中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (7): 1112-1120 DOI: 10.7536/PC160118 Previous Articles   

• Review and comments •

Heterogeneous Catalytic Ozonation Reaction Mechanism

Liu Ying, He Hongping, Wu Deli*, Zhang Yalei   

  1. State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51102178),the National Key Technology Support Program (No.2015BAE01B03),the Innovation Fund for Technology of China (No.14C26211200298),the Innovation Fund for Technology of Tianjin (No.14ZXCXGX00776),the Chang-jiang Scholars and Innovative Research Team in University of Ministry of Education of China (No.IRT13084).
PDF ( 3345 ) Cited
Export

EndNote

Ris

BibTeX

As one of advanced oxidation processes(AOPs), catalytic ozonation has recently gained significant attention in the field of wastewater treatment. Heterogeneous catalytic ozonation have notable advantages of strong oxidation, less ozone dosage and especially its potentially greater effectiveness in the mineralization of organic matter. New catalysts have been studied world widely, but the reaction process and mechanisms are much more complicated. The efficiency of catalytic ozonation process depends to a great extent on the catalyst and its surface properties. On the surface active sites of catalyst,pollutants adsorbed form surface complexes or ozone decomposes to various reactive oxygen species such as surface atomic oxygen (*O), surface peroxide (O2·-), hydroxyl radical (·OH). Thus the main mechanisms of heterogeneous catalytic ozonation are reviewed, including radical mechanism, oxygen vacancies theory, surface atomic oxygen mechanism, surface complexes theory and direct ozonation mechanism. The hydroxyl groups on the surface of catalyst are mainly catalytic active centers. The catalytic reaction mechanisms by hydroxyl groups are introduced in this paper. Surface properties of the catalysts determine the properties of the surface active sites and its amount, which play a key role in ozone decomposition. The structure and morphology, the specially surface area, the catalytic performance as well as reaction mechanisms of modified catalysts are reviewed. The future development of heterogeneous catalysts are also discussed to provide a theoretical reference of heterogeneous catalytic ozonation.

Contents
1 Introduction
2 Mechanism of heterogeneous catalytic ozonation
2.1 Radical mechanism
2.2 Oxygen vacancies mechanism
2.3 Surface atomic oxygen mechanism
2.4 Surface complexes mechanism
2.5 Direct ozonation mechanism
3 Catalytic reaction mechanisms by hydroxyl groups on the surface of catalyst
4 Heterogeneous catalytic ozonation mechanism after modification of the catalysts
4.1 Catalytic performance of modified catalysts
4.2 Reaction mechanism of modified catalysts
5 Conclusion and outlook

CLC Number: 

[1] Sánchez-Polo M, Rivera-Utrilla J, Gunten U. Water Research, 2006, 40(18):3375.
[2] Schwarzenbach R P, Escher B I, Fenner K. Science, 2006, 313:1072.
[3] Andreozzi R., Insola A, Caprio V, Marotta R, Tufano V. Applied Catalysis A:General, 1996, 138:75.
[4] Addamo M, Augugliaro V, García-López E, Loddo V, Marcì G, Palmisano L. Catalysis Today, 2005, 107/108:612.
[5] Cooper C, Burch R. Water Research, 1999, 33:3695.
[6] Sui M, Sheng L, Lu K, Tian F. Applied Catalysis B:Environmental, 2010, 96:94.
[7] Martins R C, Quinta-Ferreira R M. Industrial & Engineering Chemistry Research, 2009, 48:1196.
[8] Rodríguez J L,Valenzuela M A,Tiznado H,Poznyak T,Flores E. Journal of Molecular Catalysis A:Chemical, 2014, 392:39.
[9] Leitner N K V, Fu H. Topics in Catalysis, 2005, 33:249.
[10] Fu H., Leitner N K V, Legube B. New Journal of Chemistry, 2002, 26:1662.
[11] Carbajo M, Rivas F J, Beltrán F J, Medina P A F. Ozone:Science and Engineering, 2006, 28:229.
[12] Zhang J, Lee K H, Cui L, Jeong T S. Journal of Industrial and Engineering Chemistry, 2009, 15:185.
[13] Azrague K, Osterhus S W, Biomorgi J G. Water Science and Technology, 2009, 59:1209.
[14] McKay G, McAleavey G. Chemical Engineering Research & Design, 1988, 66:531.
[15] Oyama S T. Catalysis Reviews:Science and Engineering, 2000, 42:279.
[16] Kamm S, Möhler O, Naumann K H, Saathoff H, Schurath U. Atmospheric Environment, 1999, 33(28):4651.
[17] Dhandapani B, Oyama S T. Applied Catalysis B:Environmental, 1997, 11(2):129.
[18] Heisig C, Zhang W, Oyama S T. Applied Catalysis B:Environmental, 1997, 14(1/2):117.
[19] Alebi?-Jureti?, Cvitaš T, Klasinc L. Chemosphere, 2000, 41(5):667.
[20] Bulanin K M, Lavalley J C, Tsyganenko A A. Colloids Surfaces A,1995, 101(2/3):153.
[21] Naydenov A, Stoyanova R, Mehandjiev D. Journal Molecular Catalysis A, 1995, 98(1):9.
[22] Li W, Gibbs G V, Oyama S T. Journal of American Chemical Society, 1998, 120(35):9041.
[23] Bulanin K M, Lavalley J C, Tsyganenko A A. Journal of Physical Chemistry, 1995, 99:10294.
[24] Dhandapani B, Oyama S T. Applied Catalysis B:Environmental, 1997, 11:129.
[25] Faria P C C, Orfao J J M, Pereira M F R. Catalysis Communications, 2008,9(11/12):2121.
[26] Ikhlaq A, Brown D R., Kasprzyk-Hordern B. Applied Catalysis B:Environmental, 2015, 165:408.
[27] Liu X, Zhou Z M, Jing G H, Fang J H. Separation and Purification Technology, 2013, 115:129.
[28] Zhang T, Ma J. Journal of Molecular Catalysis A:Chemical, 2008, 279:82.
[29] Faria P C C, Orfao J J M, Pereira M F R. Applied Catalysis B:Environmental, 2008, 83:150.
[30] Zhao L, Sun Zhi Z, Ma J. Environmental Science & Technology, 2009, 43:4157.
[31] Zhao L Ma J, Sun Zhi Z, Liu H L. Applied Catalysis B:Environmental, 2009, 89(3/4):326.
[32] Zhang X, Li X, Qin W. Chemical Physics Letters, 2009, 479(4):310.
[33] Orge C A, Órfão J J M, Pereira M F R, Farias A M D D, Neto R C R, Fraga M A. Applied Catalysis B:Environmental, 2011, 103:190.
[34] Orge C A, Órfão J J M, Pereira M F R, Farias A M D D, Fraga M A.Chemical Engineering Journal, 2012, 200/202:499.
[35] Mathew D S, Juang R S. Chemical Engineering Journal, 2007, 129:51.
[36] Liu C, Zou B, Rondinone A.J, Zhang Z J. Journal of Physical Chemistry B, 2000, 104:1143.
[37] Ren Y M, Dong Q, Feng J. Journal of Colloid and Interface Science, 2012, 382:90.
[38] Bonapasta A A, Filippone F, Mattioli G, Alippi P. Catalysis Today, 2009, 144:177.
[39] Song S, Liu Z W, He Z Q, Zhang A L, Chen J M. Environmental Science & Technology, 2010, 44:3913.
[40] Zhang T, Li W W, Croue J P. Environmental Science & Technology, 2011, 45:9339.
[41] Bing J S, Hu C, Nie Y L, Yang M, Qu J H. Environmental Science & Technology, 2015, 49:1690.
[42] Rodríguez J L, Poznyak T, Valenzuela M A, Tiznado H, Chairez I. Chemical Engineering Journal, 2013, 222:426.
[43] Liu Z Q, Ma J, Cui Y H., Zhang B P. Applied Catalysis B:Environmental, 2009, 92:301.
[44] Nawrocki J, Kasprzyk-Horden B. Applied Catalysis B:Environmental, 2010, 99:27.
[45] Kasprzyk-Hordern B, Ziólek M, Nawrocki J. Applied Catalysis B:Environmental, 2003, 46:639.
[46] Beltrán F J, Rivas F J, Montero-de-Espinosa R. Water Research, 2005, 39:3553.
[47] Park J S, Choi H C, Cho J W. Water Research, 2004, 38:2285.
[48] Tong S P, Liu W P, Leng W H, Zhang Q Q. Chemosphere, 2003, 50:1359.
[49] Faria P C C, Orfao J J M, Pereira M F R. Applied Catalysis B:Environmental, 2008, 83:150.
[50] Zhang T, Li W W, Croue J P. Applied Catalysis B:Environmental, 2012, 121/122:88.
[51] Dong Y M, He K, Zhao B. Catalysis Communications, 2007, 8:1599.
[52] Takahashl H, Umemura J, Takenaka T. Journal of Physical Chemistry, 1982, 86:4660
[53] Joseph Y, Ranke W, Weiss W. Journal of Physical Chemistry B, 2000, 104:3224.
[54] Ernst M, Lurot F, Schrotter J C. Applied Catalysis B:Environmental, 2004, 47:15.
[55] Sui M, Sheng L, Lu K, Tian F. Applied Catalysis B:Environmental, 2010, 96:94.
[56] Yang L, Hu C, Nie Y L, Qu J H. Environmental Science & Technology, 2009, 43:2525.
[57] Qi F, Xu B, Chen Z, Ma J, Sun D, Zhang L. Separation and Purification Technology, 2009, 66:405.
[58] Qi F, Chen Z, Xu B, Shen J, Ma J, Joll C, Heitz A. Applied Catalysis B:Environmental, 2008, 84:684.
[59] Zhao L, Ma J, Sun Z Z, Zhai X D. Applied Catalysis B:Environmental, 2008, 83:256.
[60] Zhang T, Ma J. Journal of Physical Chemistry A, 2007, 279:82.
[61] Sui M H, Sheng L, Lu K X, Tian F. Applied Catalysis B:Environmental, 2010, 26:94.
[62] Xing L L, Xie Y B, Minakata D. Journal of Environmental Science, 2014, 26:2095.
[63] Huang Y X, Cui C C, Zhang D F, Li L. Chemosphere, 2015, 119:295.
[64] Akhtar J, Amin N A S, Aris A. Chemical Engineering Journal, 2011, 170(1):136.
[65] Jans U, HoignéJ. Ozone:Science and Engineering, 1998, 20:67.
[66] Park C, Keane M A. Journal of Colloid and Interface Science, 2003, 266:183.
[67] Matheswaran M, Balaji S, Chung S J, Moon I S. Catalysis Communications, 2007, 8:1497.
[68] Bing J H, Hu C, Nie Y L, Yang M, Qu J H. Environmental Science & Technology, 2015, 49:1690.
[69] Lan B Y, Huang R L, Li L S, Yan H H Liao G Z, Wang X, Zhang Q Y. Chemical Engineering Journal, 2013, 219:346.
[70] Qi F, Chu W, Xu B B. Chemical Engineering Journal, 2015, 262:552.
[71] Zhang L, Su Z Z, Ma J, Liu H L. Environmental Science & Technology, 2009, 43:2047.
[72] Delanoë F, Karpel A N, Leitner V, Legube B. Applied Catalysis B:Enviromental, 2001, 29(4):315.
[73] Fan X L, Restivo J,Órfão J J M, Pereira M F R, Lapkin A A. Chemical Engineering Journal, 2014, 241:66.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[10] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[14] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[15] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.