中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 401-414 DOI: 10.7536/PC151024 Previous Articles   Next Articles

• Review and comments •

Reactivity of Heteronuclear Oxide Clusters with Small Molecules

Zhao Yanxia, He Shenggui*   

  1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21325314, 21273247, 21303215, 21573247).
PDF ( 797 ) Cited
Export

EndNote

Ris

BibTeX

Gas phase study of the chemical reactions between heteronuclear oxide clusters and small molecules permits to address the behavior of oxides composed of multiple components in catalytic reactions at a strictly molecular level. In this review, we summarize the recent progress in activation and transformation of small molecules by heteronuclear oxide clusters. The local charge, local spin, and structural effects on the reactivity of important reactive oxygen species are discussed. The novel reaction pathways and reaction mechanisms appearing after doping with noble metals are also presented.

Contents
1 Introduction
2 Reactivity of heteronuclear oxide clusters doping with non-noble metals
2.1 Tune the local charge on atomic oxygen radicals
2.2 Tune the local spin on atomic oxygen radicals
2.3 Tune the reactivity of peroxide ions
3 Reactivity of heteronuclear oxide clusters doping with noble metals
3.1 The promotion role of noble metal atoms
3.2 The dominant role of noble metal atoms
3.3 The single atom catalysis
4 Conclusion and outlook

CLC Number: 

[1] Fierro J L G. Metal Oxides Chemistry and Applications. London:Taylor & Francis, 2006.
[2] Kung H H. Stud. Surf. Sci. Catal., 1989, 45: 1.
[3] Grzybowska-?wierkosz B. Top. Catal., 2000, 11/12: 23.
[4] Copéret C. Chem. Rev., 2010, 110: 656.
[5] Ertl G, Knözinger H, Schüth F, Weitkamp J. Handbook of Heterogeneous Catalysis. Weinheim:Wiley-VCH, 2008.
[6] Gawande M B, Pandey R K, Rajesh K, Jayaram R V. Catal. Sci. Technol., 2012, 2: 1113.
[7] McFarland E W, Metiu H. Chem. Rev., 2013, 113: 4391.
[8] Wachs I E. Catal. Today, 2005, 100: 79.
[9] Keller D E, Airaksinen S M K, Krause A O, Weckhuysen B M, Koningsberger D C. J. Am. Chem. Soc., 2007, 129: 3189.
[10] Su D S, Zhang B, Schlögl R. Chem. Rev., 2015, 115: 2818.
[11] Chang T Y, Tanaka Y, Ishikawa R, Toyoura K, Matsunaga K, Ikuhara Y, Shibata N. Nano Lett., 2014, 14: 134.
[12] Nilius N, Risse T, Schauermann S, Shaikhutdinov S, Sterrer M, Freund H J. Top. Catal., 2011, 54: 4.
[13] Kuhlenbeck H, Shaikhutdinov S, Freund H J. Chem. Rev., 2013, 113: 3986.
[14] Stacchiola D J. Acc. Chem. Res., 2015, 48: 2151.
[15] Böhme D K, Schwarz H. Angew. Chem. Int. Ed., 2005, 442336.
[16] Castleman A W Jr. Catal. Lett., 2011, 141: 1243.
[17] Yin S, Bernstein E R. Int. J. Mass Spectrom., 2012,321/322: 49.
[18] Schwarz H. Isr. J. Chem., 2014, 54: 1413.
[19] 刘清宇(Liu Q Y), 何圣贵(He S G). 高等学校化学学报(Chem. J. Chin. Univ.), 2014, 35: 665.
[20] Ding X L, Wu X N, Zhao Y X, He S G. Acc. Chem. Res., 2012, 45: 382.
[21] Schwarz H. Angew. Chem. Int. Ed., 2015, 54: 2.
[22] Nöβler M, Mitri? R, Bona ?i?-Koutecký V, Johnson G E, Tyo E C, Castleman A W Jr. Angew. Chem., Int. Ed., 2010, 49: 407.
[23] Li J, González-Navarrete P, Schlangen M, Schwarz H. Chem.-Eur. J., 2015, 21: 7780.
[24] Meng J H, He S G. J. Phys. Chem. Lett., 2014, 5: 3890.
[25] Nakamura I, Mantoku H, Furukawa T, Fujitani T. J. Phys. Chem. C, 2011, 115: 16074.
[26] Sun K, Kohyama M, Tanaka S, Takeda S. J. Phys. Chem. C, 2014, 118: 1611.
[27] Wang Z C, Wu X N, Zhao Y X, Ma J B, Ding X L, He S G. Chem. Phys. Lett., 2010, 489: 25.
[28] Ding X L, Zhao Y X, Wu X N, Wang Z C, Ma J B, He S G. Chem.-Eur. J., 2010, 16: 11463.
[29] Ma J B, Wu X N, Zhao Y X, Ding X L, He S G. Phys. Chem. Chem. Phys., 2010, 12: 12223.
[30] Dietl N, Höckendorf R F, Schlangen M, Lerch M, Beyer M K, Schwarz H. Angew. Chem. Int. Ed., 2011, 50: 1430.
[31] Li Z Y, Zhao Y X, Wu X N, Ding X L, He S G. Chem.-Eur.J., 2011, 17: 11728.
[32] Ma J B, Wang Z C, Schlangen M, He S G, Schwarz H. Angew. Chem. Int. Ed., 2012, 51: 5991.
[33] Wu X N, Li X N, Ding X L, He S G. Angew. Chem. Int. Ed., 2013, 52: 2444.
[34] Wang L N, Zhou Z X, Li X N, Ma T M, He S G. Chem.-Eur.J., 2015, 21: 6957.
[35] Wang Z C, Liu J W, Schlangen M, Weiske T, Schröder D, Sauer J, Schwarz H. Chem.-Eur. J., 2013, 19: 11496.
[36] Zhao Y X, Li Z Y, Yuan Z, Li X N, He S G. Angew. Chem. Int. Ed., 2014, 53: 9482.
[37] Li J,Wu X N, Zhou S, Tang S, Schlangen M, Schwarz H. Angew. Chem., Int. Ed., 2015, 54: 12298.
[38] Li J, Wu X N, Schlangen M, Zhou S, González-Navarrete P, Tang S, Schwarz H. Angew. Chem. Int. Ed., 2015, 54: 5074.
[39] Wang Z C, Wu X N, Zhao Y X, Ma J B, Ding X L, He S G. Chem.-Eur. J., 2011, 17: 3449.
[40] Li X N, Wu X N, Ding X L, Xu B, He S G. Chem.-Eur. J., 2012, 18: 10998.
[41] Li Y K, Meng J H, He S G. Int. J. Mass Spectrom., 2015, 381/382: 10.
[42] Dietl N, Wende T, Chen K, Jiang L, Schlangen M, Zhang X, Asmis K R, Schwarz H. J. Am. Chem. Soc., 2013, 135: 3711.
[43] Zhao Y X, Wu X N, Ma J B, He S G, Ding X L. J. Phys. Chem. C, 2010, 114:12271.
[44] Wang Z C, Yin S, Bernstein E R. J. Chem. Phys., 2013, 139: 194313.
[45] Ma J B, Yuan Z, Meng J H, Liu Q Y, He S G. ChemPhysChem, 2014, 15: 4117.
[46] Ma J B, Meng J H, He S G. Dalton Trans., 2015, 44: 3128.
[47] Wang Z C, Dietl N, Kretschmer R, Weiske T, Schlangen M, Schwarz H. Angew. Chem. Int. Ed., 2011, 50: 12351.
[48] Himeno H, Miyajima K, Yasuike T, Mafuné F. J. Phys. Chem. A, 2011, 115: 11479.
[49] Wang Z C, Yin S, Bernstein E R. J. Phys. Chem. Lett., 2012, 3: 2415.
[50] Ma J B, Wang Z C, Schlangen M, He S G, Schwarz H. Angew. Chem. Int. Ed., 2013, 52: 1226.
[51] Li Z Y, Yuan Z, Li X N, Zhao Y X, He S G. J. Am. Chem. Soc., 2014, 136: 14307.
[52] Yuan Z, Li X N, He S G. J. Phys. Chem. Lett., 2014, 5: 1585.
[53] Li X N, Yuan Z, He S G. J. Am. Chem. Soc., 2014, 136: 3617.
[54] Wang L N, Li Z Y, Liu Q Y, Meng J H, He S G, Ma T M. Angew. Chem. Int. Ed., 2015, 54: 11720.
[55] Li X N, Yuan Z, Meng J H, Li Z Y, He S G. J. Phys. Chem. C, 2015, 119: 15414.
[56] Janssens E, Lang S M, Brümmer M, Niedziela A, Santambrogio G, Asmis K R, Sauer J. Phys. Chem. Chem. Phys., 2012, 14: 14344.
[57] Che M, Tench A J. Adv. Catal., 1983, 32: 1.
[58] Che M, Tench A J. Adv. Catal., 1982, 31: 77.
[59] Li C, Domen K, Maruya K, Onishi T. J. Am. Chem. Soc., 1989, 111: 7683.
[60] Crabtree R H. Chem. Rev., 1995, 95: 987.
[61] Palmer M S, Neurock M, Olken M M. J. Am. Chem. Soc.,2002, 124: 452.
[62] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Sci., 2003, 301: 935.
[63] Guzman J, Carrettin S, Corma A. J. Am. Chem. Soc., 2005, 127: 3286.
[64] Panov G I, Dubkov K A, Starokon E V. Catal. Today, 2006, 117: 148.
[65] Thomas F. Eur. J. Inorg. Chem., 2007, 2379.
[66] Buckel W. Angew. Chem. Int. Ed., 2009, 48: 6779.
[67] Zhao Y X, Wu X N, Ma J B, He S G, Ding X L. Phys. Chem. Chem. Phys., 2011, 13: 1925.
[68] Zhao Y X, Ding X L, Ma Y P, Wang Z C, He S G.Theor. Chem. Acc., 2010, 127: 449.
[69] Ma Y P, Zhao Y X, Li Z Y, Ding X L, He S G. Chin. J. Chem. Phys., 2011, 24: 586.
[70] Dietl N, Schlangen M, Schwarz H. Angew. Chem. Int. Ed., 2012, 51: 5544.
[71] Zhao Y X, Wu X N, Wang Z C, He S G, Ding X L. Chem. Commun., 2010, 46: 1736.
[72] Tian L H, Ma T M, Li X N, He S G. Dalton Trans., 2013, 42: 11205.
[73] Tian L H, Meng J H, Wu X N, Zhao Y X, Ding X L, He S G, Ma T M. Chem.-Eur. J., 2014, 20: 1167.
[74] Meng J H, Zhao Y X, He S G. J. Phys. Chem. C, 2013, 117: 17548.
[75] Meng J H, Deng X J, Li Z Y, He S G, Zheng W J. Chem.-Eur. J., 2014, 20: 5580.
[76] Xu B, Zhao Y X, Ding X L, He S G. Int. J. Mass Spectrom., 2013, 334: 1.
[77] Xu B, Zhao Y X, Li X N, Ding X L, He S G. J. Phys. Chem. A. 2011, 115: 10245.
[78] Yuan Z, Zhao Y X, Li X N, He S G. Int. J. Mass Spectrom., 2013, 354/355: 105.
[79] Wu X N, Ding X L, Li Z Y, Zhao Y X, He S G. J. Phys. Chem. C, 2014, 118: 24062.
[80] Wu X N, Xu B, Meng J H, He S G. Int. J. Mass Spectrom., 2012, 310: 57.
[81] Wu X N, Zhao Y X, Xue W, Wang Z C, He S G, Ding X L. Phys. Chem. Chem. Phys., 2010, 12: 3984.
[82] Irikura K K, Beauchamp J L. J. Am. Chem. Soc., 1989, 111: 75.
[83] Schröder D, Fiedler A, Hrušák J, Schwarz H. J. Am. Chem. Soc., 1992, 114: 1215.
[84] Ryan M F, Fiedler A, Schröder D, Schwarz H. J. Am. Chem. Soc., 1995, 117: 2033.
[85] Kretzschmar I, Fiedler A, Harvey J N, Schröder D, Schwarz H. J. Phys. Chem. A, 1997, 101: 6252.
[86] Harvey J N, Diefenbach M, Schröder D, Schwarz H. Int. J. Mass Spectrom., 1999, 182/183: 85.
[87] Schröder D, Roithová J. Angew. Chem. Int. Ed., 2006, 45: 5705.
[88] Feyel S, Döbler J, Schröder D, Sauer J, Schwarz H. Angew.Chem. Int. Ed., 2006, 45: 4681.
[89] Feyel S, Döbler J, Höckendorf R, Beyer M K, Sauer J, Schwarz H. Angew. Chem. Int. Ed., 2008, 47: 1946.
[90] de Petris G, Troiani A, Rosi M, Angelini G, Ursini O. Chem.-Eur. J., 2009, 15: 4248.
[91] Dietl N, Engeser M, Schwarz H. Angew. Chem. Int. Ed., 2009, 48: 4861.
[92] Dietl N, Engeser M, Schwarz H. Chem.-Eur. J., 2009, 15: 11100.
[93] Dietl N, van der Linde C, Schlangen M, Beyer M K, Schwarz H. Angew. Chem. Int. Ed., 2011, 50: 4966.
[94] Zhang X. Schwarz H. ChemCatChem, 2010, 2: 1391.
[95] Chen K, Wang Z C, Schlangen M, Wu Y D, Zhang X, Schwarz H. Chem.-Eur. J., 2011, 17: 9619.
[96] Schröder D, Roithová J, Alikhani E, Kwapien K, Sauer J.Chem.-Eur. J., 2010, 16: 4110.
[97] Bo?ovi? A, Bohme D K. Phys. Chem. Chem. Phys., 2009, 11: 5940.
[98] Wang Z C, Kretschmer R, Dietl N, Ma J B, Weiske T, Schlangen M, Schwarz H. Angew. Chem. Int. Ed., 2012, 51: 3703.
[99] Ma J B, Zhao Y X, He S G, Ding X L. J. Phys. Chem. A, 2012, 116: 2049.
[100] De Petris G, Cartoni A, Troiani A, Angelini G, Ursini O. Phys. Chem. Chem. Phys., 2009, 11: 9976.
[101] Bo?ovic? A, Bohme D K. Phys. Chem. Chem. Phys., 2009, 11: 5940.
[102] Ma Y P, Ding X L, Zhao Y X, He S G. ChemPhysChem, 2010, 11: 1718.
[103] Dietl N, Engeser M, Schwarz H. Chem.-Eur. J., 2010, 16: 4452.
[104] Yuan Z, Li Z Y, Zhou Z X, Liu Q Y, Zhao Y X, He S G. J. Phys. Chem. C, 2014, 118: 14967.
[105] Justes D R, Mitri? R, Moore N A, Bona?i?-Koutecký V, Castleman A W Jr. J. Am. Chem. Soc., 2003, 125: 6289.
[106] Dong F, Heinbuch S, Xie Y, Rocca J J, Bernstein E R, Wang Z C, Deng K, He S G. J. Am. Chem. Soc., 2008, 130: 1932.
[107] Tyo E C, Nöβler M, Mitri? R, Bona?i?-Koutecký V, Castleman A W Jr. Phys. Chem. Chem. Phys., 2011, 13: 4243.
[108] Johnson G E, Mitri? R, Tyo E C, Bona?i?-Koutecký V, Castleman A W Jr. J. Am. Chem. Soc., 2008, 130: 13912.
[109] Johnson G E, Mitri? R, Nössler M, Tyo E C, Bona?i?-Koutecký V, Castleman A W Jr. J. Am. Chem. Soc., 2009, 131: 5460.
[110] Wu X N, Ding X L, Bai S M, Xu B, He S G. J. Phys. Chem. C, 2011, 115: 13329.
[111] Ma J B, Xu B, Meng J H, Wu X N, Ding X L, Li X N, He S G. J. Am. Chem. Soc., 2013, 135, 2991.
[112] Tyo E C, Nossler M, Harmon C L, Mitri? R, Bona?i?- Koutecký V, Castleman A W Jr. J. Phys. Chem. C, 2011, 115: 21559.
[113] Ma J B, Wu X N, Zhao Y X, He S G, Ding X L. Acta Phys.-Chim. Sin., 2010, 26: 1761.
[114] Ma J B, Wu X N, Zhao Y X, Ding X L, He S G. J. Phys. Chem. A, 2010, 114: 10024.
[115] Ma J B, Wu X N, Zhao Y X, Ding X L, He S G. Chin. J. Chem. Phys., 2010, 23: 133.
[116] Wu X N, Ding X L, Bai S M, Xu B, He S G, Shi Q. J. Phys. Chem. C, 2011, 115: 13329.
[117] Johnson G E, Tyo E C, Castleman A W Jr. J. Phys. Chem. A, 2008, 112: 4732.
[118] Johnson G E, Reilly N M, Castleman A W Jr. Int. J. Mass Spectrom., 2009, 280: 93.
[119] Johnson G E, Reveles J U, Reilly N M, Tyo E C, Khanna S N, Castleman A W Jr. J. Phys. Chem. A, 2008, 112: 11330.
[120] Zemski K A, Justes D R, Bell R C, Castleman A W Jr. J. Phys. Chem. A, 2001, 105: 4410.
[121] Pyykkö P. Angew. Chem. Int. Ed., 2004, 43: 4412.
[122] Schwarz H. Angew. Chem. Int. Ed., 2003, 42: 4442.
[123] Schröder D, Diefenbach M, Schwarz H, Schier A, Schmidbaur H. Relativistic Effects in Heavy-Element Chemistry and Physics. Hess B A Ed. Weinheim:Wiley-VCH, 2003, chap. 7.
[124] Gorin D J, Toste F D. Nature, 2007, 446: 395.
[125] Wang L S. Phys. Chem. Chem. Phys., 2010, 12: 8694.
[126] Allred A L. J. Inorg. Nucl. Chem., 1961, 17: 215.
[127] Jansen M. Chem. Soc. Rev., 2008, 37: 1826.
[128] Citir M, Metz R B, Belau L, Ahmed M. J. Phys. Chem. A, 2008, 112: 9584.
[129] McCarthy M C, Field R W, Engleman R, Bernath P F. J. Mol. Spectrosc., 1993, 158: 208.
[130] Carroll J J, Weisshaar J C, Siegbahn P E M, Wittborn C A M, Blomberg M R A. J. Phys. Chem., 1995, 99: 14388.
[131] Campbell M L. J. Chem. Soc. Faraday Trans., 1998, 94: 353.
[132] Perera M, Metz R B, Kostko O, Ahmed M. Angew. Chem. Int. Ed., 2013, 52: 888.
[133] Heinemann C, Wesendrup R, Schwarz H. Chem. Phys. Lett., 1995, 239: 75.
[134] Zhang X G, Liyanage B, Armentrout P B. J. Am. Chem. Soc., 2001, 123: 5563.
[135] Achatz U, Berg C, Joos S, Fox B S, Beyer M K, Niedner-Schatteburg G, Bondybey V E. Chem. Phys. Lett., 2000, 320: 53.
[136] Johnson G E, Tyo E C, Castleman A W Jr. J. Phys. Chem. A, 2008, 112 : 4732.
[137] Wang Z C, Yin S, Bernstein E R. Phys. Chem. Chem. Phys., 2013, 15: 10429.
[138] Socaciu L D, Hagen J, Bernhardt T M, Wöste L, Heiz U, Häkkinen H, Landman U. J. Am. Chem. Soc., 2003, 125: 10437.
[139] Wallace W T, Whetten R L. J. Am. Chem. Soc., 2002, 124: 7499.
[140] Socaciu L D, Hagen J, Roux J L, Popolan D, Bernhardt T M, Wöste L, Vajda Š J. Chem. Phys., 2004, 120: 2078.
[141] Xie Y, Dong F, Bernstein E R. Catal. Today, 2011, 177: 64.
[142] Shi Y, Ervin K M. J. Chem. Phys., 1998, 108: 1757.
[143] Lang S, Fleischer M I, Bernhardt T M, Barnett R N, Landman U. J. Am. Chem. Soc., 2012, 134: 20654.
[144] Yang X F, Wang A, Qiao B, Li J, Liu J, Zhang T. Acc. Chem. Res., 2013, 46: 1740.
[145] Green I X, Tang W, Neurock M, Yates J T Jr. Sci., 2011, 333: 736.
[146] Guzman J, Carrettin S, Fierro-Gonzalez J C, Hao Y L, Gates B C, Corma A. Angew. Chem. Int. Ed., 2005, 44: 4778.
[147] Widmann D, Liu Y, Schüth F, Behm R J. J. Catal., 2010, 276: 292.
[148] Yoon B, Häkkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Judai K, Heiz U. Sci., 2005, 307: 403.
[1] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[2] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[3] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[4] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[5] Haidong Li, Jiangli Fan, Xiaojun Peng. Fluorescent Probes for the Recognition of Hypochlorous Acid [J]. Progress in Chemistry, 2017, 29(1): 17-35.
[6] Chen Yanping, Cheng Dangguo, Chen Fengqiu, Zhan Xiaoli. Selective Catalytic Reduction of NOx by Hydrocarbons over Copper-Free Metal Supported Zeolite [J]. Progress in Chemistry, 2013, 25(12): 2011-2019.
[7] Chen Ping, Jiang Liang, Liu Qiong*, Yang Silin, Song Yun, Ni Jiazuan. Selenoprotein M and Its Effects on Diseases [J]. Progress in Chemistry, 2013, 25(04): 479-487.
[8] Zhou Jun, Bai Zhaoshuai, Xu Huibi, Huang Kaixun*. Selenoproteins and Diabetes——Dual Effect of Selenium [J]. Progress in Chemistry, 2013, 25(04): 488-494.
[9] Zhou Ying, Lin Yuanhua, Greta R. Patzke. Synchrotron Radiation for the Study of Hydrothermal Formation Mechanisms of Oxide Nanomaterials [J]. Progress in Chemistry, 2012, 24(08): 1583-1591.
[10] Wang Zhaohui, Song Wenjing, Ma Wanhong, Zhao Jincai. Environmental Photochemistry of Iron Complexes and Their Involvement in Environmental Chemical Processes [J]. Progress in Chemistry, 2012, 24(0203): 423-432.
[11] . Conversion of Ethanol into Light Olefins over ZSM-5 Catalysts [J]. Progress in Chemistry, 2010, 22(04): 754-759.
[12] Tao Zhanliang Chen Jun. MAlH4(M=Li,Na ) Materials for Hydrogen Storage [J]. Progress in Chemistry, 2009, 21(09): 1945-1953.
[13] . Metabolism, Toxicity, and Biomonitoring of Arsenic Species [J]. Progress in Chemistry, 2009, 21(0203): 474-482.
[14] Li Xin|Zhang Weiping**|Li Xiujie|Liu Shenglin. Heterogeneous Catalysts for Olefin Cross-Metathesis [J]. Progress in Chemistry, 2008, 20(0708): 1021-1031.
[15] Wang Sheng1 Gao Diannan1,2 Zhang Chunxi1 Yuan Zhongshan1 Zhang Peng1 Wang Shudong1**. Low-temperature Catalytic Combustion of Methane over Noble Metal Catalyst [J]. Progress in Chemistry, 2008, 20(06): 789-797.