中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1496-1510 DOI: 10.7536/PC201116 Previous Articles   Next Articles

• Review •

Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications

Xuechuan Wang2(), Yansong Wang1, Qingxin Han2, Xiaolong Sun3   

  1. 1 College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
    2 College of Bioresources Chemical and Materials Engineering, Institute of Biomass and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
    3 School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • Received: Revised: Online: Published:
  • Contact: Xuechuan Wang
  • Supported by:
    National Key Research and Development Program of China in the 13th Five-Year Plan(2017YFB0308500); National Natural Science Foundation of China(21907080); National Natural Science Foundation of China(21476134); Natural Science Foundation of Shaanxi Province(2020JM-069); Natural Science Basic Research Program of Shaanxi Province(2019JQ-456)
Richhtml ( 36 ) PDF ( 472 ) Cited
Export

EndNote

Ris

BibTeX

Formaldehyde (FA) is not only used as a basic chemical for industrial products, but also a necessary metabolite for regulating human physiological activities. However, excessive intake from the external environment or unbalanced metabolism homeostasis of the internal environment would cause critical diseases to the human body such as organ cancers, Alzheimer?s disease and so on. The high sensitivity and selectivity with visualization and in-situ detection by means of small-molecular fluorescent probe, provides superiority for identification of FA and biological image in vitro and in vivo, and a new detection method for the trace detection of FA in real products as well. In the past five years, fluorescent probes of FA have developed rapidly. This article mainly reviews the research progress of fluorescent probes for FA recognition and applications, including the general reaction mechanisms and the applications in organisms and samples with commercial products. It is concluded that the small molecular fluorescent probes should be continuously improved in structures and optical characteristics to not only assist long-term research in biomedicine, but also lead to the achievable goals of fast (in situ) detecting FA in practice from actual products.

Contents

1 Introduction

2 Reaction mechanisms of FA fluorescent probes

2.1 The 2-aza-Cope rearrangement

2.2 The methylenehydrazine

2.3 The formimine and others

3 Fluorescence imaging applications

3.1 For cell imaging

3.2 For tissue imaging

3.3 For in vivo imaging

4 Detections of FA in samples (products)

4.1 In food

4.2 In air

5 Conclusion and outlook

Table 1 Summary of formaldehyde fluorescent probes
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
①The 2-aza-Cope rearrangement
FP1 633, 650 3 h 10 μM
Cell (HEK293TN and NS1) 38
FAP-1 645, 662 2 h 5 μM
Cell (HEK293T and MCF7) 39
FAP488 488, 515 2 h 10 μM
40
FAP555 555, 572 2 h 10 μM
Cell (HEK293T) 40
CFAP540 410, 540 1 h 10 μM
(cp: 10 μM, 25~50 μM)
Cell (HEK293) 41
CFAP700 540, 700 1 h
(cp: 10 μM, 25~50 μM)
Mice 41
RFFP 318, 359/451 2 h 59.6 μM
(cp: 10 μM, 0~3 mM)
Cell (HeLa) Formalin fixative 42
FAP 405, 495/570 2 h 0.5 μM
(cp: 20 μM, 0~200 μM)
Root tissue of a plant Water samples 43
RFAP-1 420/470, 510 2 h 0.3 μM
(cp: 10 μM, 0~40 μM)
Cell (HEK293T) 44
Lyso-TPFP 405, 506 3 h 3.0 μM
(cp: 10 μM, 10~250 μM)
Cell (HepG2 and HeLa);Mice 45
MQAP 355, 405/490 2.5 h 4.054 μM
(cp: 10 μM, 0~1 mM)
Cell (MCF7) 46
CA 405, 451 3.3 h 41.6 μM
(cp: 10 μM, 0~20 μM)
Cell (HeLa); zebrafish;
liver tissue
47
CHFA 360, 517 3 h 1.71 μM
(cp: 20 μM, 0~140 μM)
Cell (HeLa) 48
FATP1 390, 526 3 h 0.2 μM
(cp: 10 μM, 1~50 μM)
Cell (HEK293 and MCF7); liver tissue 49
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
Probe-1 400, 438/533 3 h 10 μM
(cp: 10 μM, 0~800 μM)
Cell (MCF7);
tissues of mice
50
TPNF 350, 510 3 h 5 μM
(cp: 20 μM, 0~500 μM)
Cell (HeLa);zebrafish 51
Naph-FA 395, 518 3 h 0.22 μM
(cp: 10 μM, 10~350 μM)
Cell (HeLa) 52
HBT-FA 350, 462/541 3 h 410 μM
(cp: 20 μM, 0~30 mM)
Calf serum;
formaldehyde gas
53
FA-P 350, 542 3 h 250 μM
(cp: 5 μM, 0~10 mM)
Bovine serum;
formaldehyde gas
54
B1 390, 472 2 h 0.107 μM
(cp: 10 μM, 0~10 μM)
Cell (HEK293T) 55
TPE-FA 335, 504 1 h 0.036 mg/m3
(0~1.6 mg/m3)
Formaldehyde gas 56
TP-FA 305, 442/488 ~1 h 51 μM
(cp: 40 μM, 0~5.6 mM)
Formaldehyde gas 57
PIPBA 350, 440/520 2 h 0.84 μM
(cp: 5 μM, 0~0.6 mM)
Cell (HeLa); zebrafish; tissues of mice 58
SO-GJP 366, 393/542 3 h 1.55 μM
(cp: 10 μM, 10~800 μM)
Cell (HeLa) Formaldehyde gas 59
AENO 390, 513 2.5 h 0.57 μM
(cp: 10 μM, 0~150 μM)
Cell (HeLa) Toffee 60
PBD-FA 470, 563 3 h 43.5/49.7 nM
(cp: 10 μM, 0~100/200~500 μM)
Cell (HeLa) 61
DPFP 455, 555 ~0.5 h 10 μM
(cp: 5 μM, 0~250 μM)
Cell (HeLa) 62
P-FA 450, 480/550 1.5 h 0.96 μM
(cp: 10 μM, 0~800 μM)
Cell (HeLa) 63
Probe 1 430, 492/552 1.5 h 0.58 μM
(cp: 10 μM, 0~500 μM)
Cell (MGC-803); zebrafish 64
PrAK 468, 510 1 h 25 μM
(cp: 0.5 μM, 0~2 mM)
Cell (HEK293T) 65
FATP-1 405, 565 3 h 0.3 μM
(cp: 10 μM, 0~2 mM)
Cell (CCK-8 and SH-SY5Y); epileptic mice 66
2 and 3 300, 545 1 h 100 nM
(cp: 100 μM, 0~50 μM)
Formaldehyde gas 67
②The methylenehydrazine
Probe 1 350, 467 0.9 μM
(cp: 10 μM, 0~130 μM)
Seafood 68
Na-FA 440, 543 0.5 h 0.71 μM Cell (HeLa);liver tissue Patient urine 69,110
1 and 2 430, 541 8 min 0.78 μM
(cp: 1 μM, 0~10 μM)
Cell (4T-1 and 3T3);
tumor tissue
70
Na-FA-Lyso 440, 543 0.5 h 5.02 μM
(cp: 5 μM, 0~50 μM)
Cell (HeLa) 71
Na-FA-ER 440, 543 ~0.5 h 5.24 μM
(cp: 5 μM, 0~50 μM)
Cell (HeLa) 72
Mito-FA-FP 440, 550 ~0.5 h 12.4 μM
(cp: 5 μM, 0~50 μM)
Cell (HeLa);
zebrafish
73
NaP 440, 550 ~0.5 h 1.62 μM
(cp: 5 μM, 0~10 μM)
Cell (HeLa) 74
RBNA 440, 534 5 min 0.21 μM
(cp: 10 μM, 0~120 μM)
Cell (HeLa);
zebrafish
Seafood 75
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
NpFA 325, 550 65 s 8.3 nM
(cp: 1 μM, 0~12 μM)
Onion tissue; zebrafish Seafood 76
NPz 380, 512 4 min 0.25 ppm
(cp: 10 μM, 0~1.6 mM)
Formaldehyde gas 77
NA3 400, 515 9 min 0.104 μM
(cp: 5 μM, 0~200 μM)
Formaldehyde gas 78
HyAN 300, 445 5 min 0.23 μM
(cp: 20 μM, 0~200 μM)
Cell (HeLa) 79
BHA 420, 466 0.5 h 0.18 μM
(cp: 10 μM, 0~100 μM)
Cell (HeLa) 80
Naph-1 405, 510 2 h 0.35 μM
(cp: 10 μM, 0~100 μM)
Cell (HeLa) 81
DTH 385, 508/534 ~0.2 h 0.29 μM
(cp: 15 μM, 0~20 μM)
Cell (HeLa) Formaldehyde gas 82
CmNp-CHO 385, 526/550 1 min 8.3 ± 0.3 nM
(cp: 5 μM, 0~10 μM)
Cell (HeLa);
onion tissue; zebrafish
Seafood 83
PDI-HY 540, 582 2 min 1.5 μM
(cp: 5 μM, 2~10 μM)
Cell (HeLa) 84
FAP-1 440, 553 1.5 h 0.76 μM
(cp: 5 μM, 0~80 μM)
Leather 85
PFM 393, 500 1 min 0.4 μM
(cp: 10 μM, 0~200 μM)
Cell (HBMECs);
brain slices of mice
86
ANI 440, 518 3 min 0.988 μM
(cp: 10 μM, 0~13 mM)
Cell (HeLa) 87
MPAB 365, 525 6 min 20 nM
(cp: 10 μM, 0~30 μM)
Cell (SMMC-7721) Formaldehyde gas 88
Probe 475, 530/600 5 min 120 nM
(cp: 10 μM, 0~60 μM)
Formaldehyde gas 89
FAP 470, 550 ~0.6 h 0.89 μg/L (cp: 12.5 μM, 0.015~0.8 μg/L) Formaldehyde gas 90
③The formimine and others
dRB-EDA 560, 590 1 h Cell (L929) 91
R6-FA 530, 560 10 s 0.77 μM
(cp: 10 μM, 2~10 μM)
Cell (HeLa) Mushroom;
formaldehyde gas
92
L 520, 620 5 min 8.3 μM
(cp: 5 μM, 0~5 mM)
Cell (L929) 93
BOD-NH2 495, 515 2 h 50 nM
(cp: 10 μM, 0~500 μM)
Cell (HEK293, etc);
organs; mice
94
AnB 520, 535 0.165 μM
(cp: 5 μM, 0~10 mM)
95
Bodipy-OPDA 482, 548 1.5 h 0.104 μM
(cp: 10 μM, 0~1 mM)
Cell (HeLa) Formaldehyde gas 96
HCy1 720/800, 820 30 s 3.25 μM
(cp: 10 μM, 0~1 mM)
Formaldehyde gas 97
1 365, 415 6 min 10 μM
(cp: 10 μM, 0~23.3 mM)
Seafood 98
CHP 363, 480 ~1 h 0.58 mM
(cp: 250 μM, 0~1.2 mM)
Formaldehyde gas 99
AIE-FA 370, 530 90 s 40 nM
(cp: 10 μM, 0.1~1 μM)
Cell (HeLa) 100
Probe 420, 485 0.5 h 0.24 mM/ 0.7 ppm
Formaldehyde gas (in
hospital)
101
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
NPC 485, 545 2 min 84 nM
(cp: 1 μM, 0~2.5 μM)
Cell (HADF) Plywood 102
DAB 345, 430 0.25 h 79 nM
(cp: 10 μM, 0~800 μM)
Cell
(HeLa, HepG2 and WI-38)
103
NP-Lyso 380, 444 1 h 0.27 μM
(cp: 10 μM, 0~200 μM)
Cell
(L929 and HeLa)
104
NP1/NP2 380, 450 1.6/1.8 μM
(cp: 10 μM, 0~100 μM /0~250 μM)
Cell (L929) 105
CaP 270, 370/630 1 min Cell (HeLa);zebrafish;
mice
106
DP 365, 550/635 1 min Cell (HeLa);
mice
RNA 107
NP 446, 540/645 5 min Cell (U251 and HeLa);
mice
108
ABTB 365, 460/525 0.5 h 432 nM
(cp: 10 μM, 0~50 μM)
Cell (L929);
brain of AD mice
109
Fig.1 Reaction mechanism of probe 1 for FA[38]
Fig.2 Chemical structures of probe 2, 3, and 4[39⇓~41]
Fig.3 Reaction mechanism of probe 5 for FA[42]
Fig.4 Reaction mechanism of probe 6 for FA[43]
Fig.5 Chemical structures of probe 7a~c and reaction mechanism for FA[44]
Fig.6 Reaction mechanism of probe 8 for FA[68]
Fig.7 Chemical structures of probe 9a~g and reaction mechanism for FA[69⇓⇓⇓⇓⇓⇓~76]
Fig.8 Reaction mechanism of probe 10 for aldehydes[91]
Fig.9 Reaction mechanism of probe 11 for FA[94]
Fig.10 Reaction mechanism of probe 12 for FA[97]
Fig.11 Reversible reaction mechanism of probe 13 for sulfur dioxide and FA[106]
Fig.12 Confocal fluorescence microscopy imaging of probe 1 and 2 in normal cells and cancer cells, respectivel[38,39]. Copyright 2015, American Chemical Society
Fig.13 Two-photon fluorescence imaging of probe 9b in liver tissues at different depths[69]. Copyright 2016, John Wiley and Sons
Fig.14 The ratiometric imaging of probe 6 for endogenous and exogenous FA in a plant root tip tissue[43]. Copyright 2017, Royal Society of Chemistry
Fig.15 The ratiometric imaging of probe 14 for endogenous and exogenous FA in zebrafish[58]. Copyright 2017, Royal Society of Chemistry
Fig.16 The near-infrared fluorescence imaging of probe 15 for exogenous FA in anesthetized mice[41]. Copyright 2018, John Wiley and Sons
Fig.17 Chemical structures of probe 8, 16 and 17[60,68,98]
Fig.18 Probe 18 compared with MBTH method to detect FA in mushroom[92]. Copyright 2016, Royal Society of Chemistry
Fig.19 Probe 18 loaded on the filter paper to detect FA gas and indoor air[92]. Copyright 2016, Royal Society of Chemistry
Fig.20 Probe 19 loaded on the TLC plate to detect FA gas[56]. Copyright 2018, American Chemical Society
[1]
Liu M, Wang Y, Wu Y Q, He Z Q, Wan H. J. Clean. Prod., 2018, 187: 361.

doi: 10.1016/j.jclepro.2018.03.239
[2]
Scheepers P, Graumans M, Beckmann G, van Dael M, Anzion R, Melissen M, Pinckaers N, van Wel L, de Werdt L, Gelsing V, van Linge A. Int. J. Environ. Res. Public Heal., 2018, 15(9): 2049.
[3]
Halla N, Fernandes I, Heleno S, Costa P, Boucherit-Otmani Z, Boucherit K, Rodrigues A, Ferreira I, Barreiro M. Molecules, 2018, 23(7): 1571.

doi: 10.3390/molecules23071571
[4]
Wang X C, Fu Y Q, Ren L F. Leather Sci. Eng., 2011, 21(3): 5.
(王学川, 伏芋桥, 任龙芳. 皮革科学与工程, 2011, 21(3): 5.).
[5]
Zhu X F, Ai B. Guangdong Chem. Ind., 2020, 47(8): 72.
(朱晓枫, 艾斌. 广东化工, 2020, 47(8): 72.).
[6]
Si Q B, Jin F L, Yang J T. New Chem. Materials, 2017(08): 125.
(佀庆波, 金范龙, 杨金潭. 化工新型材料, 2017(08): 125.).
[7]
Li P, Lu J L, Yang H Y, Zhang H. J. Capital Normal Univ., 2019, 40(3): 33.
(李平, 鲁俊良, 杨鸿燕, 张恒. 首都师范大学学报, 2019, 40(3): 33.).
[8]
Burgos-Barragan G, Wit N, Meiser J, Dingler F A, Pietzke M, Mulderrig L, Pontel L B, Rosado I V, Brewer T F, Cordell R L, Monks P S, Chang C J, Vazquez A, Patel K J. Nature, 2017, 548(7669): 549.

doi: 10.1038/nature23481
[9]
Ai L, Tan T, Tang Y H, Yang J, Cui D H, Wang R, Wang A B, Fei X C, Di Y L, Wang X M, Yu Y, Zhao S J, Wang W S, Bai S Y, Yang X, He R Q, Lin W Y, Han H B, Cai X, Tong Z Q. Commun. Biol., 2019, 2(1): 1.

doi: 10.1038/s42003-018-0242-0
[10]
Tong Z Q, Zhang J L, Luo W H, Wang W S, Li F X, Li H, Luo H J, Lu J, Zhou J N, Wan Y, He R Q. Neurobiol. Aging, 2011, 32(1): 31.

doi: 10.1016/j.neurobiolaging.2009.07.013
[11]
Kalasz H. Mini Rev. Med. Chem., 2003, 3(3): 175.

doi: 10.2174/1389557033488187
[12]
Tulpule K, Dringen R. J. Neurochem., 2013, 127(1): 7.

doi: 10.1111/jnc.12356 pmid: 23800365
[13]
Lai Y Q, Yu R, Hartwell H J, Moeller B C, Bodnar W M, Swenberg J A. Cancer Res., 2016, 76(9): 2652.

doi: 10.1158/0008-5472.CAN-15-2527
[14]
Kim K H, Jahan S A, Lee J T. J. Environ. Sci. Heal. C, 2011, 29(4): 277.

doi: 10.1080/10590501.2011.629972 pmid: 22107164
[15]
Mundt K A, Gentry P R, Dell L D, Rodricks J V, Boffetta P. Regul. Toxicol. Pharmacol., 2018, 92: 472.

doi: 10.1016/j.yrtph.2017.11.006
[16]
Kwon S C, Kim I, Song J, Park J. Ann. Occup. Environ. Med., 2018, 30: 5.

doi: 10.1186/s40557-018-0218-z
[17]
Szarvas T, Szatlóczky E, Volford J, Trézl L, Tyihák E, Rusznák I. J. Radioanal. Nucl. Chem., 1986, 106(6): 357.

doi: 10.1007/BF02163668
[18]
Chen L G, Jin H Y, Xu H Y, Sun L, Yu A M, Zhang H Q, Ding L. J. Agric. Food Chem., 2009, 57(10): 3989.

doi: 10.1021/jf900136x
[19]
Kato S, Burke P J, Koch T H, Bierbaum V M. Anal. Chem., 2001, 73(13): 2992.

pmid: 11467545
[20]
Ogunwale M A, Li M X, Ramakrishnam Raju M V, Chen Y Z, Nantz M H, Conklin D J, Fu X A. ACS Omega, 2017, 2(3): 1207.

doi: 10.1021/acsomega.6b00489 pmid: 28393137
[21]
Feng L, Musto C J, Suslick K S. J. Am. Chem. Soc., 2010, 132(12): 4046.

doi: 10.1021/ja910366p
[22]
Wang B H, Anslyn E V.Chemosensors: Principles, Strategies and Applications. Hoboken: John Wiley & Sons, Inc., 2011.
[23]
Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J, James T D. Chem. Soc. Rev., 2017, 46(23): 7105.

doi: 10.1039/C7CS00240H
[24]
Ning P, Wang W J, Chen M, Feng Y, Meng X M. Chin. Chem. Lett., 2017, 28(10): 1943.

doi: 10.1016/j.cclet.2017.09.026
[25]
Wen Y, Huo F J, Yin C X. Chin. Chemical Lett., 2019, 30(10): 1834.

doi: 10.1016/j.cclet.2019.07.006
[26]
Sun X L, James T D. Chem. Rev., 2015, 115(15): 8001.

doi: 10.1021/cr500562m
[27]
Luo X, Gu L Y, Qian X H, Yang Y J. Chem. Commun., 2020, 56(64): 9067.

doi: 10.1039/D0CC00542H
[28]
Sun X L, Lacina K, Ramsamy E C, Flower S E, Fossey J S, Qian X H, Anslyn E V, Bull S D, James T D. Chem. Sci., 2015, 6(5): 2963.

doi: 10.1039/C4SC03983A
[29]
Wu L L, Sedgwick A C, Sun X L, Bull S D, He X P, James T D. Acc. Chem. Res., 2019, 52(9): 2582.

doi: 10.1021/acs.accounts.9b00302
[30]
Ohata J, Bruemmer K J, Chang C J. Acc. Chem. Res., 2019, 52(10): 2841.

doi: 10.1021/acs.accounts.9b00386
[31]
Singha S, Jun Y W, Sarkar S, Ahn K H. Acc. Chem. Res., 2019, 52(9): 2571.

doi: 10.1021/acs.accounts.9b00314
[32]
Song H H, Zhou Y M, Xu C G, Wang X, Zhang J L, Wang Y, Liu X Q, Guo M X, Peng X J. Dyes Pigments, 2019, 162: 160.

doi: 10.1016/j.dyepig.2018.10.023
[33]
Ashokkumar P, Bell J, Buurman M, Rurack K. Sens. Actuat. B: Chem., 2018, 256: 609.

doi: 10.1016/j.snb.2017.09.201
[34]
Yang Y S, Wu Z W, Cheng F M, Zhang P S, Zeng R J. J. Hunan Univ. Sci. Technol., 2019, 34(3): 84.
(杨贇山, 吴振威, 成奋民, 张培盛, 曾荣今. 湖南科技大学学报, 2019, 34(3): 84.).
[35]
Xu Z Q, Chen J H, Hu L L, Tan Y, Liu S H, Yin J. Chin. Chem. Lett., 2017, 28(10): 1935.

doi: 10.1016/j.cclet.2017.07.018
[36]
Tang Y H, Ma Y Y, Yin J L, Lin W Y. Chem. Soc. Rev., 2019, 48(15): 4036.

doi: 10.1039/C8CS00956B
[37]
Wu S P, Ruan S S, Song H H. J. Northwest Univ., 2019, 49(4): 538.
(吴少平, 阮淞淞, 宋欢欢. 西北大学学报, 2019, 49(4): 538.).
[38]
Roth A, Li H, Anorma C, Chan J. J. Am. Chem. Soc., 2015, 137(34): 10890.

doi: 10.1021/jacs.5b05339
[39]
Brewer T F, Chang C J. J. Am. Chem. Soc., 2015, 137(34): 10886.

doi: 10.1021/jacs.5b05340
[40]
Bruemmer K J, Walvoord R R, Brewer T F, Burgos-Barragan G, Wit N, Pontel L B, Patel K J, Chang C J. J. Am. Chem. Soc., 2017, 139(15): 5338.

doi: 10.1021/jacs.6b12460 pmid: 28375637
[41]
Bruemmer K J, Green O, Su T A, Shabat D, Chang C J. Angew. Chem. Int. Ed., 2018, 57(25): 7508.

doi: 10.1002/anie.201802143
[42]
He L W, Yang X L, Liu Y, Kong X Q, Lin W Y. Chem. Commun., 2016, 52(21): 4029.

doi: 10.1039/C5CC09796G
[43]
Li Z, Xu Y Q, Zhu H L, Qian Y. Chem. Sci., 2017, 8(8): 5616.

doi: 10.1039/C7SC00373K
[44]
Brewer T F, Burgos-Barragan G, Wit N, Patel K J, Chang C J. Chem. Sci., 2017, 8(5): 4073.

doi: 10.1039/C7SC00748E
[45]
Xie X L, Tang F Y, Shangguan X Y, Che S Y, Niu J Y, Xiao Y S, Wang X, Tang B. Chem. Commun., 2017, 53(48): 6520.

doi: 10.1039/C7CC03050A
[46]
Yang H, Fang G M, Guo M M, Ning P, Feng Y, Yu H Z, Meng X M. Sens. Actuat. B: Chem., 2018, 270: 318.

doi: 10.1016/j.snb.2018.05.069
[47]
Li M, Kong X Q, Dong B L, Zhang N, Song W H, Lu Y R, Lin W Y. New J. Chem., 2019, 43(30): 11844.

doi: 10.1039/C9NJ02352F
[48]
Wang Y L, Chen Y F, Huang Y, Zhang Q, Zhang Y C, Li J W, Jia C M. Anal. Methods, 2019, 11(17): 2311.

doi: 10.1039/C9AY00281B
[49]
Li J B, Wang Q Q, Yuan L, Wu Y X, Hu X X, Zhang X B, Tan W H. Anal., 2016, 141(11): 3395.

doi: 10.1039/C6AN00473C
[50]
Singha S, Jun Y W, Bae J, Ahn K H. Anal. Chem., 2017, 89(6): 3724.

doi: 10.1021/acs.analchem.7b00044
[51]
Xie Z D, Ge J Y, Zhang H T, Bai T W, He S Y, Ling J, Sun H Y, Zhu Q. Sens. Actuat. B: Chem., 2017, 241: 1050.

doi: 10.1016/j.snb.2016.10.039
[52]
Yang X L, He L W, Xu K X, Yang Y Z, Lin W Y. Anal. Methods, 2018, 10(25): 2963.

doi: 10.1039/C8AY00849C
[53]
Zhou Y, Yan J Y, Zhang N N, Li D J, Xiao S Z, Zheng K B. Sens. Actuat. B: Chem., 2018, 258: 156.

doi: 10.1016/j.snb.2017.11.043
[54]
Chen H, Zhou Y, Zheng K B, Zhang N N, Tan X C, Chen W F. ChemistrySelect, 2019, 4(33): 9622.

doi: 10.1002/slct.201902120
[55]
Zhang D, Liu D M, Li M, Yang Y Q, Wang Y, Yin H Y, Liu J H, Jia B, Wu X J. Anal. Chimica Acta, 2018, 1033: 180.

doi: 10.1016/j.aca.2018.05.065
[56]
Zhao X J, Ji C D, Ma L, Wu Z, Cheng W, Yin M Z. ACS Sens., 2018, 3(10): 2112.

doi: 10.1021/acssensors.8b00664
[57]
Zhai B B, Zhang Y Q, Hu Z W, He J P, Liu J, Gao C, Li W. Dyes Pigments, 2019, 171: 107743.

doi: 10.1016/j.dyepig.2019.107743
[58]
Dou K, Chen G, Yu F B, Liu Y X, Chen L X, Cao Z P, Chen T, Li Y L, You J M. Chem. Sci., 2017, 8(11): 7851.

doi: 10.1039/C7SC03719H
[59]
Gu J P, Li X Q, Zhou G F, Liu W Q, Gao J W, Wang Q M. J. Hazard. Mater., 2020, 386: 121883.

doi: 10.1016/j.jhazmat.2019.121883
[60]
Xu J C, Zhang Y, Zeng L T, Liu J B, Kinsella J M, Sheng R L. Talanta, 2016, 160: 645.

doi: 10.1016/j.talanta.2016.08.010
[61]
Yang X L, He L W, Xu K X, Yang Y Z, Lin W Y. New J. Chem., 2018, 42(15): 12361.

doi: 10.1039/C8NJ02467G
[62]
Xie Z D, Yin B, Shen J J, Hong D Q, Zhu L Q, Ge J Y, Zhu Q. Org. Biomol. Chem., 2018, 16(25): 4628.

doi: 10.1039/C8OB00989A
[63]
Ji C D, Ma L, Chen H T, Cai Y, Zhao X J, Yin M Z. ACS Appl. Bio Mater., 2019, 2(1): 555.

doi: 10.1021/acsabm.8b00699
[64]
Hao Y Q, Zhang Y T, Zhang A M, Sun Q L, Zhu J, Qu P, Chen S, Xu M T. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 229: 117988.

doi: 10.1016/j.saa.2019.117988
[65]
Zhang Y Q, Du Y M, Li M J, Zhang D, Xiang Z, Peng T. Angew. Chemie, 2020, 132 (38): 16494.
[66]
Chen J, Shao C W, Wang X A, Gu J, Zhu H L, Qian Y. Chem. Commun., 2020, 56(27): 3871.

doi: 10.1039/D0CC00676A
[67]
Bhowmik D, Dutta A, Maitra U. Chem. Commun., 2020, 56(80): 12061.

doi: 10.1039/D0CC04183A
[68]
Liu C X, Shi C X, Li H X, Du W W, Li Z X, Wei L H, Yu M M. Sens. Actuat. B: Chem., 2015, 219: 185.

doi: 10.1016/j.snb.2015.04.131
[69]
Tang Y H, Kong X Q, Xu A, Dong B L, Lin W Y. Angew. Chem. Int. Ed., 2016, 55(10): 3356.

doi: 10.1002/anie.201510373
[70]
Lee Y H, Tang Y H, Verwilst P, Lin W Y, Kim J S. Chem. Commun., 2016, 52(75): 11247.

doi: 10.1039/C6CC06158C
[71]
Tang Y H, Kong X Q, Liu Z R, Xu A, Lin W Y. Anal. Chem., 2016, 88(19): 9359.

doi: 10.1021/acs.analchem.6b02879
[72]
Tang Y H, Ma Y Y, Xu A, Xu G P, Lin W Y. Methods Appl. Fluoresc., 2017, 5(2): 024005.

doi: 10.1088/2050-6120/aa6773
[73]
Xin F Y, Tian Y, Gao C C, Guo B P, Wu Y L, Zhao J F, Jing J, Zhang X L. Anal., 2019, 144(7): 2297.

doi: 10.1039/C8AN02108B
[74]
Xin F Y, Tian Y, Jing J, Zhang X L. Anal. Methods, 2019, 11(23): 2969.

doi: 10.1039/C9AY00553F
[75]
Jiang L R, Hu Q, Chen T H, Min D Y, Yuan H Q, Bao G M. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 228: 117789.

doi: 10.1016/j.saa.2019.117789
[76]
Yuan G Q, Ding H Y, Peng L P, Zhou L Y, Lin Q L. Food Chem., 2020, 331: 127221.

doi: 10.1016/j.foodchem.2020.127221
[77]
Dong B L, Song X Z, Tang Y H, Lin W Y. Sens. Actuat. B: Chem., 2016, 222: 325.

doi: 10.1016/j.snb.2015.07.039
[78]
Liu C, Cheng A W, Xia X K, Liu Y F, He S W, Guo X, Sun J Y. Anal. Methods, 2016, 8(13): 2764.

doi: 10.1039/C6AY00108D
[79]
Han B C, Sun J, Chen K, Chen Z Y, Huang M H, Gao Z Z, Hou X F. Tetrahedron, 2018, 74(50): 7193.

doi: 10.1016/j.tet.2018.10.051
[80]
Chen H W, Li H, Song Q H. ACS Omega, 2018, 3(12): 18189.

doi: 10.1021/acsomega.8b02590
[81]
Chen W, Yang M, Luo N, Wang F L, Yu R Q, Jiang J H. Anal., 2019, 144(23): 6922.

doi: 10.1039/C9AN01778J
[82]
Cao Y P, Teng Z D, Zhang J, Cao T, Qian J, Wang J M, Qin W W, Guo H C. Sens. Actuat. B: Chem., 2020, 320: 128354.

doi: 10.1016/j.snb.2020.128354
[83]
Ding H Y, Yuan G Q, Peng L P, Zhou L Y, Lin Q L. J. Agric. Food Chem., 2020, 68(11): 3670.

doi: 10.1021/acs.jafc.9b08114
[84]
Cheng H R, Zou L W, Yang L, Wang Z G, Lu X J. ChemistrySelect, 2019, 4(1): 432.

doi: 10.1002/slct.201803673
[85]
Wang Y S, Sun X L, Han Q X, James T D, Wang X C. Dyes Pigments, 2021, 188: 109175.

doi: 10.1016/j.dyepig.2021.109175
[86]
Liang X G, Chen B, Shao L X, Cheng J, Huang M Z, Chen Y, Hu Y Z, Han Y F, Han F, Li X. Theranostics, 2017, 7(8): 2305.

doi: 10.7150/thno.19554
[87]
Wu F, Zhang Y, Huang L, Xu D, Wang H Y. Anal. Methods, 2017, 9(37): 5472.

doi: 10.1039/C7AY01786C
[88]
Bi A Y, Gao T, Cao X Z, Dong J, Liu M, Ding N H, Liao W H, Zeng W B. Sens. Actuat. B: Chem., 2018, 255: 3292.

doi: 10.1016/j.snb.2017.09.156
[89]
Chen J, Chen K, Han B C, Xue Y T, Chen W J, Gao Z Z, Hou X F. Tetrahedron, 2020, 76(50): 131681.

doi: 10.1016/j.tet.2020.131681
[90]
Ge H W, Liu G Q, Yin R H, Sun Z L, Chen H X, Yu L, Su P C, Sun M T, Alamry K A, Marwani H M, Wang S H. Microchem. J., 2020, 156: 104793.

doi: 10.1016/j.microc.2020.104793
[91]
Li Z, Xue Z W, Wu Z S, Han J H, Han S F. Org. Biomol. Chem., 2011, 9(22): 7652.

doi: 10.1039/c1ob06448g
[92]
He L W, Yang X L, Ren M G, Kong X Q, Liu Y, Lin W Y. Chem. Commun., 2016, 52(61): 9582.

doi: 10.1039/C6CC04254F
[93]
Liu C, Jiao X J, He S, Zhao L C, Zeng X S. Dyes Pigments, 2017, 138: 23.

doi: 10.1016/j.dyepig.2016.11.020
[94]
Song X Y, Han X Y, Yu F B, Zhang J J, Chen L X, Lv C. Anal., 2018, 143(2): 429.

doi: 10.1039/C7AN01488K
[95]
Song H, Rajendiran S, Kim N, Jeong S K, Koo E, Park G, Thangadurai T D, Yoon S. Tetrahedron Lett., 2012, 53(37): 4913.

doi: 10.1016/j.tetlet.2012.06.117
[96]
Cao T, Gong D Y, Han S C, Iqbal A, Qian J, Liu W, Qin W W, Guo H C. Talanta, 2018, 189: 274.

doi: 10.1016/j.talanta.2018.07.001
[97]
Wei K, Ma L, Ma G P, Ji C D, Yin M Z. Dyes Pigments, 2019, 165: 294.

doi: 10.1016/j.dyepig.2019.02.026
[98]
Zhou W, Dong H, Yan H, Shi C X, Yu M M, Wei L H, Li Z X. Sens. Actuat. B: Chem., 2015, 209: 664.

doi: 10.1016/j.snb.2014.12.043
[99]
Hidayah N, Purwono B, Nurohmah B A, Pranowo H D. Indones. J. Chem., 2019, 19(4): 1074.

doi: 10.22146/ijc.44028
[100]
Chen W, Han J Y, Wang X N, Liu X J, Liu F, Wang F L, Yu R Q, Jiang J H. ACS Omega, 2018, 3(10): 14417.

doi: 10.1021/acsomega.8b01660 pmid: 30411068
[101]
Martínez-Aquino C, Costero A, Gil S, Gaviña P. Molecules, 2018, 23(10): 2646.

doi: 10.3390/molecules23102646
[102]
Gangopadhyay A, Maiti K, Ali S S, Pramanik A K, Guria U N, Samanta S K, Sarkar R, Datta P, Mahapatra A K. Anal. Methods, 2018, 10(24): 2888.

doi: 10.1039/C8AY00514A
[103]
Jana A, Joseph M M, Munan S, K S, Maiti K K, Samanta A. J. Photochem. Photobiol. B: Biol., 2021, 214: 112091.

doi: 10.1016/j.jphotobiol.2020.112091
[104]
Cai S T, Liu C, Gong J, He S, Zhao L C, Zeng X S. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2021, 245: 118949.

doi: 10.1016/j.saa.2020.118949
[105]
Cai S T, Liu C, Jiao X J, Zhao L C, Zeng X S. Tetrahedron, 2020, 76(45): 131617.

doi: 10.1016/j.tet.2020.131617
[106]
Ma Y Y, Tang Y H, Zhao Y P, Lin W Y. Anal. Chem., 2019, 91(16): 10723.

doi: 10.1021/acs.analchem.9b02119
[107]
Ma Y Y, Gao W J, Zhu L L, Zhao Y P, Lin W Y. Anal., 2020, 145(5): 1865.

doi: 10.1039/C9AN02454A
[108]
Ma Y Y, Gao W J, Zhu L L, Zhao Y P, Lin W Y. Chem. Commun., 2019, 55(75): 11263.

doi: 10.1039/C9CC04411F
[109]
Bi A Y, Liu M, Huang S, Zheng F, Ding J P, Wu J Y, Tang G, Zeng W B. Chem. Commun., 2021, 57(28): 3496.

doi: 10.1039/D1CC00429H
[110]
Ai L, Wang J, Li T T, Zhao C, Tang Y H, Wang W S, Zhao S J, Jiang W J, Di Y L, Fei X C, Luo H J, Li H, Luo W H, Yu Y, Lin W Y, He R Q, Tong Z Q. Ann. Clin. Biochem.: Int. J. Lab. Med., 2019, 56(2): 210.

doi: 10.1177/0004563218812986 pmid: 30373389
[1] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[2] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[3] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[4] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[5] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[6] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[7] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[10] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[11] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[12] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[13] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[14] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[15] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.