中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (8): 879-891 DOI: 10.7536/PC170537 Previous Articles   Next Articles

• Review •

Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review

Shiying Yang1,2,3*, Yixuan Zhang3, Di Zheng3, Jia Xin1,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21677135).
PDF ( 968 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, zero-valent aluminum (ZVAl) has been used to remove contaminants in water environment due to its strong reducibility, which is developing into a new water treatment technology. However, ZVAl can be readily oxidized to form a dense oxide layer when exposed to oxygen or water medium, which will decrease the reductive capacity of ZVAl, and become the biggest limiting factor for the further application of this technology. Therefore, it is crucial to understand the surface reaction mechanism of ZVAl in aqueous media comprehensively. Actually, ZVAl has been widely used in the field of hydrogen generation because the reaction between ZVAl and H2O can generate hydrogen efficiently. In essence, the contaminants removal by ZVAl is the same as the hydrogen generation by Al/H2O reaction. In both cases, ZVAl reduction reaction occurs, and releases electrons. The primary difference between the case of contaminant removal and the case of hydrogen generation is that their electron transfer targets are pollutants in water and the water itself, respectively. In order to overcome the limitation of surface oxide film, researchers from the two fields take measures to improve the reductive capacity of ZVAl, including film dissolution by acid or alkali, film destruction by mechanical ball milling or alloying, useful film generation by building electron channel, film phase transformation by high-heat treatment, and so on. In addition, the environment conditions of water medium, such as temperature, pressure, trace ions and organic acid in water, and (hydr)oxide added, have a significant effect on the surface change of ZVAl. Therefore, in this review, based on the oxide film's formation, dissolution, destruction, transformation and the impact of its external environment, etc., the latest research progress and the surface reaction mechanism of ZVAl in the fields of contaminant removal and hydrogen generation, are summarized and prospected. It is believed that ZVAl would be applied widely in two fields supposing that the limitations of oxide film are overcomed.
Contents
1 Introduction
2 Formation of surface oxide film
2.1 Formation of surface oxide film in air
2.2 Formation of surface oxide film in water
3 Change the surface oxide film to improve reducibility of ZVAl
3.1 Dissolution of film
3.2 Destruction of film
3.3 Phase transformation of film
3.4 Building electronic channels
4 Influence of water environment conditions on the mechanism of ZVAl surface
4.1 Temperature
4.2 Initial pressure
4.3 Trace ions and organic acid in water
4.4 (Hydr)oxide
5 Conclusion and outlook

CLC Number: 

[1] 杨世迎(Yang S Y), 郑迪(Zheng D), 常书雅(Chang S Y),石超(Shi C). 化学进展(Progress in Chemistry), 2016, 28(05):754.
[2] Cheng Z H, Fu F L, Pang Y S, Tang B, Lu J W. Chem. Eng. J., 2015, 260:284.
[3] Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16):16686.
[4] Liu W P, Zhang H H, Cao B P, Lin K D, Gan J. Water Res., 2011, 45(4):1872.
[5] 杨世迎(Yang S Y), 石超(Shi C), 徐婷(Xu T), 郑迪(Zheng D). 环境化学(Environmental Chemistry), 2015, 34(10):1785.
[6] Cai M Q, Wei X Q, Song Z J, Jin M C. Ultrason. Sonochem., 2015, 22:167.
[7] 唐孟姣(Tang M J), 薛秀玲(Xue X L), 赖小丽(Lai X L). 环境化学(Environmental Chemistry), 2015, 34(7):1350.
[8] 张宁(Zhang N), 邹华(Zou H), 吴倩云(Wu Q Y). 环境工程学报(Chinese Journal of Environmental Engineering), 2014, 8(12):5237.
[9] 王安琪(Wang A Q). 济南大学硕士论文(Master Dissertation of University of Jinan), 2014.
[10] Chen L H, Huang C C, Lien H L. Chemosphere, 2008, 73(5):692.
[11] Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189(1/2):76.
[12] Lien H L, Zhang W X. Chemosphere, 2002, 49(4):371.
[13] Bokare A D, Choi W Y. Environ. Sci. Technol., 2009, 43(18):7130.
[14] Wu C C, Hus L C, Chiang P N, Liu J C, Kuan W H, Chen C C, Tzou Y M, Wang M K, Hwang C E. Water Res., 2013, 47(7):2583.
[15] Han C, Zhang L, Chen H, Shan X, Li X, Zhu W, Luo Y. Journal of Environmental Chemical Engineering, 2016, 4(1):711.
[16] Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302:437.
[17] Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96:22.
[18] Fu F L, Cheng Z H, Dionysiou D D, Tang B. J. Hazard. Mater., 2015, 298:261.
[19] Vasquez-Medrano R, Treviño P, Ibanez J G, Treviño P. Int. J. Electrochem. Sci., 2014, 9(5):2556.
[20] Fu F L, Han W, Cheng Z H, Tang B. Desalin. Water Treat., 2015, 57(12):1.
[21] Lien H, Yu C C, Lee Y. Chemosphere, 2010, 80(8):888.
[22] 张波(Zhang B),蒋霞(Jiang X),李顺(Li S),吴春笃(Wu C D),许小红(Xu X H). 环境工程学报(Chinese Journal of Environmental Engineering), 2016, 10(8):4271.
[23] Lin K A, Lin C H. Chem. Eng. J., 2016, 297:19.
[24] Lin K A, Lin J Y, Lien H L. Chemosphere, 2017, 172:325.
[25] Ambaryan G N, Vlaskin M S, Dudoladov A O, Meshkov E A, Zhuk A Z, Shkolnikov E I. Int. J. Hydrogen Energy, 2016, 41(39):17216.
[26] Huang X N, Gao T, Pan X L, Wei D, Lv C J, Qin L S, Huang Y X. J. Power Sources, 2013, 229:133.
[27] Dudoladov A O, Buryakovskaya O A, Vlaskin M S, Zhuk A Z, Shkolnikov E I. Int. J. Hydrogen Energy, 2016, 41(4):2230.
[28] 马广璐(Ma G L),庄大为(Zhuang D W), 戴洪斌(Dai H B), 王平(Wang P). 化学进展(Progress in Chemistry), 2012, 24(4):650.
[29] Deng Z Y, Liu Y F, Tanaka Y, Ye J H, Yoshio S. J. Am. Ceram. Soc., 2005, 88(4):977.
[30] Bunker B C, Nelson G C, Zavadil K R, Barbour J C, Wall F D, Sullivan J P, Windisch C F, Engelhardt M H, Baer D R. J. Phys. Chem. B, 2002,106(18):4705.
[31] Gai W Z, Liu W H, Deng Z Y, Zhou J G. Int. J. Hydrogen Energy, 2012, 37(17):13132.
[32] Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H. Water Res., 2009, 43(20):5015.
[33] Deng Z Y, Ferreira J M F, Tanaka Y, Ye J H. J. Am. Ceram. Soc., 2007, 90(5):1521.
[34] Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24(2):314.
[35] Wang A Q, Guo W L, Hao F F, Yue X X, Leng Y Q. Ultrason. Sonochem., 2014, 21(2):572.
[36] Wang C, Chou Y, Yen C. Procedia Engineering, 2012, 36:105.
[37] Pyun S I, Moon S M. J. Solid State Electrochem., 2000, 4(5):267.
[38] Zhang J S, Klasky M, Letellier B C. J. Nucl. Mater., 2009, 384(2):175.
[39] Belitskus D. J. Electrochem. Soc., 1970, 117(8):1097.
[40] Porciúncula C B,Marcilio N R,Tessaro I C, Gerchmann M.Braz. J. Chem. Eng., 2012, 29(2):337.
[41] Jung C R, Kundu A, Ku B, Gil J H, Lee H R, Jang J H. J. Power Sources, 2008, 175(1):490.
[42] Chen X Y, Zhao Z W, Hao M M, Wang D Z. J. Power Sources, 2013, 222:188.
[43] Wang H, Lu J, Dong S J, Chang Y, Fu Y G, Luo P. Mater. Trans., 2014, 55(6):892.
[44] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. J. Power Sources, 2009, 192(1):21.
[45] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. Int. J. Hydrogen Energy, 2010, 35(3):1038.
[46] Dai H B, Ma G L, Xia H J, Wang P. Energy Environ. Sci., 2011, 4(6):2206.
[47] Ma G L, Dai H B, Zhuang D W, Xia H J, Wang P. Int. J. Hydrogen Energy, 2012, 37(7):5811.
[48] Ho C Y, Huang C H. Int. J. Hydrogen Energy, 2016, 41(6):3741.
[49] Parsons R. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1967, 13(4):471.
[50] 石超(Shi C).中国海洋大学硕士论文(Master Dissertation of Ocean University of China), 2015.
[51] Razavi-Tousi S S, Szpunar J A. Metall. Mater. Trans. E, 2014, 1(3):247.
[52] Huang X N, Lv C J, Wang Y, Shen H Y, Chen D, Huang Y X. Int. J. Hydrogen Energy, 2012, 37(9):7457.
[53] Wang C P, Yang T, Liu Y H, Ruan J J, Yang S Y, Liu X J. Int. J. Hydrogen Energy, 2014, 39(21):10843.
[54] Razavi-Tousi S S, Szpunar J A. Journal of Alloys & Compounds, 2016, 679:364.
[55] Liu Y A, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2015, 89:907.
[56] Razavi-Tousi S S, Szpunar J A. Int. J. Hydrogen Energy, 2013, 38(2):795.
[57] Razavi-Tousi S S, Nematollahi G A, Ebadzadeh T, Szpunar J A. Powder Technol., 2013, 241:166.
[58] Streletskii A N, Kolbanev I V, Borunova A B, Leonov A V. Colloid J., 2004, 66(6):729.
[59] Wang H W, Chung H W, Teng H T, Cao G Z. Int. J. Hydrogen Energy, 2011, 36(23):15136.
[60] Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrogen Energy, 2011, 36(8):4781.
[61] Mccafferty E. Corros. Sci., 2003, 45(7):1421.
[62] Fan M Q, Sun L X, Xu F. Energy, 2010, 35(3):1333.
[63] Fan M Q, Sun L X, Xu F. Energ. Convers. Manage., 2010, 51(3):594.
[64] Jia Y Y, Shen J, Meng H X, Dong Y M, Chai Y J, Wang N. J. Alloys Compd., 2014, 588:259.
[65] Liu Y A, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2015, 84:714.
[66] Alinejad B, Mahmoodi K. Int. J. Hydrogen Energy, 2009, 34(19):7934.
[67] Chen X Y, Zhao Z W, Liu X H, Hao M M, Chen A L, Tang Z Y. J. Power Sources, 2014, 254:345.
[68] Fan M Q, Xu F, Sun L X, Zhao J N, Jiang T Q, Li W X. J. Alloys Compd., 2008, 460(1/2):125.
[69] Ilyukhina A V, Ilyukhin A S, Shkolnikov E I. Hydrogen Energy, 2012, 37(21):16382.
[70] Huang T P, Gao Q, Liu D, Xu S N, Guo C B, Zou J J, Wei C D. Int. J. Hydrogen Energy, 2015, 40(5):2354.
[71] Wang C P, Liu Y H, Liu H X, Yang T, Chen X R, Yang S Y, Liu X J. Sci. Rep., 2015, 5:17428.
[72] Zhang F, Yonemoto R, Arita M, Horita Z. J. Mater. Res., 2016, 31(6):775.
[73] Ziebarth J T, Woodall J M, Kramer R A, Choi G. Int. J.Hydrogen Energy, 2011, 36(9):5271.
[74] Wang W, Chen D M, Yang K. Int. J. Hydrogen Energy, 2010, 35(21):12011.
[75] 黄天平(Huang T P).吉林大学硕士学位论文(Master Dissertation of Jilin University), 2015.
[76] Eom K S, Kwon J Y, Min J K, Kwon H S. J. Mater. Chem., 2011, 21(34):13047.
[77] Kim M, Eom K, Kwon J, Cho E, Kwon H. J. Power Sources, 2012, 217:345.
[78] Eom K, Kim M, Oh S, Cho E, Kwon H. Int. J. Hydrogen Energy, 2011, 36(18):11825.
[79] Ilyukhina A V, Kravchenko O V, Bulychev B M, Shkolnikov E I. Hydrogen Energy, 2010, 35(5):1905.
[80] Fan M Q, Xu F, Sun L X. Int. J. Hydrogen Energy, 2007, 32(14):2809.
[81] Fan M Q, Sun L X, Xu F, Mei D S, Chen D X, Chai W X, Huang F L, Zhang Q M. Int. J. Hydrogen Energy, 2011, 36(16):9791.
[82] 刘姝(Liu S), 孙文强(Sun W Q), 唐锐(Tang R), 李超(Li C), 刑威虎(Xing W H), 范美强(Fan M Q). 固体火箭技术(Journal of Solid Rocket Technology), 2012, (03):367.
[83] Fan M Q, Mei D S, Chen D, Lv C J, Shu K Y. Renew. Energ., 2011, 36(11):3061.
[84] Fan M Q, Liu S, Wang C, Chen D, Shu K Y. Fuel Cells, 2012, 12(4):642.
[85] Zou M S, Guo X Y, Huang H T, Yang R J, Zhang P. J. Power Sources, 2012, 219:60.
[86] Yang X H, Yuan B, Liu J. Int. J. Hydrogen Energy, 2016, 41(15):6193.
[87] Yuan B, Tan S, Jing L.Int. J. Hydrogen Energy, 2016, 41(3):1453.
[88] Yoo H S, Ryu H Y, Cho S S, Han M H, Bae K S, Lee J H. Int. J. Hydrogen Energy, 2011, 36(36):15111.
[89] Xu J, Pu Y, Qi W K, Yang X J J, Tang Y, Wan P, Fisher A. Chemosphere, 2017, 166:197.
[90] Deng Z Y, Liu Y F, Tanaka Y, Zhang H W, Ye J H, Kagawa Y. J. Am. Ceram. Soc., 2005, 88(10):2975.
[91] Deng Z Y, Liu W H, Gai W Z, Sakka Y, Ye J H, Ou Z W. J. Am. Ceram. Soc., 2010, 93(9):2534.
[92] Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J H. Int. J. Hydrogen Energy, 2010, 35(18):9561.
[93] Liu W H, Gai W Z, Deng Z Y, Tang J W, Dreizin E. J. Am. Ceram. Soc., 2012, 95(4):1193.
[94] Fang C S, Gai W Z, Deng Z Y. J. Am. Ceram. Soc., 2014, 97(1):44.
[95] Gai W Z, Shi Y, Deng Z Y, Zhou J G. Int. J. Hydrogen Energy, 2015., 40(36):12057.
[96] Huang X, Chen Z, Gao T, Huang Q, Niu F, Qin L, Huang Y. Energy Technol., 2013, 1(12):751.
[97] Huang C S, Lo S L, Lien H L. Chem. Eng. J., 2015, 273:413.
[98] Liang G H, Gai W Z, Deng Z Y, Xu P, Cheng Z. RSC Adv., 2016, 6(42):35305.
[99] Gai W Z, Deng Z Y. Int. J. Hydrogen Energy, 2014, 39(25):13491.
[100] Gai W Z, Deng Z Y. J. Power Sources, 2014, 245(1):721.
[101] 张宁(Zhang N), 邹华(Zou H), 吴倩云(Wu Q Y), 朱荣(Zhu R). 环境化学(Environmental Chemistry), 2015, 34, (07):1343.
[102] Liu X, Tian Y, Zhou X, Liu Z, Huang L. J. Chin. Chem. Soc., 2017, 64(1):55.
[103] Skrovan J, Troczynski T, Alfantazi A. ECS Transactions, 2010, 28:157
[104] Teng H, Lee T, Chen Y, Wang H, Cao G. J. Power Sources, 2012, 219:16.
[105] Chen Y, Teng H, Lee T, Wang H. Int. J. Energy Environ. Eng., 2014, 5(2/3):87.
[106] Gai W Z, Fang C S, Deng Z Y. Int. J. Energ. Res., 2014, 38(7):918.
[107] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. Int. J. Energ. Res., 2009, 34(20):8511.
[108] Zhu F, Li L, Ma S, Shang Z. Chem. Eng. J., 2016, 302:663.
[109] Ai Z, Gao Z, Zhang L, He W, Yin J J. Environ. Sci. Technol., 2013, 47(10):5344.
[110] Murphy A P. Nature, 1991, 350(6315):223.
[111] Yang S, Zheng D, Ren T, Zhang Y, Xin J. Water Res., 2017,123:704.
[1] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[2] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[3] Yang Shiying, Zheng Di, Chang Shuya, Shi Chao. Zero Valent Aluminum Based Oxidation/Reduction Technology Applied in Water Treatment [J]. Progress in Chemistry, 2016, 28(5): 754-762.
[4] Peng Lifeng. Effect of Organic Solvents on Enzymaticm Activity and Selectivity [J]. Progress in Chemistry, 2000, 12(03): 296-.