中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 928-939 DOI: 10.7536/PC221226 Previous Articles   Next Articles

• Review •

Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts

Xuetao Qin, Ziqiao Zhou, Ding Ma()   

  1. College of Chemistry and Molecular Engineering, Peking University,Beijing 100871, China
  • Revised: Online: Published:
  • Contact: *e-mail: dma@pku.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(22102007); The National Natural Science Foundation of China(21991150); The National Natural Science Foundation of China(22172150); The National Natural Science Foundation of China(21821004); The National Natural Science Foundation of China(22072090)
Richhtml ( 38 ) PDF ( 508 ) Cited
Export

EndNote

Ris

BibTeX

Catalysis plays an important role in the modern chemical industry, and developing catalyst with high efficiency is one of the important targets in catalysis research. Due to the outstanding activity of those catalysts with strong metal-support interactions (SMSI), SMSI has become an important scientific topic in catalysis research. The SMSI phenomenon involves the encapsulation of the metal nanoparticles (NPs) by support, resulting in the improved stabilization of NPs, and the different catalytic performances due to the new interaction between NPs and the support. Currently, a great number of catalysts with SMSI have been designed and partially applied, also there are considerable literatures focusing on SMSI of supported catalysts, especially those using metal oxide for support. However due to the complexity, the nature of SMSI and the catalytic mechanism of SMSI deserve further study, and the argument about the driving force of SMSI formation still exists. This review summarizes the recent progress, effect, and the regulation of SMSI, hopefully providing the understanding of SMSI from the perspective of condensed matter chemistry, and a new strategy of catalyst design.

Contents

1 Introduction

2 Research progress in SMSI

2.1 Research history of SMSI

2.2 New types of SMSI

3 Influence of SMSI on catalytic performance

3.1 Activity and stability enhancement

3.2 Selectivity tuning

4 Modulating of SMSI

4.1 Pre-treatment conditions

4.2 Supports

4.3 Metal nanoparticles

5 Conclusion and outlook

Fig.1 Research progress in SMSI
Fig.2 (a) WGS activities of model Pt/CeO2(111) catalysts as a function of admetal coverage[5]; (b) Calculated reaction path for the dissociation of adsorbed H2O on a ceria-supported Pt cluster[6]
Fig.3 (a) XANES spectra of Pt1/Co3O4, Pt1/CeO2, Pt1/ZrO2, and Pt1/graphene SACs as well as the Pt foil and PtO2 reference at the Pt L3-edge; (b) the corresponding K2-weighted Fourier transform spectra; (c) DRIFTS of CO chemisorption on Pt1/Co3O4, Pt1/CeO2, and Pt1/ZrO2 at the saturation coverage; (d) XPS spectra of Pt1/Co3O4, Pt1/CeO2, Pt1/ZrO2, Pt1/graphene, and PtO2 in the Pt 4f region[42]
Fig.4 Structure and catalytic behavior of SMSI and A-SMSI[8]
Fig.5 Reaction-induced strong metal-support interactions in Ni/h-BN catalyst[50]
Fig.6 Schematic illustration of the SMSI effect between Au overlayers and carbide supports[51]
Fig.7 (a) The coordination number (CN) of Ir—Ir and Ir—O shells (data, right axis) relative to catalytic selectivity (bars, left axis) with Ir/Ce catalysts with different Ir loadings; (b) Ir L3-edge EXAFS of the Ir/Ce-used catalysts; (c) XPS analysis of the Ir/Ce-used catalysts[60]
Fig.8 HRTEM images and EELS spectra. (A-F) HRTEM images of RR2Ti-fresh, RR2Ti-H200, RR2Ti-H300, RR2Ti-H400, RR2Ti-H500, and RR2Ti-(H500+O400); (G) EELS spectra of the RR2Ti-H500 sample[61]
[1]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128
[2]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155
[3]
Xu R R, Yu J H, Yan W F. Progress in Chemistry, 2020, 32(8):1017.
( 徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8):1017.).

doi: 10.7536/PC200428
[4]
Tauster S J, Fung S C, Garten R L. J. Am. Chem. Soc., 1978, 100(1): 170.

doi: 10.1021/ja00469a029
[5]
Bruix A, Rodriguez J A, Ramírez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. J. Am. Chem. Soc., 2012, 134(21): 8968.

doi: 10.1021/ja302070k
[6]
Campbell C T. Nat. Chem., 2012, 4(8): 597.

doi: 10.1038/nchem.1412 pmid: 22824888
[7]
Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J J. Nano Res., 2015, 8(9): 2913.

doi: 10.1007/s12274-015-0796-9
[8]
Matsubu J C, Zhang S Y, DeRita L, Marinkovic N S, Chen J G, Graham G W, Pan X Q, Christopher P. Nat. Chem., 2017, 9(2): 120.

doi: 10.1038/nchem.2607 pmid: 28282057
[9]
Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J. Am. Chem. Soc., 2012, 134(24): 10251.

doi: 10.1021/ja3033235
[10]
Friedrich M, Penner S, Heggen M, Armbrüster M. Angew. Chem. Int. Ed., 2013, 52(16): 4389.

doi: 10.1002/anie.201209587 pmid: 23494806
[11]
Smith J S, Thrower P A, Vannice M A. J. Catal., 1981, 68: 270.

doi: 10.1016/0021-9517(81)90097-X
[12]
Bradford M C J, Albert Vannice M. Appl. Catal. A Gen., 1996, 142(1): 73.

doi: 10.1016/0926-860X(96)00065-8
[13]
Tauster S J, Fung S C, Baker R T K, Horsley J A. Science, 1981, 211(4487): 1121.

doi: 10.1126/science.211.4487.1121 pmid: 17755135
[14]
Sakellson S, McMillan M, Haller G L. J. Phys. Chem., 1986, 90(9): 1733.

doi: 10.1021/j100400a001
[15]
Zhao E W, Zheng H B, Ludden K, Xin Y, Hagelin-Weaver H E, Bowers C R. ACS Catal., 2016, 6(2): 974.

doi: 10.1021/acscatal.5b02632
[16]
Gunasooriya G T K K, Seebauer E G, Saeys M. ACS Catal., 2017, 7(3): 1966.

doi: 10.1021/acscatal.6b02906
[17]
Chen P R, Khetan A, Yang F K, Migunov V, Weide P, Stürmer S P, Guo P H, Kähler K, Xia W, Mayer J, Pitsch H, Simon U, Muhler M. ACS Catal., 2017, 7(2): 1197.

doi: 10.1021/acscatal.6b02963
[18]
Masoud N, Delannoy L, Schaink H, van der Eerden A, de Rijk J W, Silva T A G, Banerjee D, Meeldijk J D, de Jong K P, Louis C, de Jongh P E. ACS Catal., 2017, 7(9): 5594.

doi: 10.1021/acscatal.7b01424
[19]
Baker L R, Kennedy G, Van Spronsen M, Hervier A, Cai X J, Chen S Y, Wang L W, Somorjai G A. J. Am. Chem. Soc., 2012, 134(34): 14208.

doi: 10.1021/ja306079h
[20]
Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. J. Am. Chem. Soc., 2017, 139(33): 11493.

doi: 10.1021/jacs.7b04481 pmid: 28759206
[21]
Corma A, Serna P, ConcepciÓn P, Calvino J J. J. Am. Chem. Soc., 2008, 130(27): 8748.

doi: 10.1021/ja800959g
[22]
Boronat M, ConcepciÓn P, Corma A, González S, Illas F, Serna P. J. Am. Chem. Soc., 2007, 129(51): 16230.

pmid: 18052067
[23]
Wang Y C, Widmann D, Behm R J. ACS Catal., 2017, 7(4): 2339.

doi: 10.1021/acscatal.7b00251
[24]
Wang L, Zhang J, Zhu Y H, Xu S D, Wang C T, Bian C Q, Meng X J, Xiao F S. ACS Catal., 2017, 7(11): 7461.

doi: 10.1021/acscatal.7b01947
[25]
Hu P P, Huang Z W, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y X, Gu X, Tang X F. Angew. Chem. Int. Ed., 2014, 53(13): 3418.

doi: 10.1002/anie.201309248
[26]
Guan H L, Lin J, Qiao B T, Yang X F, Li L, Miao S, Liu J Y, Wang A Q, Wang X D, Zhang T. Angew. Chem. Int. Ed., 2016, 55(8): 2820.

doi: 10.1002/anie.201510643
[27]
Tang H L, Liu F, Wei J K, Qiao B T, Zhao K F, Su Y, Jin C Z, Li L, Liu J J, Wang J H, Zhang T. Angew. Chem. Int. Ed., 2016, 55(36): 10606.

doi: 10.1002/anie.v55.36
[28]
Bonanni S, Aït-Mansour K, Brune H, Harbich W. ACS Catal., 2011, 1(4): 385.

doi: 10.1021/cs200001y
[29]
Lee Y J, He G H, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J. Am. Chem. Soc., 2011, 133(33): 12952.

doi: 10.1021/ja204479j
[30]
Comotti M, Li W C, Spliethoff B, Schüth F. J. Am. Chem. Soc., 2006, 128(3): 917.

doi: 10.1021/ja0561441
[31]
Lin L L, Zhou W, Gao R, Yao S Y, Zhang X, Xu W Q, Zheng S J, Jiang Z, Yu Q L, Li Y W, Shi C, Wen X D, Ma D. Nature, 2017, 544(7648): 80.

doi: 10.1038/nature21672
[32]
Plata J J, Graciani J, Evans J, Rodriguez J A, Sanz J F. ACS Catal., 2016, 6(7): 4608.

doi: 10.1021/acscatal.6b00948
[33]
Carrasco J, LÓpez-Durán D, Liu Z Y, Duchoñ T, Evans J, Senanayake S D, Crumlin E J, Matolín V, Rodríguez J A, Ganduglia-Pirovano M V. Angew. Chem. Int. Ed., 2015, 54(13): 3917.

doi: 10.1002/anie.201410697 pmid: 25651288
[34]
Carrasco J, Barrio L, Liu P, Rodriguez J A, Ganduglia-Pirovano M V. J. Phys. Chem. C, 2013, 117(16): 8241.

doi: 10.1021/jp400430r
[35]
Zhang X, Zhang M T, Deng Y C, Xu M Q, Artiglia L, Wen W, Gao R, Chen B B, Yao S Y, Zhang X C, Peng M, Yan J, Li A W, Jiang Z, Gao X Y, Cao S F, Yang C, Kropf A J, Shi J N, Xie J L, Bi M S, van Bokhoven J A, Li Y W, Wen X D, Flytzani-Stephanopoulos M, Shi C, Zhou W, Ma D. Nature, 2021, 589(7842): 396.

doi: 10.1038/s41586-020-03130-6
[36]
Yeung C M Y, Yu K M K, Fu Q J, Thompsett D, Petch M I, Tsang S C. J. Am. Chem. Soc., 2005, 127(51): 18010.

doi: 10.1021/ja056102c
[37]
Yao S Y, Zhang X, Zhou W, Gao R, Xu W Q, Ye Y F, Lin L L, Wen X D, Liu P, Chen B B, Crumlin E, Guo J H, Zuo Z J, Li W Z, Xie J L, Lu L, Kiely C J, Gu L, Shi C, Rodriguez J A, Ma D. Science, 2017, 357(6349): 389.

doi: 10.1126/science.aah4321
[38]
Yang L F, Shan S Y, Loukrakpam R, Petkov V, Ren Y, Wanjala B N, Engelhard M H, Luo J, Yin J, Chen Y S, Zhong C J. J. Am. Chem. Soc., 2012, 134(36): 15048.

doi: 10.1021/ja3060035
[39]
Ma J W, Habrioux A, Morais C, Lewera A, Vogel W, Verde-GÓmez Y, Ramos-Sanchez G, Balbuena P B, Alonso-Vante N. ACS Catal., 2013, 3(9): 1940.

doi: 10.1021/cs4003222
[40]
Mori K, Taga T, Yamashita H. ACS Catal., 2017, 7(5): 3147.

doi: 10.1021/acscatal.7b00312
[41]
Wang L B, Li H L, Zhang W B, Zhao X, Qiu J X, Li A W, Zheng X S, Hu Z P, Si R, Zeng J. Angew. Chem. Int. Ed., 2017, 56(17): 4712.

doi: 10.1002/anie.201701089
[42]
Li J J, Guan Q Q, Wu H, Liu W, Lin Y, Sun Z H, Ye X X, Zheng X S, Pan H B, Zhu J F, Chen S, Zhang W H, Wei S Q, Lu J L. J. Am. Chem. Soc., 2019, 141(37): 14515.

doi: 10.1021/jacs.9b06482
[43]
Wang Q, Huang X, Zhao Z L, Wang M Y, Xiang B, Li J, Feng Z X, Xu H, Gu M. J. Am. Chem. Soc., 2020, 142(16): 7425.

doi: 10.1021/jacs.9b12642 pmid: 32174114
[44]
Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C L, Li J J, Wei S Q, Lu J L. J. Am. Chem. Soc., 2015, 137(33): 10484.

doi: 10.1021/jacs.5b06485
[45]
Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Nat. Catal., 2018, 1(12): 985.

doi: 10.1038/s41929-018-0195-1
[46]
Wang X Y, Liu Y, Peng X B, Lin B Y, Cao Y N, Jiang L L. ACS Appl. Energy Mater., 2018, 1(4): 1408.

doi: 10.1021/acsaem.8b00049
[47]
Tang H L, Wei J K, Liu F, Qiao B T, Pan X L, Li L, Liu J Y, Wang J H, Zhang T. J. Am. Chem. Soc., 2016, 138(1): 56.

doi: 10.1021/jacs.5b11306
[48]
Tang H L, Su Y, Guo Y L, Zhang L L, Li T B, Zang K T, Liu F, Li L, Luo J, Qiao B T, Wang J H. Chem. Sci., 2018, 9(32): 6679.

doi: 10.1039/C8SC01392F
[49]
Du X R, Tang H L, Qiao B T. Catalysts, 2021, 11(8): 896.

doi: 10.3390/catal11080896
[50]
Dong J H, Fu Q, Li H B, Xiao J P, Yang B, Zhang B S, Bai Y X, Song T Y, Zhang R K, Gao L J, Cai J, Zhang H, Liu Z, Bao X H. J. Am. Chem. Soc., 2020, 142(40): 17167.

doi: 10.1021/jacs.0c08139
[51]
Dong J H, Fu Q, Jiang Z, Mei B B, Bao X H. J. Am. Chem. Soc., 2018, 140(42): 13808.

doi: 10.1021/jacs.8b08246
[52]
Zhang J, Wang H, Wang L, Ali S, Wang C T, Wang L X, Meng X J, Li B, Su D S, Xiao F S. J. Am. Chem. Soc., 2019, 141(7): 2975.

doi: 10.1021/jacs.8b10864 pmid: 30677301
[53]
Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Angew. Chem. Int. Ed., 2020, 59(29): 11824.

doi: 10.1002/anie.v59.29
[54]
Braunschweig E. J. Catal., 1989, 118(1): 227.

doi: 10.1016/0021-9517(89)90313-8
[55]
Monai M, Jenkinson K, Melcherts A E M, Louwen J N, Irmak E A, Van Aert S, Altantzis T, Vogt C, van der Stam W, Duchoñ T, Šmíd B, Groeneveld E, Berben P, Bals S, Weckhuysen B M. Science, 2023, 380(6645): 644.

doi: 10.1126/science.adf6984
[56]
Chen A L, Yu X J, Zhou Y, Miao S, Li Y, Kuld S, Sehested J, Liu J Y, Aoki T, Hong S, Camellone M F, Fabris S, Ning J, Jin C C, Yang C W, Nefedov A, Wöll C, Wang Y M, Shen W J. Nat. Catal., 2019, 2(4): 334.

doi: 10.1038/s41929-019-0226-6
[57]
Xu M, Yao S Y, Rao D M, Niu Y M, Liu N, Peng M, Zhai P, Man Y, Zheng L R, Wang B, Zhang B S, Ma D, Wei M. J. Am. Chem. Soc., 2018, 140(36): 11241.

doi: 10.1021/jacs.8b03117
[58]
Lykhach Y, Kozlov S M, Skála T, Tovt A, Stetsovych V, Tsud N, Dvořák F, Johánek V, Neitzel A, Mysliveček J, Fabris S, Matolín V, Neyman K M, Libuda J. Nat. Mater., 2016, 15(3): 284.

doi: 10.1038/nmat4500
[59]
Lee J, Burt S P, Carrero C A, Alba-Rubio A C, Ro I, O’Neill B J, Kim H J, Jackson D H K, Kuech T F, Hermans I, Dumesic J A, Huber G W. J. Catal., 2015, 330: 19.

doi: 10.1016/j.jcat.2015.07.003
[60]
Li S W, Xu Y, Chen Y F, Li W Z, Lin L L, Li M Z, Deng Y C, Wang X P, Ge B H, Yang C, Yao S Y, Xie J L, Li Y W, Liu X, Ma D. Angew. Chem. Int. Ed., 2017, 56(36): 10761.

doi: 10.1002/anie.201705002
[61]
Tang H L, Su Y, Zhang B S, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y G, Huang J H, Haruta M, Qiao B T, Liu X, Jin C Z, Su D S, Wang J H, Zhang T. Sci. Adv., 2017, 3(10): e1700231.

doi: 10.1126/sciadv.1700231
[62]
Li J, Lin Y P, Pan X L, Miao D Y, Ding D, Cui Y, Dong J H, Bao X H. ACS Catal., 2019, 9(7): 6342.

doi: 10.1021/acscatal.9b00401
[63]
Chandler B D. Nat. Chem., 2017, 9(2): 108.

doi: 10.1038/nchem.2724 pmid: 28282056
[64]
Kumar A, Ramani V. ACS Catal., 2014, 4(5): 1516.

doi: 10.1021/cs500116h
[1] Yuenan Zheng, Jiaqi Yang, Zhen-An Qiao. Condensed Matter Chemistry: The Defect Engineering of Porous Materials [J]. Progress in Chemistry, 2023, 35(6): 954-967.
[2] Nan Wang, Yingxu Wei, Zhongmin Liu. Methanol to Olefins (MTO): A Condensed Matter Chemistry [J]. Progress in Chemistry, 2023, 35(6): 839-860.
[3] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[4] Yuan Wang, Yulv Yu, Xin Tan. Metal Nanocluter Catalysts for Hydrogenation of Carbon Dioxide to Multicarbon Compounds [J]. Progress in Chemistry, 2023, 35(6): 918-927.
[5] Qinghe Li, Botao Qiao, Tao Zhang. Condensed Matter Chemistry in Single-Atom Catalysis [J]. Progress in Chemistry, 2023, 35(6): 821-838.
[6] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[7] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[8] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[9] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[10] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[13] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.