中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1026-1041 DOI: 10.7536/PC210501 Previous Articles   Next Articles

• Review •

Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants

Mingjue Zhang1(), Changpo Fan1, Long Wang1, Xuejing Wu1, Yu Zhou2, Jun Wang2()   

  1. 1. Department of Chemical and Pharmaceutical Engineering, Southeast University ChengXian College,Nanjing 210088, China
    2. College of Chemical Engineering, Nanjing Tech University,Nanjing 210009, China
  • Received: Revised: Online: Published:
  • Contact: Mingjue Zhang, Jun Wang
  • Supported by:
    National Natural Science Foundation of China(22072065); National Natural Science Foundation of China(U1662107); National Natural Science Foundation of China(21476109); Youth Foundation of Southeast University ChengXian College(z0003)
Richhtml ( 37 ) PDF ( 637 ) Cited
Export

EndNote

Ris

BibTeX

Activation of C—H bond is one of the most important scientific topics in organic synthesis area. Hydroxylation of benzene to phenol with environmentally friendly oxidants like H2O2 and O2 is a challenge in this filed for tens of years, since it involves not only the fundamental issue of the $\text C_{\text s \text p^{2}}— \text H $ bond activation for benzene, but also other issues such as the activation of H2O2/O2, decomposition of H2O2, and deep oxidation of phenol product. More importantly, in the context of green chemical industry, this green process becomes more attractive due to the promising alternative to replace the current cumene route. In this review, recent researches on metal-based catalysts and newly emerging non-metal catalysts are summarized, clued by the catalytic reaction mechanism of hydroxylation of benzene to phenol. The structure-activity relationship between catalysts’ composition and structure with their reactive activity and selectivity is analyzed in detail based on radical and non-radical mechanisms. Outlook and suggestions on the further development of rational design of catalysts and deeper insights into reaction mechanism in this field are proposed. This review is hopefully to benefit the exploring of novel catalysts with higher activity and better stability for hydroxylation of benzene to phenol.

Contents

1 Introduction

2 Metal-based catalysts for hydroxylation of benzene

2.1 H2O2-mediated radical mechanism

2.2 H2O2-mediated non-radical mechanism

2.3 O2-mediated radical mechanism

2.4 O2-mediated non-radical mechanism

2.5 O2-mediated synergistic catalytic mechanism

3 Non-metal materials for catalyzing hydroxylation of benzene

3.1 Radical mechanism over carbon materials catalysts

3.2 Radical mechanism over polymers catalysts

4 Conclusion and outlook

Table 1 Comparison of activities of metal-based catalysts for hydroxylation of benzene via different reaction mechanism
Mechanism Catalyst Reaction condition Activitya ref
H2O2-mediated
radical
NaVO3 C6H6 11.3 mmol, H2O2 19.4 mmol, catalyst 0.2 mmol, 25 ℃, 13 h Y 13.5%, S 94.0% 38
[Cu2(μ-OH)(6-hpa)](ClO4)3 C6H6 60 mmol, H2O2 120 mmol, catalyst 1 μmol,50 ℃, 40 h X 22.0%, S 95.2% 12
Fe(DS)3 C6H6 11.3 mmol, H2O2 11.3 mmol, catalyst 0.05 mmol,
50 ℃, 6 h
Y 54.0%, S 100% 40
[Dmim]2.5PMoV C6H6 10 mmol, H2O2 30 mmol, catalyst 100 mg, 70 ℃, 4 h Y 26.5%, S 100% 25
[C3CNpy]4HPMoV2 C6H6 10 mmol, H2O2 30 mmol, catalyst 100 mg, 60 ℃, 2 h Y 31.4%, S 95.8% 27
P-[DVB-VBIM]5PMoV2 C6H6 10 mmol, H2O2 30 mmol, catalyst 100 mg, 55 ℃, 6 h Y 23.7%, S 100% 41
[VO(acac)2]-
grafted PMO
C6H6 4 mmol, H2O2 12 mmol, catalyst 300 mg, 50 ℃, 8 h X 27.4%, S 100% 19
POM@OMP C6H6 6 mmol, H2O2 18 mmol, catalyst 50 mg, 80 ℃, 10 h Y 33.0%, S 100% 42
Cu2O-rGO C6H6 1 mmol, H2O2 2 mmol, catalyst 1 mg, 40 ℃, 12 h Y 21.2%, S 85.5% 22
FeOCl C6H6 10 mmol, H2O2 10 mmol, catalyst 100 mg, 60 ℃, 4 h Y 43.5%, S 100% 23
H2O2-mediated non-radical [Ni(tepa)]2+ C6H6 5 μmol, H2O2 2.5 mmol, catalyst 0.5 μmol, 60 ℃, 5 h Y 21.0%, S 91.3% 43
[Co(L3)Cl]Ph4B C6H6 5 mmol, H2O2 25 mmol, catalyst 5 μmol, 60 ℃, 5 h Y 29.0%, S 97.0% 44
Fe-N4 C6H6 4.5 mmol, H2O2 55 mmol, catalyst 50 mg, 30 ℃, 24 h Y 78.4%, S 100% 45
V-Si-ZSM-22 C6H6 5 mmol, H2O2 5 mmol, catalyst 100 mg, 80 ℃, 30 s Y 30.8%, S> 99% 13
O2-mediated
radical
VxOy@C-S C6H6 11.3 mmol, O2 3.0 MPa, catalyst 50 mg, ascorbic acid
0.8 g, 80 ℃, 4 h
Y 9.3%, S 96.0% 9
V/UiO-66-NH2 C6H6 11.3 mmol, O2 3.0 MPa, catalyst 50 mg, ascorbic acid
0.7 g, 60 ℃, 21 h
Y 22.0%, S 98.1% 46
VOC2O4-N-5 C6H6 11.3 mmol, O2 1.0 MPa, catalyst 100 mg, 150 ℃, 10 h X 4.2%, S 96.3% 47
O2-mediated non-radical H7PMo8V4O40 C6H6 2 mmol, Air 1.5 MPa, catalyst 55 mg, CO 0.5 MPa,
90 ℃, 15 h
Y 28.1%, S 59.3% 28
POM@MOF@SBA-15 C6H6 10 mmol, O2 2.0 MPa, catalyst 200 mg,ascorbic acid
0.9 g, 80 ℃, 20 min
Y 6.0%, S> 99% 48
PMoV@PCIF-1 C6H6 22.5 mmol, O2 2.0 MPa, catalyst 300 mg, ascorbic acid 0.8 g, 100 ℃, 10 h Y 12.0%, S 100% 49
PdII(bpym) C6H6 5.6 mmol, O2 2.0 MPa, catalyst 0.02 mmol,Al(OTf)3 0.04 mmol, 100 ℃, 16 h Y 3.7%, S 79.7% 31
H5PV2Mo10O40 C6H6 0.5 mmol, O2 1.0 MPa, catalyst 800 mg, 50% H2SO4
5 mL, 170 ℃, 6 h
X 65.0%, S 95.0% 50
O2-mediated synergistic catalysis HMS-HPA(V2)+
Pd(OAc)2
C6H6 22.5 mmol, O2 2.0 MPa, catalyst 500 mg+10 mg, LiOAc 0.2 g, 120 ℃, 10 h X 12.2%, S 75.6% 29
C3N4(580)+PMoV2 C6H6 45 mmol, O2 2.0 MPa, catalyst 100 mg+400 mg, LiOAc 0.6 g, 130 ℃, 4.5 h Y 13.6%, S 100% 26
g-C3N4+Ch5PMoV2 C6H6 5 mmol, O2 2.0 MPa, catalyst 12 mg+30 mg,LiOAc
0.06 g, 120 ℃, 4.5 h
Y 10.7%, S> 99% 51
SFNC(800)+Ch5PMoV2 C6H6 5 mmol, O2 2.0 MPa, catalyst 10 mg+30 mg,LiOAc
0.06 g, 120 ℃, 3 h
Y 11.2%, S> 99% 52
[DiBimCN]2HPMoV2
@NC580
C6H6 45 mmol, O2 2.2 MPa, catalyst 550 mg, LiOAc
0.6 g,140 ℃, 17 h
Y 10.5%, S 100% 53
FeC(5) C6H6 45 mmol, O2 2.2 MPa, catalyst 200 mg,LiOAc 0.6 g,
150 ℃, 30 h
Y 14.2%, S 100% 54
Fig. 1 Radical reaction mechanism catalyzed by metal-based catalysts for the hydroxylation of benzene to phenol with H2O2
Fig. 2 Radical mechanism of H2O2 activation and benzene hydroxylation catalyzed by dicopper core[12]
Fig. 3 Radical mechanism of benzene hydroxylation over the Cu2O-rGO catalyst[22]
Fig. 4 Illustration of benzene hydroxylation of radical mechanism using heterogeneous FeOCl[23]
Fig. 5 The general process for generation of hydroxyl radical from H2O2 activated by transition metal catalysts
Fig. 6 A typical non-radical reaction mechanism for hydroxylation of benzene with H2O2
Fig. 7 Proposed catalytic mechanism of electrophilic substitution catalyzed by [NiⅡ(tepa)]2+[43]
Fig. 8 Structure and reaction path of V-Si-ZSM-22 in the hydroxylation of arenes[13]: (a) Structure and proposed reaction mechanism; (b) Heterolysis of species D and nucleophilic interaction with arene to produce phenol
Fig. 9 Radical mechanism for the hydroxylation of benzene with O2: (a) H2O2 is formed during the reaction[1]; (b) No H2O2 is formed during the reaction
Fig. 10 Superoxide radical mechanism for the hydroxylation of benzene with O2[47]
Fig. 11 Reaction mechanism for the hydroxylation of benzene with O2 under sacrificial reducing agent
Fig. 12 Possible pathway for hydroxylation of benzene to phenol by H5PV2Mo10O40 in the absence of sacrificial reducing agent[50]
Fig. 13 Dual-catalysis mechanism for C3N4-PMoV2 catalyzed aerobic oxidation of benzene to phenol[26]
Table 2 Comparison of activities of non-metal catalysts for hydroxylation of benzene
Fig. 14 The proposed mechanism of the oxidation of benzene with H2O2 on CCG[11]
Fig. 15 Reaction pathway for the hydroxylation of benzene over activated carbon with H2O2[86]
Fig. 16 Reaction pathway for NOCs carbon-catalyzed hydroxylation of benzene to phenol with O2[72]
Supplementary Table Abbreviation for catalyst and corresponding English full name
[1]
Wang W T, Yao M, Ma Y M, Zhang J. Progress in Chemistry, 2014, 26(10): 1665.
(王伟涛, 姚敏, 马养民, 张金. 化学进展, 2014, 26(10): 1665.)
[2]
Jiang T, Wang W T, Han B X. New J. Chem., 2013, 37(6): 1654.

doi: 10.1039/c3nj41163j
[3]
Zhang H B. Economic Analysis of Petroleum and Chemical Industry in China, 2017, (8): 57.
(张宏斌. 中国石油和化工经济分析, 2017, (8): 57.)
[4]
Jiang S Y, Kong Y, Wu C, Xu Z, Zhu H Y, Wang C Y, Wang J, Yan Q J. Chinese Journal of Catalysis, 2006, 27(5): 421.
(蒋斯扬, 孔岩, 吴丞, 徐铮, 朱海洋, 王春燕, 王军, 颜其洁. 催化学报, 2006, 27(5): 421.)
[5]
Zhang X F. Prog. Chem., 2008, 20(S1): 386.
(张雄福. 化学进展, 2008, 20(S1): 386.)
[6]
Chem F S, Yang T, Hu H N. Fine Chemicals, 2018, 35(9): 1535.
(陈福山, 杨涛, 胡华南. 精细化工, 2018, 35(9): 1535.)
[7]
Ren Y L, Mi Z T. Chemical Industry and Engineering Progress, 2002, 21(11): 827.
(任永利, 米镇涛. 化工进展, 2002, 21(11): 827.)
[8]
Wang W T, Li N, Shi L L, Ma Y M, Yang X F. Appl. Catal. A Gen., 2018, 553: 117.

doi: 10.1016/j.apcata.2018.01.005
[9]
Wang W T, Shi L L, Li N, Ma Y M. RSC Adv., 2017, 7(21): 12738.

doi: 10.1039/C6RA28768A
[10]
Zhao P P, Zhou Y, Liu Y Q, Wang J. Chin. J. Catal., 2013, 34(11): 2118.

doi: 10.1016/S1872-2067(12)60631-7
[11]
Yang J H, Sun G, Gao Y J, Zhao H B, Tang P, Tan J, Lu A H, Ma D. Energy Environ. Sci., 2013, 6(3): 793.

doi: 10.1039/c3ee23623d
[12]
Tsuji T, Zaoputra A A, Hitomi Y, Mieda K R, Ogura T, Shiota Y, Yoshizawa K, Sato H, Kodera M. Angew. Chem. Int. Ed., 2017, 56(27): 7779.

doi: 10.1002/anie.201702291
[13]
Zhou Y, Ma Z P, Tang J J, Yan N, Du Y H, Xi S B, Wang K, Zhang W, Wen H M, Wang J. Nat. Commun., 2018, 9: 2931.

doi: 10.1038/s41467-018-05351-w pmid: 30050071
[14]
Acharyya S S, Ghosh S, Yoshida Y, Kaneko T, Sasaki T, Iwasawa Y. Chem. Rec., 2019, 19(9): 2069.

doi: 10.1002/tcr.201900023
[15]
Lyu Y J, Qi T, Yang H Q, Hu C W. Catal. Sci. Technol., 2018, 8(1): 176.

doi: 10.1039/C7CY01648D
[16]
Ottenbacher R V, Talsi E P, Bryliakov K P. Appl. Organomet. Chem., 2020, 34(11): e5900.
[17]
Balducci L, Bianchi D, Bortolo R, D'Aloisio R, Ricci M, Tassinari R, Ungarelli R. Angew. Chem. Int. Ed., 2003, 42(40): 4937.

doi: 10.1002/anie.200352184
[18]
Han H L, Jiang T, Wu T B, Yang D X, Han B X. ChemCatChem, 2015, 7(21): 3526.

doi: 10.1002/cctc.201500639
[19]
Borah P, Ma X, Nguyen K T, Zhao Y L. Angew. Chem. Int. Ed., 2012, 51(31): 7756.

doi: 10.1002/anie.201203275
[20]
Ding G D, Wang W T, Jiang T, Han B X, Fan H L, Yang G Y. ChemCatChem, 2013, 5(1): 192.

doi: 10.1002/cctc.201200502
[21]
Farahmand S, Ghiaci M, Razavizadeh J S. Inorganica Chimica Acta, 2019, 484: 174.

doi: 10.1016/j.ica.2018.08.051
[22]
Sun W, Gao L F, Zheng G X. Chem. Commun., 2019, 55(61): 8915.

doi: 10.1039/C9CC02906K
[23]
ElMetwally A E, Eshaq G, Yehia F Z, Al-Sabagh A M, Kegnæs S. ACS Catal., 2018, 8(11): 10668.

doi: 10.1021/acscatal.8b03590
[24]
Wang H F, Wang C Y, Zhao M, Yang Y F, Fang L P, Wang Y J. Chem. Eng. Sci., 2018, 177: 399.

doi: 10.1016/j.ces.2017.11.023
[25]
Leng Y, Wang J, Zhu D R, Shen L, Zhao P P, Zhang M J. Chem. Eng. J., 2011, 173(2): 620.

doi: 10.1016/j.cej.2011.08.013
[26]
Long Z Y, Zhou Y, Chen G J, Ge W L, Wang J. Sci. Rep., 2015, 4: 3651.

doi: 10.1038/srep03651
[27]
Zhao P P, Wang J, Chen G J, Zhou Y, Huang J. Catal. Sci. Technol., 2013, 3(5): 1394.

doi: 10.1039/c3cy20796j
[28]
Tani M, Sakamoto T, Mita S C, Sakaguchi S, Ishii Y. Angew. Chem. Int. Ed., 2005, 44(17): 2586.

doi: 10.1002/anie.200462769
[29]
Liu Y Y, Murata K, Inaba M. J. Mol. Catal. A Chem., 2006, 256(1/2): 247.

doi: 10.1016/j.molcata.2006.05.015
[30]
Mita S C, Sakamoto T, Yamada S, Sakaguchi S, Ishii Y. Tetrahedron Lett., 2005, 46(45): 7729.
[31]
Guo H J, Chen Z Q, Mei F M, Zhu D J, Xiong H, Yin G C. Chem. Asian J., 2013, 8(5): 888.

doi: 10.1002/asia.201300003
[32]
Murata K, Yanyong R, Inaba M. Catal. Lett., 2005, 102(3/4): 143.

doi: 10.1007/s10562-005-5846-6
[33]
Liu Y Y, Murata K, Inaba M. Catal. Commun., 2005, 6(10): 679.

doi: 10.1016/j.catcom.2005.06.015
[34]
Yuzawa H, Yoshida H. Chem. Commun., 2010, 46(46): 8854.

doi: 10.1039/c0cc03551c
[35]
Navalon S, Alvaro M, Garcia H. Appl. Catal. B Environ., 2010, 99(1/2): 1.

doi: 10.1016/j.apcatb.2010.07.006
[36]
Bokare A D, Choi W. J. Hazard. Mater., 2014, 275: 121.

doi: 10.1016/j.jhazmat.2014.04.054 pmid: 24857896
[37]
Niwa shu-ichi, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F. Science, 2002, 295(5552): 105.

doi: 10.1126/science.1066527
[38]
Jian M, Zhu L F, Wang J Y, Zhang J, Li G Y, Hu C W. J. Mol. Catal. A Chem., 2006, 253(1/2): 1.

doi: 10.1016/j.molcata.2006.02.054
[39]
Garcia-Bosch I, Siegler M A. Angew. Chem. Int. Ed., 2016, 55(41): 12873.

doi: 10.1002/anie.201607216 pmid: 27610603
[40]
Peng J J, Shi F, Gu Y L, Deng Y Q. Green Chem., 2003, 5(2): 224.

doi: 10.1039/b211239f
[41]
Zhao P P, Leng Y, Wang J. Chem. Eng. J., 2012, 204/206: 72.

doi: 10.1016/j.cej.2012.07.097
[42]
Leng Y, Jiang Y C, Peng H G, Zhang Z H, Liu M M, Jie K C, Zhang P F, Dai S. Catal. Sci. Technol., 2019, 9(9): 2173.

doi: 10.1039/c9cy00288j
[43]
Morimoto Y, Bunno S, Fujieda N, Sugimoto H, Itoh S. J. Am. Chem. Soc., 2015, 137(18): 5867.

doi: 10.1021/jacs.5b01814 pmid: 25938800
[44]
Anandababu K, Muthuramalingam S, Velusamy M, Mayilmurugan R. Catal. Sci. Technol., 2020, 10(8): 2540.

doi: 10.1039/C9CY02601K
[45]
Pan Y, Chen Y J, Wu K L, Chen Z, Liu S J, Cao X, Cheong W C, Meng T, Luo J, Zheng L R, Liu C G, Wang D S, Peng Q, Li J, Chen C. Nat. Commun., 2019, 10: 4290.

doi: 10.1038/s41467-019-12362-8
[46]
Wang W T, Li N, Tang H, Ma Y M, Yang X F. Mol. Catal., 2018, 453: 113.
[47]
Luo G H, Lv X C, Wang X W, Yan S, Gao X H, Xu J, Ma H, Jiao Y J, Li F Y, Chen J Z. RSC Adv., 2015, 5(114): 94164.

doi: 10.1039/C5RA17287J
[48]
Yang H, Li J, Zhang H Y, Lv Y, Gao S. Microporous Mesoporous Mater., 2014, 195: 87.

doi: 10.1016/j.micromeso.2014.04.023
[49]
Chen G J, Zhou Y, Wang X C, Li J, Xue S, Liu Y Q, Wang Q, Wang J. Sci. Rep., 2015, 5: 11236.

doi: 10.1038/srep11236
[50]
Sarma B B, Carmieli R, Collauto A, Efremenko I, Martin J M L, Neumann R. ACS Catal., 2016, 6(10): 6403.

doi: 10.1021/acscatal.6b02083
[51]
Long Z Y, Chen G J, Liu S, Huang F M, Sun L M, Qin Z L, Wang Q, Zhou Y, Wang J. Chem. Eng. J., 2018, 334: 873.

doi: 10.1016/j.cej.2017.10.083
[52]
Long Z Y, Zhang Y D, Chen G J, Shang J, Zhou Y, Wang J, Sun L M. ACS Sustainable Chem. Eng., 2019, 7(4): 4230.

doi: 10.1021/acssuschemeng.8b05920
[53]
Cai X C, Wang Q, Liu Y Q, Xie J Y, Long Z Y, Zhou Y, Wang J. ACS Sustainable Chem. Eng., 2016, 4(9): 4986.

doi: 10.1021/acssuschemeng.6b01357
[54]
Qin Q, Liu Y Q, Shan W J, Hou W, Wang K, Ling X C, Zhou Y, Wang J. Ind. Eng. Chem. Res., 2017, 56(43): 12289.

doi: 10.1021/acs.iecr.7b02566
[55]
Leng Y, Ge H Q, Zhou C J, Wang J. Chem. Eng. J., 2008, 145(2): 335.

doi: 10.1016/j.cej.2008.08.015
[56]
Zhou C J, Ge H Q, Leng Y, Wang J. Chin. J. Catal., 2010, 31(6): 623.

doi: 10.1016/S1872-2067(09)60076-0
[57]
Leng Y, Liu J, Jiang P P, Wang J. Catal. Commun., 2013, 40: 84.

doi: 10.1016/j.catcom.2013.06.004
[58]
Long Z Y, Zhou Y, Chen G J, Zhao P P, Wang J. Chem. Eng. J., 2014, 239: 19.

doi: 10.1016/j.cej.2013.10.103
[59]
Khatri P K, Singh B, Jain S L, Sain B, Sinha A K. Chem. Commun., 2011, 47(5): 1610.

doi: 10.1039/C0CC01941K
[60]
Mimoun H, Saussine L, Daire E, Postel M, Fischer J, Weiss R. J. Am. Chem. Soc., 1983, 105(10): 3101.

doi: 10.1021/ja00348a025
[61]
Alekar N A, Indira V, Halligudi S B, Srinivas D, Gopinathan S, Gopinathan C. J. Mol. Catal. A Chem., 2000, 164(1/2): 181.

doi: 10.1016/S1381-1169(00)00374-5
[62]
Augusti R, Dias A O, Rocha L L, Lago R M. J. Phys. Chem. A, 1998, 102(52): 10723.

doi: 10.1021/jp983256o
[63]
Honda K, Cho J, Matsumoto T, Roh J, Furutachi H, Tosha T, Kubo M, Fujinami S, Ogura T, Kitagawa T, Suzuki M. Angew. Chem. Int. Ed., 2009, 48(18): 3304.

doi: 10.1002/anie.200900222
[64]
Zhou H, Zhao Y F, Gan J, Xu J, Wang Y, Lv H W, Fang S, Wang Z Y, Deng Z L, Wang X Q, Liu P G, Guo W X, Mao B Y, Wang H J, Yao T, Hong X, Wei S Q, Duan X Z, Luo J, Wu Y E. J. Am. Chem. Soc., 2020, 142(29): 12643.

doi: 10.1021/jacs.0c03415
[65]
Wu K L, Zhan F, Tu R Y, Cheong W C, Cheng Y S, Zheng L R, Yan W S, Zhang Q H, Chen Z, Chen C. Chem. Commun., 2020, 56(63): 8916.

doi: 10.1039/D0CC03620J
[66]
Zhu Y Q, Sun W M, Luo J, Chen W X, Cao T, Zheng L R, Dong J C, Zhang J, Zhang M L, Han Y H, Chen C, Peng Q, Wang D S, Li Y D. Nat. Commun., 2018, 9: 3861.

doi: 10.1038/s41467-018-06296-w
[67]
Roduner E, Kaim W, Sarkar B, Urlacher V B, Pleiss J, Gläser R, Einicke W D, Sprenger G A, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S F, Plietker B, Laschat S. ChemCatChem, 2013, 5(1): 82.

doi: 10.1002/cctc.201200266
[68]
Wang W T, Ding G D, Jiang T, Zhang P, Wu T B, Han B X. Green Chem., 2013, 15(5): 1150.

doi: 10.1039/c3gc00084b
[69]
Laufer W, Niederer J, Hoelderich W. Adv. Synth. Catal., 2002, 344(10): 1084.

doi: 10.1002/1615-4169(200212)344:10【-逻*辑*与-】#x00026;lt;1084::AID-ADSC1084【-逻*辑*与-】#x00026;gt;3.0.CO;2-B
[70]
Sumimoto S, Tanaka C, Yamaguchi S T, Ichihashi Y, Nishiyama S, Tsuruya S. Ind. Eng. Chem. Res., 2006, 45(22): 7444.

doi: 10.1021/ie060743e
[71]
Guo C, Du W D, Chen G, Shi L, Sun Q. Catal. Commun., 2013, 37: 19.

doi: 10.1016/j.catcom.2013.03.018
[72]
Shan W J, Li S, Cai X C, Zhu J, Zhou Y, Wang J. ChemCatChem, 2018: 1076.
[73]
Shang S S, Chen B, Wang L Y, Dai W, Zhang Y, Gao S. RSC Adv., 2015, 5(40): 31965.

doi: 10.1039/C5RA04836B
[74]
Neumann R. Inorg. Chem., 2010, 49(8): 3594.

doi: 10.1021/ic9015383 pmid: 20380461
[75]
Khenkin A M, Weiner L, Wang Y, Neumann R. J. Am. Chem. Soc., 2001, 123(35): 8531.

pmid: 11525661
[76]
Sakamoto T, Takagaki T, Sakakura A, Obora Y, Sakaguchi S, Ishii Y. J. Mol. Catal. A Chem., 2008, 288(1/2): 19.

doi: 10.1016/j.molcata.2008.04.002
[77]
Long Z Y, Liu Y Q, Zhao P P, Wang Q, Zhou Y, Wang J. Catal. Commun., 2015, 59: 1.

doi: 10.1016/j.catcom.2014.09.031
[78]
Farahmand S, Ghiaci M, Vatanparast M, Razavizadeh J S. New J. Chem., 2020, 44(18): 7517.

doi: 10.1039/D0NJ00928H
[79]
Zhang M J, Zhao P P, Leng Y, Chen G J, Wang J, Huang J. Chem. Eur. J., 2012, 18(40): 12773.

doi: 10.1002/chem.201201338
[80]
Gong Y Q, Zhong H, Liu W H, Zhang B B, Hu S Q, Wang R H. ACS Appl. Mater. Interfaces, 2018, 10(1): 776.

doi: 10.1021/acsami.7b16794
[81]
Wang Q, Hou W, Li S, Xie J Y, Li J, Zhou Y, Wang J. Green Chem., 2017, 19(16): 3820.

doi: 10.1039/C7GC01116D
[82]
Zhang J, Liu X, Blume R, Zhang A H, Schlögl R, Su D S. Science, 2008, 322(5898): 73.

doi: 10.1126/science.1161916 pmid: 18832641
[83]
Song S Q, Yang H X, Rao R C, Liu H D, Zhang A M. Catal. Commun., 2010, 11(8): 783.

doi: 10.1016/j.catcom.2010.02.015
[84]
Wen G D, Wu S C, Li B, Dai C L, Su D S. Angew. Chem. Int. Ed., 2015, 54(13): 4105.

doi: 10.1002/anie.201410093
[85]
Wei Q H, Fan H L, Qin F F, Ma Q X, Shen W Z. Carbon, 2018, 133: 6.

doi: 10.1016/j.carbon.2018.03.009
[86]
Xu J Q, Liu H H, Yang R G, Li G Y, Hu C W. Chin. J. Catal., 2012, 33(9/10): 1622.

doi: 10.1016/S1872-2067(11)60444-0
[87]
Zhu J, Li G Q, Wang Q, Zhou Y, Wang J. Ind. Eng. Chem. Res., 2019, 58(44): 20226.

doi: 10.1021/acs.iecr.9b03889
[88]
Wang W T, Tang H, Jiang X L, Huang F E, Ma Y M. Chem. Commun., 2019, 55(54): 7772.

doi: 10.1039/C9CC03623G
[89]
Su C L, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Ping Loh K. Nat. Commun., 2012, 3: 1298.

doi: 10.1038/ncomms2315
[90]
Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J, Zheng W X. Angew. Chem., 2011, 123(17): 4064.

doi: 10.1002/ange.201007932
[91]
Gao Y J, Chen X, Zhang J G, Yan N. ChemPlusChem, 2015, 80(10): 1556.

doi: 10.1002/cplu.201500293
[92]
Radovic L R, Salgado-Casanova A J A. Carbon, 2018, 126: 443.

doi: 10.1016/j.carbon.2017.10.024
[93]
Walpen N, Getzinger G J, Schroth M H, Sander M. Environ. Sci. Technol., 2018, 52(9): 5236.

doi: 10.1021/acs.est.8b00594
[94]
Su D S, Wen G D, Wu S C, Peng F, Schlögl R. Angew. Chem. Int. Ed., 2017, 56(4): 936.

doi: 10.1002/anie.201600906
[95]
Nguyen C V, Liao Y T, Kang T C, Chen J E, Yoshikawa T, Nakasaka Y, Masuda T, Wu K C W. Green Chem., 2016, 18(22): 5957.

doi: 10.1039/C6GC02118B
[96]
Patel M A, Luo F X, Khoshi M R, Rabie E, Zhang Q, Flach C R, Mendelsohn R, Garfunkel E, Szostak M, He H X. ACS Nano, 2016, 10(2): 2305.

doi: 10.1021/acsnano.5b07054
[97]
Hu X B, Zhou Z, Lin Q X, Wu Y T, Zhang Z B. Chem. Phys. Lett., 2011, 503(4/6): 287.

doi: 10.1016/j.cplett.2011.01.045
[98]
Guo X L, Qi W, Liu W, Yan P Q, Li F, Liang C H, Su D S. ACS Catal., 2017, 7(2): 1424.

doi: 10.1021/acscatal.6b02936
[99]
Qi W, Liu W, Zhang B S, Gu X M, Guo X L, Su D S. Angew. Chem. Int. Ed., 2013, 52(52): 14224.

doi: 10.1002/anie.201306825
[100]
Zhang J, Su D S, Zhang A H, Wang D, Schlögl R, Hébert C. Angew. Chem. Int. Ed., 2007, 46(38): 7319.

doi: 10.1002/anie.200702466
[101]
Silveira-Dorta G, Monzón D M, Crisóstomo F P, Martín T, Martín V S, Carrillo R. Chem. Commun., 2015, 51(32): 7027.

doi: 10.1039/C5CC01519G
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[3] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[4] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[5] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[6] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[7] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[8] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[9] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[10] Benzhan Zhu, Chen Shen, Zhiguo Sheng. Mechanism of the Endocrine-Disruptive Effects of Low-Dose Bisphenol A via Transmembrane Receptor [J]. Progress in Chemistry, 2019, 31(1): 167-179.
[11] Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*. Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions [J]. Progress in Chemistry, 2018, 30(5): 491-504.
[12] Benzhan Zhu, Xuan Xiao, Xijuan Chao, Miao Tang, Rong Huang, Jie Shao. Investigation of the Mechanism of Cellular Uptake, Distribution and Toxicity of the DNA ‘Light-Switch’ Ru(Ⅱ) Polypyridyl Complexes [J]. Progress in Chemistry, 2018, 30(12): 1975-1991.
[13] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[14] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[15] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.