, 张庭基, 宋忠贤, 刘威, 邢赟. 燃料化学学报, 2021:1.).
[60]
Wang L X, Zhong Z P, Zhu L, Yang H. Chemical Industry and Engineering Progress, 2017, 36(11): 4064.
( 王丽霞, 仲兆平, 朱林, 杨瀚. 化工进展, 2017, 36(11): 4064.)
[61]
Xu J Q, Chen G R, Guo F, Xie J Q. Chem. Eng. J., 2018, 353: 507.

doi: 10.1016/j.cej.2018.05.047
[62]
Zhang D J, Ma Z R, Wang B D, Sun Q, Xu W Q, Zhu T. J. Rare Earths, 2020, 38(2): 157.

doi: 10.1016/j.jre.2019.02.016
[63]
Li P P, Yu F, Zhu M Y, Tang C J, Dai B, Dong L. Progress in Chemistry, 2016, 28(10): 1578.
( 李盼盼, 于锋, 朱明远, 汤常金, 代斌, 董林. 化学进展, 2016, 28(10): 1578.)

doi: 10.7536/PC160350
[64]
Liu X L, Zhao Z W, Ning R L, Qin Y, Zhu T Y, Liu F G. Catal. Lett., 2020, 150(2): 375.

doi: 10.1007/s10562-019-03077-y
[65]
Huang J, Zhong Z P, Zhu L, Xue J M, Xu Y Y, Wu P T. Chemical Industry and Engineering Progress, 2018, 37(6): 2242.
( 黄金, 仲兆平, 朱林, 薛建明, 许月阳, 吴培亭. 化工进展, 2018, 37(6): 2242.)
[66]
Yang J, Lin F, Chen K, Kong M, Zhao D, Meng F. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1394.
( 杨剑, 林凡, 陈奎, 孔明, 赵冬, 孟飞. 燃料化学学报, 2016, 44(11): 1394.)
[67]
Zhang D J, Ma Z R, Wang B D, Zhu T, Weng D, Wu X D, Chen J Y, Wang H Y, Li G, Zhou J L. J. Rare Earths, 2020, 38(7): 725.

doi: 10.1016/j.jre.2019.05.017
[68]
Hu W S, Zou R Z, Dong Y, Xin Q, Zheng C H, Gao X. Journal of Engineering Thermophysics, 2021, 42(1): 239.
( 胡文硕, 邹任智, 董毅, 辛琦, 郑成航, 高翔. 工程热物理学报, 2021, 42(1): 239.)
[69]
Wu X M, Ni K W, Yu X L, Zhao N. J. Fuel Chem. Technol., 2020, 48(2): 179.

doi: 10.1016/S1872-5813(20)30009-8
( 吴孝敏, 倪凯文, 宇小龙, 赵宁. 燃料化学学报, 2020, 48(2): 179.)
[70]
Vuong T H, Radnik J, Rabeah J, Bentrup U, Schneider M, Atia H, Armbruster U, Grünert W, Brückner A. ACS Catal., 2017, 7(3): 1693.

doi: 10.1021/acscatal.6b03223
[71]
Ma S Y, Gao W Q, Yang Z D, Lin R Y, Wang X W, Zhu X B, Jiang Y. J. Energy Inst., 2021, 94: 73.

doi: 10.1016/j.joei.2020.11.001
[72]
Liu S S, Wang H, Zhang R D, Wei Y. Mol. Catal., 2019, 478: 110563.
[73]
Bian X, Xiao K Y, Wang S H, Qiu B L. Chinese Journal of Rare Metals, 2020, 44(9): 974.
( 边雪, 肖坤宇, 王书豪, 邱保龙. 稀有金属, 2020, 44(9): 974.)
[74]
He J F, Xiong Z B, Du Y P, Lu W, Tian S L. J. Energy Inst., 2021, 94: 85.

doi: 10.1016/j.joei.2020.11.003
[75]
Geng X Z, Duan Y F, Hu P, Liu S, Liang C. China Environ. Sci., 2019, 39(4): 1419.
( 耿新泽, 段钰锋, 胡鹏, 柳帅, 梁财. 中国环境科学, 2019, 39(4): 1419.)
[76]
Jiang S, Li T, Zheng J K, Zhang H, Li X, Zhu T L. Environ. Sci. Technol., 2020, 54(22): 14740.

doi: 10.1021/acs.est.0c05152 pmid: 33151663
[77]
Yan Z P, Chong M B, Cheng D G, Chen F Q, Zhan X L. Prog. Chem., 2008, 20(S2): 1037).
( 颜志鹏, 崇明本, 程党国, 陈丰秋, 詹晓力. 化学进展, 2008, 20(S2): 1037.).
[78]
Han M J, Jiao Y L, Zhou C H, Guo Y L, Guo Y, Lu G Z, Wang L, Zhan W C. Rare Met., 2019, 38(3): 210.

doi: 10.1007/s12598-018-1143-6
[79]
Fan J, Ning P, Wang Y C, Song Z X, Liu X, Wang H M, Wang J, Wang L Y, Zhang Q L. Chem. Eng. J., 2019, 369: 908.

doi: 10.1016/j.cej.2019.03.049
[80]
Wang X Q, Liu Y, Wu Z B. Chem. Eng. J., 2020, 382: 122941.

doi: 10.1016/j.cej.2019.122941
[81]
Wang S Q, Li J M, Du Z H. Environmental Pollution & Control, 2021, 43(4): 475.
( 王淑勤, 李金梦, 杜志辉. 环境污染与防治, 2021, 43(4): 475.)
[82]
Tan W, Liu A N, Xie S H, Yan Y, Shaw T E, Pu Y, Guo K, Li L L, Yu S H, Gao F, Liu F D, Dong L. Environ. Sci. Technol., 2021, 55(6): 4017.

doi: 10.1021/acs.est.0c08410
[83]
Tan W, Wang J M, Li L L, Liu A N, Song G, Guo K, Luo Y D, Liu F D, Gao F, Dong L. J. Hazard. Mater., 2020, 388: 121729.

doi: 10.1016/j.jhazmat.2019.121729
[84]
Gong P J, Xie J L, He F, Li F X, Qi K. Appl. Surf. Sci., 2020, 505: 144641.

doi: 10.1016/j.apsusc.2019.144641
[85]
Li P, Chen X Y, Li Y D, Schwank J W. Catal. Today, 2019, 327: 90.

doi: 10.1016/j.cattod.2018.05.059
[86]
Liu L J, Xu K, Su S, He L M, Qing M X, Chi H Y, Liu T, Hu S, Wang Y, Xiang J. Appl. Catal. A Gen., 2020, 592: 117413.

doi: 10.1016/j.apcata.2020.117413
[87]
Xu Q, Fang Z L, Chen Y Y, Guo Y L, Guo Y, Wang L, Wang Y S, Zhang J S, Zhan W C. Environ. Sci. Technol., 2020, 54(4): 2530.

doi: 10.1021/acs.est.9b06701
[88]
Gao C, Shi J W, Fan Z Y, Wang B R, Wang Y, He C, Wang X B, Li J, Niu C M. Appl. Catal. A Gen., 2018, 564: 102.

doi: 10.1016/j.apcata.2018.07.017
[89]
Sun C Z, Liu H, Chen W, Chen D Z, Yu S H, Liu A N, Dong L, Feng S. Chem. Eng. J., 2018, 347: 27.

doi: 10.1016/j.cej.2018.04.029
[90]
Wang B, Wang M X, Han L N, Hou Y Q, Bao W R, Zhang C M, Feng G, Chang L P, Huang Z G, Wang J C. ACS Catal., 2020, 10(16): 9034.

doi: 10.1021/acscatal.0c02567
[91]
Wei Y, Fan H, Wang R. Appl Surf Sci, 2018, 459:63.

doi: 10.1016/j.apsusc.2018.07.151
[92]
Wang Y J, Shi X Y, Shan Y L, Du J P, Liu K, He H. Ind. Eng. Chem. Res., 2020, 59(14): 6416.

doi: 10.1021/acs.iecr.0c00285
[93]
Liu H, Fan Z X, Sun C Z, Yu S H, Feng S, Chen W, Chen D Z, Tang C J, Gao F, Dong L. Appl. Catal. B Environ., 2019, 244: 671.

doi: 10.1016/j.apcatb.2018.12.001
[94]
Liu H, Sun C Z, Fan Z X, Jia X X, Sun J F, Gao F, Tang C J, Dong L. Catal. Sci. Technol., 2019, 9(13): 3554.

doi: 10.1039/C9CY00731H
[95]
Wu Y X, Liang H L, Chen X, Chen C, Wang X Z, Dai Z Y, Hu L M, Chen Y F. Materials Reports, 2021, 35(6): 6020.
( 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 材料导报, 2021, 35(6): 6020.)
[96]
Zhang T J, Li J, He H, Song Q Q, Liang Q M. Front. Environ. Sci. Eng., 2017, 11(2): 1.
[97]
Shen B X, Ma J, Hu G L, Sun X, Li D Q. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1372.
( 沈伯雄, 马娟, 胡国丽, 孙喜, 李冬倩. 燃料化学学报, 2012, 40(11): 1372.)
[98]
Liu T K, Wei L Q, Yao Y Y, Dong L H, Li B. Appl. Surf. Sci., 2021, 546: 148971.

doi: 10.1016/j.apsusc.2021.148971
[99]
Lao Y J, Jiang X X, Huang J, Zhang Z, Wang X Y. Rare Met., 2021, 40(3): 547.

doi: 10.1007/s12598-019-01357-5
[100]
Wang R, Gui K T, Liang H. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1234.
( 王瑞, 归柯庭, 梁辉. 东南大学学报(自然科学版), 2016, 46(6): 1234.)
[101]
Li X Z, Yin Y, Yao C, Zuo S X, Lu X W, Luo S P, Ni C Y. Particuology, 2016, 26: 66.

doi: 10.1016/j.partic.2016.01.003
[102]
Yang B, Shen Y S, Su Y, Li P W, Zeng Y W, Shen S B, Zhu S M. Catal. Commun., 2017, 94: 47.

doi: 10.1016/j.catcom.2017.02.016
[103]
Zhang L, Qu H X, Du T Y, Ma W H, Zhong Q. Chem. Eng. J., 2016, 296: 122.

doi: 10.1016/j.cej.2016.03.109
[104]
Chen Z Q, Guo L, Qu H X, Liu L, Xie H F, Zhong Q. Chem. Commun., 2020, 56(15): 2360.

doi: 10.1039/C9CC09734A
[105]
Chen Z Q, Liu L, Qu H X, Zhou B J, Xie H F, Zhong Q. J. Catal., 2020, 392: 217.

doi: 10.1016/j.jcat.2020.10.005
[106]
Jin Q J, Shen Y S, Zhu S M, Liu Q, Li X H, Yan W. J. Rare Earths, 2016, 34(11): 1111.

doi: 10.1016/S1002-0721(16)60142-4
[107]
Chao J D, He H, Song L Y, Fang Y J, Liang Q M, Zhang G Z, Qiu W G, Zhang R. Chemical Journal of Chinese Universities, 2015, 36(3): 523.
( 晁晶迪, 何洪, 宋丽云, 房玉娇, 梁全明, 张桂臻, 邱文革, 张然. 高等学校化学学报, 2015, 36(3): 523.)
[108]
Yu C L, Huang B C, Dong L F, Chen F, Yang Y, Fan Y M, Yang Y X, Liu X Q, Wang X N. Chem. Eng. J., 2017, 316: 1059.

doi: 10.1016/j.cej.2017.02.024
[109]
Wu P, Zhang Y P, Zhuang K, Shen K, Wang S, Huang T J. J. Rare Earths, 2020, 38(11): 1215.

doi: 10.1016/j.jre.2019.09.010
[110]
Huang J, Huang H, Jiang H T, Liu L C. Catal. Today, 2019, 332: 49.

doi: 10.1016/j.cattod.2018.07.031
[111]
Feng X, Lin Q J, Cao Y, Zhang H L, Li Y S, Xu H D, Lin C L, Chen Y Q. J. Taiwan Inst. Chem. Eng., 2017, 80: 805.

doi: 10.1016/j.jtice.2017.09.036
[112]
Sun P, Guo R T, Liu S M, Wang S X, Pan W G, Li M Y. Appl. Catal. A Gen., 2017, 531: 129.

doi: 10.1016/j.apcata.2016.10.027
[113]
Liu J, Guo R T, Li M Y, Sun P, Liu S M, Pan W G, Liu S W, Sun X. Fuel, 2018, 223: 385.

doi: 10.1016/j.fuel.2018.03.062
[114]
Fan Z Y, Shi J W, Gao C, Gao G, Wang B R, Wang Y, He C, Niu C M. Chem. Eng. J., 2018, 348: 820.

doi: 10.1016/j.cej.2018.05.038
[115]
Guan J K, Zhou L S, Li W Q, Hu D, Wen J, Huang B C. Catalysts, 2021, 11(3): 324.

doi: 10.3390/catal11030324
[116]
Gao C, Xiao B, Shi J W, He C, Wang B R, Ma D D, Cheng Y H, Niu C M. J. Catal., 2019, 380: 55.

doi: 10.1016/j.jcat.2019.10.003
[117]
Li W, Zhang C, Li X, Tan P, Fang Q Y, Chen G, Journal of Fuel Chemistry and Technology, 2017, 45(12): 1508.
( 李伟, 张成, 李鑫, 谭鹏, 方庆艳, 陈刚. 燃料化学学报, 2017, 45(12): 1508.)
[118]
Zhuang K, Zhang Y P, Huang T J, Lu B, Shen K. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1356.

doi: 10.1016/S1872-5813(17)30060-9
( 庄柯, 张亚平, 黄天娇, 陆斌, 沈凯. 燃料化学学报, 2017, 45(11): 1356.)
[119]
Zhu Y W, Zhang Y P, Xiao R, Huang T J, Shen K. Catal. Commun., 2017, 88: 64.

doi: 10.1016/j.catcom.2016.09.031
[120]
Huang T J, Zhang Y P, Zhuang K, Lu B, Zhu Y W, Shen K. Journal of Fuel Chemistry and Technology, 2018, 46(3): 319.

doi: 10.1016/S1872-5813(18)30015-X
( 黄天娇, 张亚平, 庄柯, 陆斌, 朱一闻, 沈凯. 燃料化学学报, 2018, 46(3): 319.)
[121]
Casanova M, Llorca J, Sagar A, Schermanz K, Trovarelli A. Catal. Today, 2015, 241: 159.

doi: 10.1016/j.cattod.2014.03.051
[122]
Kim J, Lee S, Kwon D W, Ha H P. Catal. Today, 2021, 359: 65.

doi: 10.1016/j.cattod.2019.05.030
[123]
Jin Q J, Shen Y S, Zhu S M, Li X H, Hu M. Chin. J. Catal., 2016, 37(9): 1521.

doi: 10.1016/S1872-2067(16)62450-6
[124]
Du H, Han Z T, Wu X T, Li C L, Gao Y, Yang S L, Song L G, Dong J M, Pan X X. Catalysts, 2021, 11(5): 618.

doi: 10.3390/catal11050618
[125]
Niu C H, Wang B R, Xing Y, Su W, He C, Xiao L, Xu Y R, Zhao S Q, Cheng Y H, Shi J W. J. Clean. Prod., 2021, 290: 125858.

doi: 10.1016/j.jclepro.2021.125858
[126]
Fokema M D, Ying J Y. J. Catal., 2000, 192(1): 54.

doi: 10.1006/jcat.2000.2814
[127]
Zhang S, Liu X, Zhong Q, Yao Y. Catal Commun, 2012, 25:7.

doi: 10.1016/j.catcom.2012.03.026
[128]
Damma D, Pappas D K, Boningari T, Smirniotis P G. Appl. Catal. B Environ., 2021, 287: 119939.

doi: 10.1016/j.apcatb.2021.119939
[129]
Zhang Y D, Ji M L, Zhou G H, Zhang Z Y. Harbin: 2014203.
( 张延东, 姬明林, 周广贺, 张志远. 哈尔滨: 2014203.).
[130]
Xiao G Z. Clean Coal Technol., 2019, 25(6): 146.
( 肖国振. 洁净煤技术, 2019, 25(6): 146.).
[131]
Wu D J, Zhou S H, Li J Y, Yang X B, Ge C M. CN201610418613.6. 2016-11-08.
[132]
Tang Z C, Zhang G D, Han W L. CN202010418630.6. 2020-08-13.
[133]
Zhu S M, Shen Y S. CN200810020425.3. 2008-08-05.
[134]
Zhu S M, Shen Y S. CN200810020427.2. 2008-08-05.
[135]
Zong Y H, Wang H, Chen Z P,. Huang L, Li Q, Wang X W, Sun D. CN201610725462.9. 2017-01-03.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[9] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[10] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[11] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[12] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[13] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[14] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[15] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.