中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (7): 1062-1069 DOI: 10.7536/PC160135 Previous Articles   Next Articles

• Review and comments •

Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials

Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51473146).
PDF ( 5213 ) Cited
Export

EndNote

Ris

BibTeX

As one kind of "click chemistry", thiol-epoxy reaction has drawn intensive attention in recent years due to its outstanding advantages, such as fast reaction rate, high selectivity, and mild reaction conditions. This review illustrates the base-catalyzed mechanism of thiol-epoxy reaction in details. The influences of base catalysts, substituent groups and solvents on the thiol-epoxy reaction rate are summarized. The inorganic base such as lithium hydrate and organic base such as tetrabutylammonium fluoride are excellent catalytic activity. The advantages and disadvantages of inorganic and organic base catalysts are compared as well. Thiols with electron-donating groups and epoxy with electron-withdrawing groups are more active, which are also influenced by steric effect. The reactions in bulk system usually have higher yield than the reactions in solution. Moreover, the applications of thiol-epoxy reaction in macromolecular materials are also demonstrated and classified into two types according to their different focuses: one is synthesis of structure-controllable macromolecules in the solvents, including the synthesis of macromolecules with linear or complicated structures and the modifications of macromolecules or surfaces; and the other one is preparation of crosslinking polymeric networks with excellent properties and practical potential in the bulk condition. Furthermore, the trends of thiol-epoxy reaction are prospected in brief.

Contents
1 Introduction
2 Mechanism of thiol-epoxy reaction
2.1 Base-catalyzed mechanism
2.2 Influence of base catalysts
2.3 Influence of substituent groups
2.4 Influence of solvent
3 Application of thiol-epoxy reaction in polymer science
3.1 Polymer with special structures in solvent
3.2 Crosslinking networks with high performances in bulk condition
4 Conclusion

CLC Number: 

[1] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40:2004.
[2] Hoyle C E, Lowe A B, Bowman C N. Chem. Soc. Rev., 2010, 39:1355.
[3] 杨正龙(Yang Z L),陈秋云(Chen Q Y),周丹(Zhou D),卜弋龙(Bu Y L). 化学进展(Progress in Chemistry), 2012, 24(2/3):395.
[4] Roush W R, Brown B B. J. Org. Chem., 1992, 57:3380.
[5] Kim M J, Choi Y K. J. Org. Chem., 1992, 57:1605.
[6] Meffre P, Vo-Quang L, Vo-Quang Y, Le Goffic F. Tetrahedron Lett., 1990, 31:2291.
[7] Guivisdalsky P N, Bittman R. J. Am. Chem. Soc., 1989, 111:3077.
[8] Ko S Y, Masamune H, Sharpless K B. J. Org. Chem., 1987, 52:667.
[9] Shaw K J, Luly J R, Rapoport H. J. Org. Chem., 1985, 50:4515.
[10] Maurer P J, Knudsen C G, Palkowitz A D, Rapoport H. J. Org. Chem., 1985, 50:325.
[11] Meldal M. Macromol. Rapid Commun., 2008, 29:1016.
[12] Hein J E, Fokin V V. Chem. Soc. Rev., 2010, 39:1302.
[13] Liang L, Astruc D. Coord. Chem. Rev., 2011, 255:2933.
[14] Moses J E, Moorhouse A D. Chem. Soc. Rev., 2007, 36:1249.
[15] 李娟(Li J),段明(Duan M),张烈辉(Zhang L H),蒋晓慧(Jiang X H). 化学进展(Progress in Chemistry), 2007, 19(11):1754.
[16] 邱素艳(Qiu S Y),高森(Gao S),林振宇(Lin Z Y),陈国南(Chen G N). 化学进展(Progress in Chemistry),2011, 23(4):637.
[17] Tasdelen M A. Polym. Chem., 2011, 2:2133.
[18] Liu Y, Chuo T. Polym. Chem., 2013, 4:2194.
[19] Gandini A. Prog. Polym. Sci., 2013, 38:1.
[20] 杨哲(Yang Z),魏宏亮(Wei H L),楚晖娟(Chu H J),朱靖(Zhu J),李志成(Li Z C). 高分子通报(Polymer Bulletin), 2010(1):41.
[21] 李金辉(Li J H),张国平(Zhang G P),孙蓉(Sun R),汪正平(Wang Z P). 高分子通报(Polymer Bulletin), 2014(3):8.
[22] Nair D P, Podgórski M, Chatani S, Gong T, Xi W, Fenoli C R, Bowman C N. Chem. Mater., 2014, 26:724.
[23] Hoyle C E, Lee T Y, Roper T. J. Polym. Sci., Part A:Polym. Chem., 2004, 42:5301.
[24] Hoyle C E, Bowman C N. Angew. Chem. Int. Ed., 2010, 49:1540.
[25] 付长清(Fu C Q),程传杰(Cheng C J),申亮(Shen L),陈义旺(Chen Y W). 高分子通报(Polymer Bulletin), 2012(1):29.
[26] 徐源鸿(Xu Y H),熊兴泉(Xiong X Q),蔡雷(Cai Lei),唐忠科(Tang Z K),叶章基(Ye Z J). 化学进展(Progress in Chemistry), 2012, 24(2/3):385.
[27] Theato P. Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin:Springer-Verlag, 2015. 87.
[28] Gadwal I, Stuparu M C, Khan A. Polym. Chem., 2015, 6:1393.
[29] Azizi N, Khajeh-Amiri A, Ghafuri H, Bolourtchian M. Phosphorus, Sulfur Silicon Relat. Elem., 2010, 185:1550.
[30] De S, Stelzer C, Khan A. Polym. Chem., 2012, 3:2342.
[31] De S, Khan A. Chem. Commun., 2012, 48:3130.
[32] Brändle A, Khan A. Polym. Chem., 2012, 3:3224.
[33] Gadwal I, Binder S, Stuparu M C, Khan A. Macromolecules, 2014, 47:5070.
[34] Gadwal I, Rao J, Baettig J, Khan A. Macromolecules, 2014, 47:35.
[35] Binder S, Gadwal I, Bielmann A, Khan A. J. Polym. Sci., Part A:Polym. Chem., 2014, 52:2040.
[36] Gadwal I, Khan A. RSC Adv., 2015, 5:43961.
[37] Fringuelli F, Pizzo F, Tortoioli S, Vaccaro L. Tetrahedron Lett., 2003, 44:6785.
[38] Albanese D, Landini D, Penso M. Synthesis, 1994:34.
[39] Fringuelli F, Pizzo F, Vittoriani C, Vaccaro L. Eur. J. Org. Chem., 2006, 2006:1231.
[40] Li S, Han J, Gao C. Polym. Chem., 2013, 4:1774.
[41] Loureiro R M, Amarelo T C, Abuin S P, Soulé E R, Williams R J. Thermochim. Acta, 2015, 616:79.
[42] Jin K, Heath W H, Torkelson J M. Polymer, 2015, 81:70.
[43] Zhang Q, Anastasaki A, Li G, Haddleton A J, Wilson P, Haddleton D M. Polym. Chem., 2014, 5:3876.
[44] Gadwal I, Khan A. Polym. Chem., 2013, 4:2440.
[45] Rahane S B, Hensarling R M, Sparks B J, Stafford C M, Patton D L. J. Mater. Chem., 2012, 22:932.
[46] Yang W J, Neoh K, Kang E, Teo S L, Rittschof D. Polym. Chem., 2013, 4:3105.
[47] Chen J, Yu C, Shi Z, Yu S, Lu Z, Jiang W, Zhang M, He W, Zhou Y, Yan D. Angew. Chem. Int. Ed., 2015, 54:3621.
[48] Cengiz N, Rao J, Sanyal A, Khan A. Chem. Commun., 2013, 49:11191.
[49] Ware T, Simon D, Hearon K, Kang T H, Maitland D J, Voit W. Macromol. Biosci., 2013, 13:1640.
[50] Katogi S, Yusa M. J. Polym. Sci., Part A:Polym. Chem., 2002, 40:4045.
[51] Sangermano M, Vitale A, Dietliker K. Polymer, 2014, 55:1628.
[52] Guzmán D, Ramis X, Fernández-Francos X, Serra A. Eur. Polym. J., 2014, 59:377.
[53] Flores M, Tomuta A M, Fernández-Francos X, Ramis X, Sangermano M, Serra A. Polymer, 2013, 54:5473.
[54] Guzmán D, Ramis X, Fernández-Francos X, Serra A. RSC Adv., 2015, 5:101623.
[55] Guzmán D, Ramis X, Fernández-Francos X, Serra A. Polymers, 2015, 7:680.
[56] Lin H, Ou J, Liu Z, Wang H, Dong J, Zou H. Anal. Chem., 2015, 87:3476.
[57] Lin H, Chen L, Ou J, Liu Z, Wang H, Dong J, Zou H. J. Chromatogr. A, 2015, 1416:74.
[58] Zhu D Y, Cao G S, Qiu W L, Rong M Z, Zhang M Q. Polymer, 2015, 69:1.
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[3] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Liao Yiming, Wu Baoqi, Tang Rongzhi, Lin Feng, Tan Yu. Strain-Promoted Azide-Alkyne Cycloaddition [J]. Progress in Chemistry, 2022, 34(10): 2134-2145.
[6] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[7] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[8] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[9] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[10] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[11] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[12] Dengxu Wang, Jinfeng Cao, Dongdong Han, Wensi Li, Shengyu Feng. Novel Organosilicon Synthetic Methodologies [J]. Progress in Chemistry, 2019, 31(1): 110-120.
[13] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[14] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[15] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.