中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 375-390 DOI: 10.7536/PC150604 Previous Articles   Next Articles

• Review and comments •

Catalytic Oxidehydration of Glycerol to Acrylic Acid

Hua Donglong1, Zhuang Xiaoyu1, Tong Dongshen1, Yu Weihua1, Zhou Chunhui1,2*   

  1. 1. Institute for Advanced Catalytic Materials, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
    2. Institute for Agriculture and Environment, University of Southern Queensland, Toowoomba QLD 4350, Australia
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21373185) and the Distinguished Young Scholar Grants from the Natural Scientific Foundation of Zhejiang Province (No.R4100436).
PDF ( 2044 ) Cited
Export

EndNote

Ris

BibTeX

This article deals with the recent research and development on catalytic oxidehydration of glycerol into acrylic acid in a single reactor. The biorenewable glycerol as a platform chemical for the production of acrylic acid is introduced. The reaction parameters such as temperature, contact time, partial pressure of oxygen and glycerol concentration in the gas-solid systems and the liquid-solid systems are examined. The catalytic performances of oxide composites and molecular sieve-supported catalysts in a single-bed system and a double-bed gas-solid system are discussed. The catalysts include V-P, Fe-P, W-V, Mo-V, CsPW-Nb, VMo-SiC oxide composites, V2O5/BEA and V2O5/MFI. The postulated reaction mechanisms and probable side reactions in the gas-solid system are presented, followed by the discussion on the issues of catalyst deactivation and regeneration. Then the catalytic characteristics of Cu/SiO2-MnO2 and POM/Al2O3 catalysts and the reaction mechanism in the liquid-solid system are remarked. The problems and the prospects in the selection of catalytic system, the improvement of catalysts and the elimination of coking of catalysts are commented.

Contents
1 Introduction
2 Gas-solid catalytic reactions
2.1 Gas-solid catalytic reactions in a single-bed reactor
2.2 Gas-solid catalytic reactions in a double-bed reactor
2.3 Mechanism of gas-solid catalytic reactions
2.4 Deactivation and regeneration of catalysts
3 Liquid-solid catalytic reactions
3.1 Reaction conditions of liquid-solid catalytic reactions
3.2 Catalysts of liquid-solid catalytic reactions
3.3 Mechanism of liquid-solid catalytic reactions
4 Conclusion

CLC Number: 

[1] Talebian-Kiakalaieh A, Amin N A S, Hezaveh H. Renew. Sust. Energ. Rev., 2014, 40:28.
[2] Katryniok B, Paul S, Capron M, Dumeignil F. ChemSusChem., 2009, 2(8):719.
[3] Sereshki B R, Balan S J, Patience G S, Dubois J L. Ind. Eng. Chem. Res., 2009, 49(3):1050.
[4] McKendry P. Bioresource Technol., 2002, 83(1):55.
[5] Demirbas A. Appl. Energ., 2009, 86:S108.
[6] Zhou C H, Xia X, Lin C X, Tong D S, Beltramini J. Chem. Soc. Rev., 2011, 40(11):5588.
[7] 冯建(Feng J),袁茂林(Yuan M L), 陈华(Chen H),李贤均(Li X J). 化学进展(Progress in Chemistry), 2007, 19(5):651.
[8] 李明燕(Li M Y),周春晖(Zhou C H), Beltramini J N,俞卫华(Yu W H),范永仙(Fan Y C). 化学进展(Progress in Chemistry), 2008, 20(10):1474.
[9] Ilyushin V V, Motiyenko R A, Lovas F J, Plusquellic D F. J. Mol. Spectrosc., 2008, 251(1):129.
[10] Israel A U, Obot I B, Asuquo J E. J. Chem., 2008, 5(4):940.
[11] Díaz G C, Tapanes N C O, Câmara L D T, Aranda D A G. Renew. Energ., 2014, 64:113.
[12] Saleh J, Tremblay A Y, Dubé M A. Fuel, 2010, 89(9):2260.
[13] Beerthuis R, Rothenberg G, Shiju N R. Green Chem., 2015, 17(3):1341.
[14] Arroyo-López F N, Pérez-Torrado R, Querol A, Barrio E. Food Microbial., 2010, 27(5):628.
[15] Modig T, Granath K, Adler L, Liden G. Appl. Microbial. Biotechnol., 2007, 75(2):289.
[16] Seo H B, Yeon J H, Jeong M H, Kang D H, Lee H Y, Jung K H. Biotechnol. Bioproc. E., 2009, 14(5):599.
[17] Wang Z, Zhu G J, Fang H, Prior B A. Biotechnol. Adv., 2001, 19(3):201.
[18] Zhao H, Zhou C H, Wu L M, Lou J Y, Li N, Yang H M, Tong D S, Yu W H. Appl. Clay Sci., 2013, 74:154.
[19] Johnson D T, Taconi K A. Environ. Prog., 2007, 26(4):338.
[20] Tan K T, Lee K T, Mohamed A R. Bioresource Technol., 2010, 101(3):965.
[21] OECD-FAO. OECD-FAO Agricultural Outlook 2014~2023. OECD Publishing. 2014, 111.
[22] Yaakob Z,Mohammad M,Alherbawi M, Alherbawi M, Alam Z, Sopian K.Renew. Sust. Energ. Rev., 2013, 18:184.
[23] Jerzykiewicz M, Cwielag I, Jerzykiewicz W. J. Chem. Technol. Biot., 2009, 84(8):1196.
[24] Sharninghausen L S, Campos J, Manas M G, Crabtree R H. Nat. Commun., 2014, 5:5084.
[25] Possato L G, Cassinelli W H, Garetto T, Pulcinelli S H, Santilli C V, Martins L. Appl. Catal. A:Gen., 2015, 492:243.
[26] Zhou C H, Zhao H, Tong D S, Wu L M, Yu W H. Catal. Rev., 2013, 55(4):369.
[27] Katryniok B, Paul S, Dumeignil F. ACS Catal., 2013, 3(8):1819.
[28] Raksaphort S, Pengpanich S, Hunsom M. React. Kinet. Catal. Lett., 2014, 55(4):434.
[29] Viswanadham B, Pavankumar V, Chary K V R. Catal. Lett., 2014, 144(4):744.
[30] Zhou C H, Beltramini J N, Fan Y X, Lu G Q. Chem. Soc. Rev., 2008, 37(3):527.
[31] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina C D. Angew. Chem. Int. Ed., 2007, 46(24):4434.
[32] Wang Z C, Wang L Z, Jiang Y J, Hunger M, Huang J. ACS Catal., 2014, 4(4):1144.
[33] Rajan N P, Rao G S, Putrakumar B, Chary K V R. RSC Adv., 2014, 4(96):53419.
[34] Cui Y, Galvita V, Rihko-Struckmann L, Lorenz H, Sundmacher K. Appl. Catal. B:Environ., 2009, 90(1):29.
[35] Ciriminna R, Palmisano G, Della Pina C, Rossi M, Pagliaro M. Tetrahedron Lett., 2006, 47(39):6993.
[36] Zhang Y, Gao F, Zhang S P, Su Z G, Ma G H,Wang P. Bioresource Technol., 2011, 102(2):1837.
[37] Feng X Z, Sun B, Yao Y, Su Q, Ji W J, Au C T. J. Catal., 2014, 314:132.
[38] Abdel-Halim E S, Al-Hoqbani A A. Bioresources, 2015, 10(2):3112.
[39] Schwenk E, Gehrke M, Aichner F. US 1916743, 1933.
[40] Vitry D, Morikawa Y, Dubois J L, Ueda W. Appl. Catal. A:Gen., 2003, 251(2):411.
[41] Han S, Frick C D, Kraptchetov D A, Martenak D J, Quiros N I, Donnelly T J. US20140243554 A1, 2012.
[42] Soares R R, Simonetti D A, Dumesic J A. Angew. Chem. Int. Ed., 2006, 118(24):4086.
[43] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. Angew. Chem. Int. Ed., 2007, 119(24):4516.
[44] Kampe P, Giebeler L, Samuelis D, Kunert J, Drochner A, Haaß F, Adams A H, Ott J, Endres S, Schimanke G, Buhrmester T, Martin M, Fuess H, Vogel H. Phys. Chem. Chem. Phys., 2007, 9(27):3577.
[45] Manosak R, Limpattayanate S, Hunsom M. Fuel Process. Technol., 2011, 92(1):92.
[46] López J Á S, Santos M Á M, Pérez A F C, Martin A M. Bioresource Technol., 2009, 100(23):5609.
[47] Devi P, Bethala L A, Gangadhar K N, Sai Prasad P S, Jagannadh B, Prasad R B. ChemSusChem., 2009, 2(7):617.
[48] Ayoub M, Abdullah A Z. Renew. Sust. Energ. Rev., 2012, 16(5):2671.
[49] Zhou C H, Beltramini J N, Lin C X, Xu Z P, Lu G Q, Tanksale A. Catal. Sci. Technol., 2011, 1(1):111.
[50] Wang F, Xu J, Dubois J L, Ueda W. ChemSusChem., 2010, 3(12):1383.
[51] Chieregato A, Basile F, Concepción P, Guidetti S, Liosi G, Soriano M D, Nieto J M L. Catal. Today, 2012, 197(1):58.
[52] Arntz D, Höpp M, Jacobi S, Sauer J, Ohara T, Sato T, Wei B O. Acrolein and Methacrolein. NJ:Wiley-VCH. 2012.
[53] Sithambaram S, Kumar R, Son Y C, Suib S L. J. Catal., 2008, 253(2):269.
[54] Bohmer N, Roussiere T, Kuba M, A Schunk S. Comb. Chem. High T. Scr., 2012, 15(2):123.
[55] Nimlos M R, Blanksby S J, Qian X, Himmel M E, Johnson D K. J. Phys. Chem. A, 2006, 110(18):6145.
[56] Fritz-Langhals E. Org. Process Res. Dev., 2005, 9(5):577.
[57] Soriano M D, Concepción P, Nieto J M L, Cavani F, Guidetti S, Trevisanut C. Green Chem., 2011, 13(10):2954.
[58] Yun Y S, Lee K R, Park H, Kim T Y,Yun D, Han J W,Yi J. ACS Catal., 2014, 5(1):82.
[59] Shen L Q, Yin H G, Wang A L, Lu X F, Zhang C H. Chem. Eng. J., 2014, 244:168.
[60] Chieregato A, Soriano M D, Basile F, Liosi G, Zamora S, Concepción P, Nieto J M L. Appl. Catal. B:Environ., 2014, 150:37.
[61] Possato L G, Cassinelli W H, Garetto T, Pulcinelli S H, Santilli C V, Martins L. Appl. Catal. A:Gen., 2015, 492:243.
[62] Khenkin A M, Neumann R. Angew. Chem. Int. Ed., 2000, 39(22):4088.
[63] Khenkin A M, Weiner L, Wang Y, Neumann R. J. Am. Chem. Soc., 2001, 123(35):8531.
[64] Vannice M A. Catal. Today, 2007, 123(1):18.
[65] Efremenko I, Neumann R. J. Am. Chem. Soc., 2012, 134(51):20669.
[66] Ennaciri S A, Malka K, Louis C, Barboux P, R'Kha C, Livage J. Catal. Lett., 1999, 62(1):79.
[67] Wang F, Dubois J L, Ueda W. J. Catal., 2009, 268(2):260.
[68] Kamiya Y, Nishiyama H, Yashiro M, Satsuma A, Hattori T. J. Jpn. Petrol. Inst., 2003, 46(1):62.
[69] Coulston G W, Thompson E A, Herron N. J. Catal., 1996, 163(1):122.
[70] Liu R, Wang T, Cai D, Jin Y. Ind. Eng. Chem. Res., 2014, 53(21):8667.
[71] Muneyama E, Kunishige A, Ohdan K, Ai M. J. Mol. Catal., 1994, 89(3):371.
[72] Ai M. J. Mol. Catal. A-Chem., 1996, 114(1):3.
[73] Ai M, Ohdan K. Appl. Catal. A:Gen, 1999, 180(1):47.
[74] Deleplanque J, Dubois J L, Devaux J F, Ueda W. Catal. Today, 2010, 157(1):351.
[75] Muneyama E, Kunishige A, Ohdan K, Ai, M. J. Mol. Catal., 1994, 89(3):371.
[76] Millet J, Bouchard A, Édelin C. Acta biotheor., 1998, 46(1):1.
[77] Song H, Sun Y, Jia X. Mater. Charact., 2015, 107:182.
[78] 王峰(Wang F), 徐杰(Xu J). CN102249890A, 2011.
[79] Vitry D, Morikawa Y, Dubois J L, Ueda W. Appl. Catal. A:Gen, 2003, 251(2):411.
[80] Ueda W, Vitry D, Katou T. Catal. Today, 2005, 99(1):43.
[81] Sadakane M, Yamagata K, Kodato K, Endo K, Toriumi K, Ozawa Y, Ueda W. Angew. Chem. Int. Ed., 2009, 121(21):3840.
[82] Chieregato A, Soriano M D, García-González E, Puglia G, Basile F, Concepción P, Bandinelli C, López Nieto J M, Cavani F. ChemSusChem, 2014, 8(2):398.
[83] Liu L C, Wang B, Du Y H, Zhong Z Y, Borgna A. Appl. Catal. B, Environ., 2015, 174:1.
[84] Atia H, Armbruster U, Martin A. Appl. Catal. A, Gen., 2011, 393(1):331.
[85] Paniagua M, Saravanamurugan S, Melian-Rodriguez M, Melero J A, Riisager A. ChemSusChem, 2015, 8(6):1088.
[86] Vjunov A, Hu M Y, Feng J, Camaioni D M, Mei D, Hu J Z, Lercher J A. Angew. Chem. Int. Ed., 2014, 53(2):479.
[87] Mahdavi V, Soleimani S. Mater. Res. Bull., 2014, 51:153.
[88] Sutradhar M, Martins L M, da Silva M F C G, Pombeiro A J. Coordin. Chem. Rev., 2015.
[89] Price S P, Tong X, Ridge C, Neilson H L, Buffon J W, Robins J, Buratto S K.J. Phys. Chem. A, 2014, 118(37):8309.
[90] Pestana C F M, Guerra A C O, Ferreira G B, Turcia C C, Mota C J A. J. Brazil. Chem. Soc., 2013, 24(1):100.
[91] Witsuthammakul A, Sooknoi T. Appl. Catal. A, Gen., 2012, 413:109.
[92] Ovsitser O, Uchida Y, Mestl G, Weinberg G, Blume A, Jäger J, Dieterle M, Hibst H, Schlögl R. J.Mol. Cataly. A:Chem., 2002, 185(1):291.
[93] Adams A H, Haaß F, Buhrmester T, Kunert J, Ott, Vogel H, Fuess H. J. Mol. Catal. A:Chem., 2004, 216(1):67.
[94] Katou T, Vitry D, Ueda W. Catal. Today, 2004, 91:237.
[95] Guliants V V, Bhandari R, Swaminathan B, Vasudevan V K, Brongersma H H, Knoester A, Han S. J. Phys. Chem. B, 2005, 109(50):24046.
[96] Katou T, Vitry D, Ueda W. Chem. Lett., 2003, 32(11):1028.
[97] Kuznetsova T G, Andrushkevich T V, Gorshkova T P. React. Kinet. Catal. L., 1986, 30(1):149.
[98] Okuhara T, Watanabe H, Nishimura T, Inumaru K, Misono M. Chem. Mater., 2000, 12(8):2230.
[99] Kamiya Y, Okuhara T, Misono M, Miyaji A, Tsuji K, Nakajo T. Catal. Surv. Asia, 2008, 12(2):101.
[100] Chai S H, Wang H P, Liang Y, Xu B Q. J.Catal., 2007, 250(2):342.
[101] Tsukuda E, Sato S, Takahashi R, Sodesawa T. Catal. Commun., 2007, 8(9):1349.
[102] Keulks G W, Krenzke L D, Notermann T M. Adv. Catal., 1979, 27:183.
[103] Corma A, Huber G W, Sauvanaud L, O'Connor P. J. Catal., 2008, 257(1):163.
[104] Suprun W, Lutecki M, Haber T, Papp H. J. Mol. Catal. A:Chem., 2009, 309(1):71.
[105] Alhanash A, Kozhevnikova E F, Kozhevnikov I V. Appl. Catal. A:Gen., 2010, 378(1):11.
[106] Chai S H, Wang H P, Liang Y, Xu B Q. Green Chem., 2007, 9(10):1130.
[107] Martinuzzi I, Azizi Y, Devaux J F, Tretjak S, Zahraa O, Leclerc J P. Chem. Eng. Sci., 2014, 116:118.
[108] Erfle S, Armbruster U, Bentrup U, Martin A, Brückner A. Appl. Catal. A:Gen., 2011, 391(1-2):102.
[109] Katryniok B, Paul S, Bellière-Baca V, Rey P, Dumeignil F. Green Chem., 2010, 12(12):2079.
[110] Park H, Yun Y S, Kim T Y, Lee K R, Baek J, Yi J. Appl. Catal. B:Environ., 2015, 176:1.
[111] Dubois J L, Duquenne C, Hoelderich W. WO 2006087083, 2006.
[112] O'Connor P, Corma C, Huber G, Savanaud L. WO 2008052993, 2008.
[113] Painter R M, Pearson D M, Waymouth R M. Angew. Chem. Int. Ed., 2010, 49(49):9456.
[114] Sarkar B, Pendem C, Konathala L N S, Tiwari R, Sasaki T, Bal R. Chem. Commun., 2014, 50(68):9707.
[115] Thanasilp S, Schwank J W, Meeyoo V, Pengpanich S, Hunsom M. J. Mol. Catal. A:Chem., 2013, 380:49.
[116] Hoffman R V, Bishop R D, Fitch P M, Hardenstein R. J. Org. Chem., 1980, 45(5):917.
[117] Ragupathi C, Vijaya J J, Kumar R T L, Kennedy J. J.Mol. Struct., 2015, 1079:182.
[118] Tenten A, Weidlich P. US 5446004. 1995.
[119] Tran B L, Driess M, Hartwig J F. J. Am. Chem. Soc., 2014, 136(49):17292.
[120] Seubsai A, Kahn M, Zohour B, Noon D, Charoenpanich M, Senkan S. Ind. Eng. Chem. Res., 2015, 54(10):2638.
[121] Pope M T, Müller A. Angew. Chem. Int. Ed., 1991, 30(1):34.
[122] Nishiyama Y, Nakagawa Y, Mizuno N. Angew. Chem. Int. Ed., 2001, 40(19):3639.
[123] Long D L, Burkholder E, Cronin L. Chem. Soc. Rev., 2007, 36(1):105.
[124] Li Y, Wu X, Wu Q, Ding H, Yan W. Dalton T., 2014, 43(36):13591.
[125] Atia H, Armbruster U, Martin A. J. Catal., 2008, 258(1):71.
[126] Shen L, Yin H, Wang A, Feng Y G, Shen Y T, Wu Z N, Jiang T S. Chem. Eng. J., 2012, 180:277.
[127] Thanasilp S, Schwank J W, Meeyoo V, Pengpanich S, Hunsom M. Chem. Eng. J., 2015, 275:113.
[128] Ott L, Bicker M, Vogel H. Green Chem., 2006, 8(2):214.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[5] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[6] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[7] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[8] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[9] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[10] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[11] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[12] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[13] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[14] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[15] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.