中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1042-1052 DOI: 10.7536/PC170444 Previous Articles   Next Articles

• Review •

Environmental Processes of Dissolved Black Carbon

Chenhui Wei1, Heyun Fu1*, Xiaolei Qu1*, Dongqiang Zhu1,2   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China;
    2. School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Basic Research Program of China (No. 2014CB441103) and the National Natural Science Foundation of China (No. 21407073, 21622703).
PDF ( 1676 ) Cited
Export

EndNote

Ris

BibTeX

Dissolved black carbon (DBC) is the water-soluble fraction of the black carbon continuum, being the key flux that connects two major black carbon pools:the soils and the ocean sediments. DBC is also an important component of the dissolved organic matter pool. It has rich aromatic clusters and oxygen-containing functional groups including carboxyl, hydroxyl, and carbonyl groups. DBC plays an important role in the sorption and environmental transformation of pollutants. Thus, research on the biogeochemical behavior of DBC is key to the understanding of the global carbon cycle as well as the environmental fate and impact of pollutants. The present paper reviews the previous studies on the environmental processes of DBC. The discussion covers the qualitative and quantitative analytical methods of DBC, its spatiotemporal distribution, its structural characteristics and environmental transformation, as well as its impacts on the sorption, redox transformation and photo transformation of pollutants in the environments. Then the new research directions addressing current knowledge gaps are proposed.
Contents
1 Introduction
2 Analytical methods and the spatiotemporal distribution of DBC
2.1 Qualitative and quantitative analytical methods for DBC
2.2 Spatiotemporal distribution of DBC
3 Structural characteristics and environmental transformation of DBC
3.1 Structural characteristics of DBC
3.2 Environmental transformation of DBC
4 Impacts of DBC on the environmental behavior of pollutants
4.1 Impacts of DBC on the sorption behavior of pollutants
4.2 Impacts of DBC on the redox reactions of pollutants
4.3 Impacts of DBC on the photoconversion reactions of pollutants
5 Conclusion

CLC Number: 

[1] Masiello C A. Mar. Chem., 2004, 92:201.
[2] Goldberg E D. Black Carbon in the Environment:Properties and Distribution. NY:John Wiley and Sons, 1985.
[3] Cornelissen G, Gustafsson O, Bucheli T D, Jonker M T O, Koelmans A A, Van Noort P C M. Environ. Sci. Technol., 2005, 39:6881.
[4] Jaffé R, Ding Y, Niggemann J, Vahatalo A V, Stubbins A, Spencer R G M, Campbell J, Dittmar T. Science, 2013, 340:345.
[5] Masiello C A, Druffel E R M. Science, 1998, 280:1911.
[6] Kuhlbusch T A J. Science, 1998, 280:1903.
[7] Crutzen P J, Andreae M O. Science, 1990, 250:1669.
[8] Schmidt M W I. Nature, 2004, 427:305.
[9] Polubesova T, Chefetz B. Crit. Rev. Environ. Sci. Technol., 2013, 44:223.
[10] Mopper K, Stubbins A, Ritchie J D, Bialk H M, Hatcher P G. Chem. Rev., 2007, 107:419.
[11] 黄国培(Huang G P), 陈颖军(Chen Y J), 田崇国(Tian C G), 唐建辉(Tang J H), 潘晓辉(Pan X H), 王艳(Wang Y), 李军(Li J). 地球科学进展(Advances in Earth Science), 2012, 27:1326.
[12] Kim S W, Kaplan L A, Benner R, Hatcher P G. Mar. Chem., 2004, 92:225.
[13] Glaser B, Haumaier L, Guggenberger G, Zech W. Org. Geochem., 1998, 29:811.
[14] Dittmar T. Org. Geochem., 2008, 39:396.
[15] 黄国培(Huang G P), 陈颖军(Chen Y J), 田崇国(Tian C G), 刘莺(Liu Y). 色谱(Chinese Journal of Chromatography), 2016, 34:306.
[16] Huang G P, Chen Y J, Tian C G, Tang J H, Zhang H, Luo Y M, Li J, Zhang G. J. Coastal Res., 2016, 74:214.
[17] 海婷婷(Hai T T), 陈颖军(Chen Y J), 王艳(Wang Y), 田崇国(Tian C G), 唐建辉(Tang J H), 潘晓辉(Pan X H), 李军(Li H). 环境科学与技术(Environmental Science and Technology), 2013, 12:153.
[18] 赵美训(Zhao M X), 于蒙(Yu M), 张海龙(Zhang H L), 陶舒琴(Tao S Q). 海洋学报(Acta Oceanologica Sinica), 2014, 36:1.
[19] Coppola A I, Walker B D, Druffel E R M. Mar. Chem., 2015, 177:697.
[20] Ziolkowski L A, Druffel E R M. Geophys. Res. Lett., 2010, 37:1.
[21] Wang X, Xu C, Druffel E M, Xue Y, Qi Y. Global Biogeochem. Cy., 2006, 30:1778.
[22] Dittmar T, Paeng J. Nat. Geosci., 2009, 2:175.
[23] Stubbins A, Niggemann J, Dittmar T. Biogeosciences, 2012, 9:1661.
[24] Ding Y, Yamashita Y, Jones J, Jaffé R. Biogeochemistry, 2015, 123:15.
[25] Xu C L, Xue Y J, Qi Y Z, Wang X C. Estuar. Coast., 2016, 39:1617.
[26] Mannino A, Harvey H R. Limnol. Oceanogr., 2004, 49:735.
[27] Dittmar T, Paeng J, Gihring T M, Suryaputra I G N A, Huettel M. Limnol. Oceanogr., 2012, 57:1171.
[28] Stubbins A, Spencer R, Mann P, Holmes R M, McClelland J W, Niggemann J, Dittmar T. Front. Earth Sci., 2015, 3:63.
[29] Khan A L, Jaffé R, Ding Y, McKnight D M. Geophys. Res. Lett., 2016, 43:5750.
[30] Dittmar T, Koch B P. Mar. Chem., 2006, 102:208.
[31] Marques J S J, Dittmar T, Niggemann J, Almeida M G, Gomez-Saez G V, Rezende C E. Front. Earth Sci., 2017, 5:11.
[32] Wagner S, Jaffé R. Org. Geochem., 2015, 86:1.
[33] Wagner S, Cawley K M, Rosario-Ortiz F L, Jaffé R. Biogeochemistry, 2015, 124:1.
[34] Ding Y, Yamashita Y, Dodds W K, Jaffé R. Chemosphere, 2013, 90:2557.
[35] Kaal J, Wagner S, Jaffé R. J. Anal. Appl. Pyrol., 2016, 118:181.
[36] Qu X L, Fu H Y, Mao J D, RanY, Zhang D N, Zhu D Q. Carbon, 2016, 96:759.
[37] Fu H Y, Liu H T, Mao J D, Chu W Y, Li Q L, Alvarez P J J, Qu X L, Zhu D Q. Environ. Sci. Technol., 2016, 50:1218.
[38] Hockaday W C, Grannas A M, Kim S, Hatcher P G. Org. Geochem., 2006, 37:501.
[39] Hockaday W C, Grannas A M, Kim S, Hatcher P G. Geochim. Cosmochim. Acta, 2007. 71:3432.
[40] Stubbins A, Spencer R G M, Chen H M, Hatcher P G, Mopper K, Hernes P J, Mwamba V L, Mangangu A M, Wabakanghanzi J N, Six J. Limnol. Oceanogr., 2010, 55:1467.
[41] Ward C P, Sleighter R L, Hatcher P G, Cory R M. Environ. Sci. Proc. Impacts, 2014, 16:721.
[42] Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Kogel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. Nature, 2011, 478:49.
[43] Reuter J H, Perdue E M. Geochim. Cosmochim. Acc., 1977, 41:325.
[44] Gauthier T D, Seitz W R, Grant C L. Environ. Sci. Technol., 1987, 21:243.
[45] Senesi N. Sci. Total Environ., 1992, 123:63.
[46] Chin Y P, Aiken G R, Danielsen K M. Environ. Sci. Technol., 1997, 31:1630.
[47] Xia K, Bleam W, Helmke P A. Geochim. Cosmochim. Acta, 1997, 61:2211.
[48] Klaus U, Mohamed S, Volk M, Spiteller M. Chemosphere, 1998, 37:341.
[49] Perminova I V, Grechishcheva N Y, Petrosyan V S. Environ. Sci. Technol., 1999, 33:3781.
[50] Kopinke F D, Georgi A, MacKenzie K. Environ. Sci. Technol., 2001, 35:2536.
[51] Yamamoto H, Liljestrand H M, Shimizu Y, Morita M. Environ. Sci. Technol., 2003, 37:2646.
[52] Wu J, Zhang H, He P J, Shao L M. Water Res., 2011, 45:1711.
[53] 邰超(Tai C), 李雁宾(Li Y B), 阴永光(Yin Y G), 蔡勇(Cai Y), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2012, 24:1387.
[54] 阴永光(Yin Y G), 李雁宾(Li Y B), 马旭(Ma X), 刘景富(Liu J F), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2013, 25:2169.
[55] Tang J F, Li X H, Luo Y, Li G, Khan S. Chemosphere, 2016, 152:399.
[56] Pan B, Ghosh S, Xing B S. Environ. Sci. Technol., 2007, 41:6472.
[57] Pan B, Ghosh S, Xing B S. Environ. Sci. Technol., 2008, 42:1594.
[58] Buerge-Weirich D, Behra P, Sigg L. Aquat. Geochem., 2003, 9:65.
[59] Peng P, Lang Y H, Wang X M. Ecol. Eng., 2016, 90:225.
[60] Wang B Y, Zhang W, Li H, Fu H Y, Qu X L, Zhu D Q. Environ. Pollut., 2017, 220:1349.
[61] Pignatello J J, Xing B S. Environ. Sci. Technol., 1996, 30:1.
[62] Braida W J, Pignatello J J, Lu Y F, Ravikovitch P I, Neimark A V, Xing B S. Environ. Sci. Technol., 2003, 37:409.
[63] Uchimiya M, Bannon D I. J. Agric. Food Chem., 2013, 61:7679.
[64] Schwarzenbach R P, Stierli R, Lanz K, Zeyer J. Environ. Sci. Technol., 1990, 24:1566.
[65] Curtis G P, Reinhard M. Environ. Sci. Technol., 1994, 28:2393.
[66] Scott D T, McKnight D M, Blunt-Harris E L. Kolesar S E, Lovley D R. Environ. Sci. Technol., 1998, 32:2984.
[67] Gu B H, Yan H, Zhou P, Watson D B, Park M, Istok J. Environ. Sci. Technol., 2005, 39:5268.
[68] Bialk H M, Simpson A J, Pedersen J A. Environ. Sci. Technol., 2005, 39:4463.
[69] Jiang J, Bauer I, Paul A, Kappler A. Environ. Sci. Technol., 2009, 43:3639.
[70] Sarkar B, Naidu R, Krishnamurti G S R, Megharaj M. Environ. Sci. Technol., 2013, 47:13629.
[71] Graber E R, Tsechansky L, Lew B, Cohen E. Eur. J. Soil Sci., 2014, 65:162.
[72] Dong X L, Ma L Q, Gress J, Harris W, Li Y C. J. Hazard. Mater., 2014, 267:62.
[73] Chin Y P, Aiken G, Oloughlin E. Environ. Sci. Technol., 1994, 28:1853.
[74] Helms J R, Stubbins A, Ritchie J D, Minor E C, Kieber D J, Mopper K. Limnol. Oceanogr., 2008, 53:955.
[75] Fang G D, Liu C, Wang Y J, Dionysios D D, Zhou D M. Appl. Catal. B-Environ., 2017, 214:34.
[76] Suda I, Suda M, Hirayama K. Arch. Toxicol., 1993, 67:365.
[77] Vialaton D, Richard C, Baglio D, Paya-Perez A B. J. Photoch. Photobio. A, Chem., 1998, 119:39.
[78] Xia X H, Li G C, Yang Z F, Chen Y M, Huang G H. Environ. Pollut., 2009, 157:1352.
[79] Yin Y G, Liu J F, Jiang G B. ACS Nano, 2012, 6:7910.
[80] Chen L, Shen C F, Zhou M M, Tang X J, Chen Y X. Environ. Sci. Pollut. Res., 2013, 20:1842.
[81] Aguer J P, Richard C. Chemosphere, 1999, 10:2293.
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[3] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[9] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[10] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[11] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[12] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[13] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[14] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.
[15] Yang Yue, Liu Qiying, Cai Chiliu, Tan Jin, Wang Tiejun, Ma Longlong. Advances in DMF and C5/C6 Alkanes Production from Lignocellulose [J]. Progress in Chemistry, 2016, 28(2/3): 363-374.