中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 954-967 DOI: 10.7536/PC230102 Previous Articles   Next Articles

• Review •

Condensed Matter Chemistry: The Defect Engineering of Porous Materials

Yuenan Zheng1,2, Jiaqi Yang1, Zhen-An Qiao1()   

  1. 1 State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun,Jilin 130031, China
    2 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian,Liaoning 116024, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: qiaozhenan@jlu.edu.cn
  • Supported by:
    The 1000 Talents Plan for Young Talents and the National Natural Science Foundation of China(21671073); The 1000 Talents Plan for Young Talents and the National Natural Science Foundation of China(21621001)
Richhtml ( 21 ) PDF ( 328 ) Cited
Export

EndNote

Ris

BibTeX

Condensed matter chemistry is mainly concerned with the multilevel structure, chemical properties and chemical reactions of various states of materials, and frontier scientific issues in condensed matter construction chemistry. Porous materials with high surface area and adjustable pore structure, show great potential in a variety of applications. With the continuous exploration of defect engineering strategies for porous materials, the research scope of condensed matter chemistry has been greatly expanded. In the construction of defect sites and the functionalization application of porous materials, condensed matter chemistry permeates every process. The formation and regulation of phase, pore structure and defect sites involved in the synthesis of defective porous materials and the effective transformation of guest species on surface active sites in performance application, which fully reflects various chemical reactions, surface and interface interactions between the microstructure of porous materials and different species in condensed matter chemistry. This paper takes defective porous materials as the research object to discuss, including the suitable inorganic porous materials for defect engineering strategies, the types of defect structures in porous materials, the construction and regulation of defect sites of porous materials in condensed matter chemistry, the characterization of defect sites in porous materials, and applications of defect-rich porous materials in the field of energy storage and catalysis. In is desired to deepen the understanding of porous material defect engineering from the perspective of condensed matter chemistry, and it is expected to further promote the development of functional porous materials under the guidance of condensed matter chemistry.

Contents

1 Introduction

2 Porous materials suitable for defect engineering

3 Defect types of porous materials

3.1 Vacancy defect

3.2 Doping defect

3.3 Other type defects

4 Construction methods for defect engineering of porous materials

4.1 In-situ synthesis method

4.2 High temperature heat treatment method

4.3 Chemical reduction method

4.4 Vacuum activation method

4.5 Other methods

5 Characterization method of defect structure in porous materials

5.1 Micromorphology characterization

5.2 X-ray photoelectron spectroscopy

5.3 Raman spectrum

5.4 Electron paramagnetic resonance spectroscopy

5.5 Synchrotron radiation X-ray fine structure spectrum

6 Applications of defect-rich porous materials

6.1 Effect of defect engineering on porous materials

6.2 Application of defect-rich porous materials in catalysis and energy fields

7 Conclusion and perspective

Fig.4 (a) AFM image (inset is the height profiles of lines 1 and 2), (b) TEM image (inset is HRTEM image), and (c) false-color image of the HRTEM image of Vs-M-ZnIn2S4 nanosheets. (d) TEM image, (e) false-color image of the HRTEM image, and (f) HRTEM image of MoS2QDs@Vs-M-ZnIn2S4 nanosheets[78]
Fig.1 Schematic diagram of microstructure of porous carbon materials doped with differentheteroatoms[51]
Fig.2 Heteroatom-doped porous carbon materials were synthesized by polymer derivation method[51]
Fig.3 (a) Schematic diagram of the preparation of catalysts by plasma engraving. (b) Electrocatalytic performance of Co-MOF-74 with different microstructures[76]
Fig.5 The holey lamellar high entropy oxide material is prepared by an anchoring and merging process, which exhibits ultra-high catalytic activity for solvent-free oxidation of benzyl alcohol[79]
Fig.6 (a) CV curves at various scan rates, (b) gravimetric capacitances, (c) gravimetric capacitance and specific surface area compared with the reported porous carbons (the dotted line is the specific surface area capacitance (Cs)), (d) volumetric capacitances at the mass loadings of 2 and 10 mg·cm-2 compared with commercial activated carbon YP-50F, and (e) cycling performance of BSG at 5 A·g-1[84]
Fig.7 (a) Schematic illustration of the synthetic procedure for the development of GO@NMC-1. (b) Schematic illustration of the electrochemical double-layer capacitance (EDLC) and pseudocapacitance of GO@NMC. (c) Galvanostatic charges/discharge curves of GO@NMC-1 at different constant currents[88]
[1]
Yu J H, Xu R R. Acc. Chem. Res., 2010, 43(9): 1195.

doi: 10.1021/ar900293m
[2]
Yu J H, Corma A, Li Y. Adv. Mater., 2020, 32(44): 2006277.

doi: 10.1002/adma.v32.44
[3]
Li W, Liu J, Zhao D Y. Nat. Rev. Mater., 2016, 1(6): 16023.

doi: 10.1038/natrevmats.2016.23
[4]
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Chem. Soc. Rev., 2016, 45(12): 3479.

doi: 10.1039/C6CS00135A
[5]
Wang C, Liu D M, Lin W B. J. Am. Chem. Soc., 2013, 135(36): 13222.

doi: 10.1021/ja308229p
[6]
Xu R R. Nat. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155
[7]
Xu R R, Wang K, Chen G, Yan W F. Natl Sci Rev, 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128
[8]
Corma A, Díaz-Cabañas M J, Martínez-Triguero J, Rey F, Rius J. Nature, 2002, 418(6897): 514.

doi: 10.1038/nature00924
[9]
Corma A, Díaz-Cabañas M J, Jordá J L, Martínez C, Moliner M. Nature, 2006, 443(7113): 842.

doi: 10.1038/nature05238
[10]
Chen Z Y, Wu S Q, Ma J Y, Mine S, Toyao T, Matsuoka M, Wang L Z, Zhang J L. Angew. Chem. Int. Ed., 2021, 60(21): 11901.

doi: 10.1002/anie.v60.21
[11]
Qiu B, Jiang F, Lu W D, Yan B, Li W C, Zhao Z C, Lu A H. J. Catal., 2020, 385: 176.

doi: 10.1016/j.jcat.2020.03.021
[12]
Sun Q M, Wang N, Yu J H. Adv. Mater., 2021, 33(51): 2104442.

doi: 10.1002/adma.v33.51
[13]
Xie Z Q, Xu W W, Cui X D, Wang Y. ChemSusChem, 2017, 10(8): 1645.

doi: 10.1002/cssc.201601855
[14]
Ananias D, Brites C D S, Carlos L D, Rocha J. Eur. J. Inorg. Chem., 2016, 13/14: 1967.
[15]
Wang C, Liu D, Lin W B. J. Am. Chem. Soc., 2013, 135: 13222.

doi: 10.1021/ja308229p
[16]
Ray Chowdhuri A, Bhattacharya D, Sahu S K. Dalton Trans., 2016, 45(7): 2963.

doi: 10.1039/C5DT03736K
[17]
Ren J W, Ledwaba M, Musyoka N M, Langmi H W, Mathe M, Liao S J, Pang W. Coord. Chem. Rev., 2017, 349: 169.

doi: 10.1016/j.ccr.2017.08.017
[18]
Pang Q Q, Yang L Y, Li Q W. Small Struct., 2022, 3(5): 2100203.

doi: 10.1002/sstr.v3.5
[19]
Cliffe M J, Wan W, Zou X D, Chater P A, Kleppe A K, Tucker M G, Wilhelm H, Funnell N P, Coudert F X, Goodwin A L. Nat. Commun., 2014, 5: 4176.

doi: 10.1038/ncomms5176
[20]
Furukawa H, Müller U, Yaghi O M. Angew. Chem. Int. Ed., 2015, 54(11): 3417.

doi: 10.1002/anie.201410252
[21]
Bloch E D, Queen W L, Hudson M R, Mason J A, Xiao D J, Murray L J, Flacau R, Brown C M, Long J R. Angew. Chem. Int. Ed., 2016, 55(30): 8605.

doi: 10.1002/anie.201602950 pmid: 27249784
[22]
Fei H H, Pullen S, Wagner A, Ott S, Cohen S M. Chem. Commun., 2015, 51(1): 66.

doi: 10.1039/C4CC08218D
[23]
Yang T Y, Ling H J, Lamonier J F, Jaroniec M, Huang J, Monteiro M J, Liu J. NPG Asia Mater., 2016, 8(2): e240.

doi: 10.1038/am.2015.145
[24]
Liu D W, Xue N, Wei L J, Zhang Y, Qin Z F, Li X K, Binks B P, Yang H Q. Angew. Chem. Int. Ed., 2018, 57(34): 10899.

doi: 10.1002/anie.201805022
[25]
Zhou L B, Jing Y, Liu Y B, Liu Z H, Gao D Y, Chen H B, Song W Y, Wang T, Fang X F, Qin W P, Yuan Z, Dai S, Qiao Z A, Wu C F. Theranostics, 2018, 8(3): 663.

doi: 10.7150/thno.21927
[26]
Liu J W, Ma Q L, Huang Z Q, Liu G G, Zhang H. Adv. Mater., 2019, 31(9): 1800696.

doi: 10.1002/adma.v31.9
[27]
Gao S, Sun Z T, Liu W, Jiao X C, Zu X L, Hu Q T, Sun Y F, Yao T, Zhang W H, Wei S Q, Xie Y. Nat. Commun., 2017, 8: 14503.

doi: 10.1038/ncomms14503
[28]
Wu J J, Sharifi T, Gao Y, Zhang T Y, Ajayan P M. Adv. Mater., 2019, 31(13): 1804257.

doi: 10.1002/adma.v31.13
[29]
Wang Y F, Han P, Lv X M, Zhang L J, Zheng G F. Joule, 2018, 2(12): 2551.

doi: 10.1016/j.joule.2018.09.021
[30]
Dong Y, Zhang Q J, Tian Z Q, Li B R, Yan W S, Wang S, Jiang K M, Su J W, Oloman C W, Gyenge E L, Ge R X, Lu Z Y, Ji X L, Chen L. Adv. Mater., 2020, 32(28): 2001300.

doi: 10.1002/adma.v32.28
[31]
Zheng Y N, Yi Y K, Fan M H, Liu H Y, Li X, Zhang R, Li M T, Qiao Z A. Energy Storage Mater., 2019, 23: 678.
[32]
Liu Y L, Zhang P F, Liu J M, Wang T, Huo Q S, Yang L, Sun L, Qiao Z A, Dai S. Chem. Mater., 2018, 30(23): 8579.

doi: 10.1021/acs.chemmater.8b03624
[33]
Zheng Y N, Fan M H, Li K Q, Zhang R, Li X F, Zhang L, Qiao Z A. Catal. Sci. Technol., 2020, 10(9): 2882.

doi: 10.1039/D0CY00303D
[34]
Yan D F, Li Y X, Huo J, Chen R, Dai L M, Wang S Y. Adv. Mater., 2017, 29(48): 1606459.

doi: 10.1002/adma.v29.48
[35]
Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B S, Zhang Q, Titirici M M, Wei F. Adv. Mater., 2016, 28(32): 6845.

doi: 10.1002/adma.201601406
[36]
Tong X J, Cao X, Han T, Cheong W C, Lin R, Chen Z, Wang D S, Chen C, Peng Q, Li Y D. Nano Res., 2019, 12(7): 1625.

doi: 10.1007/s12274-018-2404-x
[37]
Zhang N, Jalil A, Wu D X, Chen S M, Liu Y F, Gao C, Ye W, Qi Z M, Ju H X, Wang C M, Wu X J, Song L, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2018, 140(30): 9434.

doi: 10.1021/jacs.8b02076 pmid: 29975522
[38]
Ren P, Song M, Lee J, Zheng J, Lu Z X, Engelhard M, Yang X C, Li X L, Kisailus D, Li D S. Adv. Mater. Interfaces, 2019, 6(17): 1901121.

doi: 10.1002/admi.v6.17
[39]
Liu S B, Xiao J, Lu xue feng, Wang J, Wang X, David Lou X W. Angew. Chem. Int. Ed., 2019, 58(25): 8499.

doi: 10.1002/anie.v58.25
[40]
Lin L X, Huang J T, Li X F, Abass M A, Zhang S W. Appl. Catal. B Environ., 2017, 203: 615.

doi: 10.1016/j.apcatb.2016.10.054
[41]
Ye K H, Li K S, Lu Y R, Guo Z J, Ni N, Liu H, Huang Y C, Ji H B, Wang P S. Trac Trends Anal. Chem., 2019, 116: 102.

doi: 10.1016/j.trac.2019.05.002
[42]
Lei F C, Sun Y F, Liu K T, Gao S, Liang L, Pan B C, Xie Y. J. Am. Chem. Soc., 2014, 136(19): 6826.

doi: 10.1021/ja501866r
[43]
Xiong J, Di J, Xia J X, Zhu W S, Li H M. Adv. Funct. Mater., 2018, 28(39): 1801983.

doi: 10.1002/adfm.v28.39
[44]
Liang Q H, Li Z, Huang Z H, Kang F Y, Yang Q H. Adv. Funct. Mater., 2015, 25(44): 6885.

doi: 10.1002/adfm.201503221
[45]
Song Y J, Wang H, Xiong J H, Guo B B, Liang S J, Wu L. Appl. Catal. B Environ., 2018, 221: 473.

doi: 10.1016/j.apcatb.2017.09.009
[46]
Zhang G, Hu Z Y, Sun M, Liu Y, Liu L M, Liu H J, Huang C P, Qu J H, Li J H. Adv. Funct. Mater., 2015, 25(24): 3726.

doi: 10.1002/adfm.v25.24
[47]
Guan M L, Xiao C, Zhang J, Fan S J, An R, Cheng Q M, Xie J F, Zhou M, Ye B J, Xie Y. J. Am. Chem. Soc., 2013, 135(28): 10411.

doi: 10.1021/ja402956f
[48]
Guo S Q, Zhu X H, Zhang H J, Gu B C, Chen W, Liu L, Alvarez P J J. Environ. Sci. Technol., 2018, 52(12): 6872.

doi: 10.1021/acs.est.8b00352
[49]
McFarland E W, Metiu H. Chem. Rev., 2013, 113(6): 4391.

doi: 10.1021/cr300418s pmid: 23350590
[50]
Chen N N, Zhang W B, Zeng J C, He L Q, Li D, Gao Q S. Appl. Catal. B Environ., 2020, 268: 118441.

doi: 10.1016/j.apcatb.2019.118441
[51]
Wang H, Shao Y, Mei S L, Lu Y, Zhang M, Sun J K, Matyjaszewski K, Antonietti M, Yuan J Y. Chem. Rev., 2020, 120(17): 9363.

doi: 10.1021/acs.chemrev.0c00080
[52]
Kang Y Y, Yang Y Q, Yin L C, Kang X D, Liu G, Cheng H M. Adv. Mater., 2015, 27(31): 4572.

doi: 10.1002/adma.v27.31
[53]
Li Z, Xiao C, Zhu H, Xie Y. J. Am. Chem. Soc., 2016, 138(45): 14810.

doi: 10.1021/jacs.6b08748
[54]
Zhao Y F, Li B, Wang Q, Gao W, Wang C J, Wei M, Evans D G, Duan X, O'Hare D. Chem. Sci., 2014, 5(3): 951.

doi: 10.1039/C3SC52546E
[55]
Shao M, Liu J J, Ding W J, Wang J Y, Dong F, Zhang J T. J. Mater. Chem. C, 2020, 8(2): 487.

doi: 10.1039/C9TC05705F
[56]
Liu A P, Zhao L, Zhang J M, Lin L X, Wu H P. ACS Appl. Mater. Interfaces, 2016, 8(38): 25210.

doi: 10.1021/acsami.6b06031
[57]
Wang T, Sun Y, Zhang L L, Li K Q, Yi Y K, Song S Y, Li M T, Qiao Z A, Dai S. Adv. Mater., 2019, 31(16): 1807876.

doi: 10.1002/adma.v31.16
[58]
Chen X B, Liu L, Yu P Y, Mao S S. Science, 2011, 331(6018): 746.

doi: 10.1126/science.1200448
[59]
Ding Y, Li Y C, Wang L, Han X H, Zhu L J, Wang S R. Fuel, 2021, 304: 121449.

doi: 10.1016/j.fuel.2021.121449
[60]
Bi W T, Ye C M, Xiao C, Tong W, Zhang X D, Shao W, Xie Y. Small, 2014, 10(14): 2820.

doi: 10.1002/smll.201303548
[61]
Xing M Y, Zhang J L, Chen F, Tian B Z. Chem. Commun., 2011, 47(17): 4947.

doi: 10.1039/c1cc10537j
[62]
Chu H Q, Zhang D, Feng P P, Gu Y L, Chen P, Pan K, Xie H J, Yang M. Nanoscale, 2021, 13(46): 19518.

doi: 10.1039/D1NR05747B
[63]
Zhao K, Zhang L Z, Wang J J, Li Q X, He W W, Yin J J. J. Am. Chem. Soc., 2013, 135(42): 15750.

doi: 10.1021/ja4092903 pmid: 24116848
[64]
Wei S M, Jiang X X, He C Y, Wang S Y, Hu Q, Chai X Y, Ren X Z, Yang H P, He C X. J. Mater. Chem. A, 2022, 10(11): 6187.

doi: 10.1039/D1TA08494A
[65]
Ren P, Song M, Lee J, Zheng J, Lu Z X, Engelhard M, Yang X C, Li X L, Kisailus D, Li D S. Adv. Mater. Interfaces, 2019, 6(17): 1901121.

doi: 10.1002/admi.v6.17
[66]
Yan X C, Jia Y, Odedairo T, Zhao X J, Jin Z, Zhu Z H, Yao X D. Chem. Commun., 2016, 52(52): 8156.

doi: 10.1039/C6CC03687B
[67]
Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov K S, Casiraghi C. Nano Lett., 2012, 12(8): 3925.

doi: 10.1021/nl300901a pmid: 22764888
[68]
Huang J T, Lin Y M, Ji M W, Cong G T, Liu H C, Yu J L, Yang B, Li C H, Zhu C Z, Xu J. Appl. Surf. Sci., 2020, 504: 144398.

doi: 10.1016/j.apsusc.2019.144398
[69]
Glass D, CortÉs E, Ben-Jaber S, Brick T, Peveler W J, Blackman C S, Howle C R, Quesada-Cabrera R, Parkin I P, Maier S A. Adv. Sci., 2019, 6(22): 1901841.

doi: 10.1002/advs.v6.22
[70]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058
[71]
Pan L, Ai M H, Huang C Y, Yin L, Liu X, Zhang R R, Wang S B, Jiang Z, Zhang X W, Zou J J, Mi W B. Nat. Commun., 2020, 11: 418.

doi: 10.1038/s41467-020-14333-w
[72]
Zhuang G X, Chen Y W, Zhuang Z Y, Yu Y, Yu J G. Sci. China Mater., 2020, 63(11): 2089.

doi: 10.1007/s40843-020-1305-6
[73]
Asefa T. Acc. Chem. Res., 2016, 49(9): 1873.

doi: 10.1021/acs.accounts.6b00317
[74]
Dilpazir S, Liu R J, Yuan M L, Imran M, Liu Z J, Xie Y B, Zhao H, Zhang G J. J. Mater. Chem. A, 2020, 8(21): 10865.

doi: 10.1039/D0TA02411B
[75]
Wang X M, Liu M, Yu H C, Zhang H, Yan S H, Zhang C, Liu S X. J. Mater. Chem. A, 2020, 8(43): 22886.

doi: 10.1039/D0TA08460C
[76]
Jiang Z R, Ge L, Zhuang L Z, Li M R, Wang Z K, Zhu Z H. ACS Appl. Mater. Interfaces, 2019, 11(47): 44300.

doi: 10.1021/acsami.9b15794
[77]
Liu Y W, Liang L, Xiao C, Hua X M, Li Z, Pan B C, Xie Y. Adv. Energy Mater., 2016, 6(23): 1600437.

doi: 10.1002/aenm.201600437
[78]
Zhang S Q, Liu X, Liu C B, Luo S L, Wang L L, Cai T, Zeng Y X, Yuan J L, Dong W Y, Pei Y, Liu Y T. ACS Nano, 2018, 12(1): 751.

doi: 10.1021/acsnano.7b07974
[79]
Feng D Y, Dong Y B, Zhang L L, Ge X, Zhang W, Dai S, Qiao Z A. Angew. Chem. Int. Ed., 2020, 59(44): 19503.

doi: 10.1002/anie.v59.44
[80]
Zheng Y N, Zhang R, Zhang L, Gu Q F, Qiao Z A. Angew. Chem. Int. Ed., 2021, 60(9): 4774.

doi: 10.1002/anie.v60.9
[81]
Zheng Y N, Wang L Q, Liu H Y, Yang J Q, Zhang R, Zhang L, Qiao Z A. Angew. Chem. Int. Ed., 2022, 61(37): e202209038.
[82]
Gao B, Qiu B, Zheng M J, Liu Z K, Lu W D, Wang Q, Xu J, Deng F, Lu A H. ACS Catal., 2022, 12(12): 7368.

doi: 10.1021/acscatal.2c01622
[83]
Qiu B, Lu W D, Gao X Q, Sheng J, Yan B, Ji M, Lu A H. J. Catal., 2022, 408: 133.

doi: 10.1016/j.jcat.2022.02.017
[84]
Yuan R L, Wang H H, Shang L, Hou R Y, Dong Y, Li Y T, Zhang S, Chen X H, Song H H. ACS Appl. Mater. Interfaces, 2023, 15(2): 3006.

doi: 10.1021/acsami.2c19798
[85]
Xi Y L, Ye X M, Duan S R, Li T, Zhang J, Jia L J, Yang J, Wang J, Liu H T, Xiao Q B. J. Mater. Chem. A, 2020, 8(29): 14769.

doi: 10.1039/D0TA04038J
[86]
Jiang Y, Deng Y P, Liang R L, Fu J, Gao R, Luo D, Bai Z Y, Hu Y F, Yu A P, Chen Z W. Nat. Commun., 2020, 11: 5858.

doi: 10.1038/s41467-020-19709-6 pmid: 33203863
[87]
Wang T, Okejiri F, Qiao Z A, Dai S. Adv. Mater., 2020, 32(44): 2002475.

doi: 10.1002/adma.v32.44
[88]
Zhang L L, Wang T, Gao T N, Xiong H L, Zhang R, Liu Z L, Song S Y, Dai S, Qiao Z A. CCS Chem., 2021, 3(2): 870.

doi: 10.31635/ccschem.020.202000233
[1] Nan Wang, Yingxu Wei, Zhongmin Liu. Methanol to Olefins (MTO): A Condensed Matter Chemistry [J]. Progress in Chemistry, 2023, 35(6): 839-860.
[2] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[3] Xuetao Qin, Ziqiao Zhou, Ding Ma. Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts [J]. Progress in Chemistry, 2023, 35(6): 928-939.
[4] Qinghe Li, Botao Qiao, Tao Zhang. Condensed Matter Chemistry in Single-Atom Catalysis [J]. Progress in Chemistry, 2023, 35(6): 821-838.
[5] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[6] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[7] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[8] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[9] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[10] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[11] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[12] Xiping Jing. From Solid State Chemistry to Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1049-1059.
[13] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[14] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[15] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.