中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1184-1202 DOI: 10.7536/PC200435 Previous Articles   Next Articles

• Review •

Condensed Matter Chemistry under High Pressure

Xiaoyang Liu1,**()   

  1. 1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130031, China
  • Received: Revised: Online: Published:
  • Contact: Xiaoyang Liu
  • About author:
    ** e-mail:
  • Supported by:
    the National Natural Science Foundation of China(21271082); the National Natural Science Foundation of China(40673051); the National Natural Science Foundation of China(20471022)
Richhtml ( 12 ) PDF ( 703 ) Cited
Export

EndNote

Ris

BibTeX

This article introduces the effects of high-pressure conditions on the electronic structure and crystal structure of condensed matter, including the outer electronic structure, band structure and crystal defects, and also the increase in atomic coordination number, the element’s abnormal oxidation, structural phase transitions, and state transitions. At the same time, the chemical reactions of condensed matter under high pressure are introduced from ten aspects. Finally, the future development of condensed matter chemistry under high pressure is prospected.

Contents

1 Introduction

2 Effect of high pressure on the electronic and crystal structure of condensed matter

2.1 Effect of high pressure on the outer electronic structure of the elements

2.2 An increase in the atomic number caused by high pressure

2.3 Abnormal oxidation states of elements caused by high pressure

2.4 Structural phase transitions caused by high pressure

2.5 Effect of high pressure on band structure

2.6 Effect of high pressure on crystal defects

2.7 State changes caused by high pressure

3 Chemical reaction of condensed matter under high pressure

3.1 Metallization of hydrogen

3.2 High-pressure polymerization of small inorganic molecules

3.3 High-pressure polymerization of organic compounds

3.4 High-pressure synthesis of poly-nitrogen compounds

3.5 High-pressure synthesis of MOFs

3.6 High-pressure synthesis of inert element oxides

3.7 Reaction of alkali metal with inert gas under high pressure

3.8 Effect of high pressure on the morphology and structure of nanocrystals

3.9 Synthesis of Na-Cl compounds under high pressure

3.10 Promoting effect of high pressure on chemical reaction

4 Conclusions and outlook

Fig.1 LaCoO3 cell volume and lattice constant as a function of pressure [6]. Copyright 2007, American Physical Society
Fig.2 Effect of high pressure on Co—O bond length and Co—O—Co—O bond angle in LaCoO3 crystals [6]. Copyright 2007, American Physical Society
Fig.3 Schematic diagram of change of Fe2+ 3d orbital electron spin state with pressure[7]. Copyright 2005, United States
Fig.4 Unit cell of ideal ABO3 perovskite structure[9]. Copyright 2004, John Wiley and Sons Inc
Fig.5 Schematic diagram of spin rearrangement of manganese oxide under high pressure[23]. Copyright 2007, IOP Publishing Ltd
Fig.6 Ge flips on a Ge-Te3 tetrahedron under pressure. Blue: Ge, Green: Cr, Pink: Te[40]. Copyright 2019, American Chemical Society
Fig.7 Phase Ⅲ sample and data.(a) Microscope image of the hydrogen sample at 212 GPa and room temperature(phase Ⅲ conditions), illuminated by both transmitted and reflected light. The inset shows the measured Raman vibron;(b) Merged raw XRD images showing the XRD spots. The colour code defined in the key—with red, green and blue representing the(100),(002) and(101) reflections, respectively—is used in b~d;(c) Montage of the 26 XRD spots, showing the quality of the data;(d) Quality of indexing, showing the d spacing of the(100),(002) and(101) reflections measured at different Ω angles. Dashed lines show the d values calculated using fitted unit cell parameters[51]. Copyright 2019, Nature Publishing Group
Fig.8 Phase Ⅳ sample and data.(a) Microscope image of the H2 sample at 232 GPa and room temperature(phase Ⅳ conditions) illuminated by both transmitted and reflected light. The upper inset shows a magnified image on the sample area corresponding to the red dashed box; the three blue dots mark the SXRD sampling positions. The lower inset shows the measured Raman vibrons(v1 and v2); the blue arrow marks the characteristic new peak of phase Ⅳ;(b) Merged raw XRD images showing the XRD spots. Red, green and blue symbols denote the(100),(002) and(101) reflections, respectively, in b~d;(c) Montage of 40 XRD spots showing the quality of the data;(d) Quality of indexing, showing the d spacing of the(100),(002) and(101) reflections measured at different Ω angles. Dashed lines show the d values calculated using fitted unit cell parameters;(e) Comparison of d spacings of reflections from samples measured using the 2 × 1 μm2 X-ray beam with those measured using the nano-probe[51]. Copyright 2019, Nature Publishing Group
Fig.9 [—(C=O)—]n polycarbonyl chain with alternating head-to-tail orientation of C=O Gray: C atom, Red: O atom[57]. Copyright 2015, Royal Society of Chemistry
Fig.10 Structure of polymerized pyridine[60]. Copyright 2017, Royal Society of Chemistry
Fig.11 Crystal structure of Fe3N2 (orange: Fe, blue: N) [63]. Copyright 2018, Nature Publishing Group
Fig.12 Crystal structure of FeN with NiAs type(orange: Fe, blue: N)[63]. Copyright 2018, Nature Publishing Group
Fig.13 (a) Mechanism for the solventless high pressure synthesis of ZIF-8 from 2-methylimidazole(mlm) and ZnO;(b, c) high-resolution TEM images of ZIF-8 HP 5 min;(d) FFT of the inset of image(c) which corresponds to the [321] zone axis[73]. Copyright 2013, Royal Society of Chemistry
Fig.14 Crystal structure of Na2He at 300 GPa:(a) Ball-and-stick representation(pink: Na, grey: He);(b) Electron localization function(ELF) plotted in the [110] plane at 300 GPa[86]. Copyright 2017, Nature Publishing Group
Fig.15 Schematic demonstration of the proposed pressure-sintering process[90]. Copyright 2017, American Chemical Society
Fig.16 Crystal structures of Na chlorides.(A)Pm3-NaCl7;(B)Pnma-NaCl3;(C)Pm3n-NaCl3;(D)P4/mmm-Na3Cl;(E)P4/m-Na3Cl2;(F)Cmmm-Na3Cl2;(G)P4/mmm-Na2Cl;(H)Cmmm-Na2Cl;(I)Imma-Na2Cl. Blue and green spheres denote Na and Cl atoms, respectively. Copyright 2013, American Association for the Advancement of Science
[1]
(a) Xu R. Natl. Rev. Sci., 2018, 5: 1;
(b) Xu R, Wang K, Chen G, Yan W. Natl. Rev. Sci., 2019,6:191.
[2]
McMillan P F. Chem. Soc. Rev., 2006,35:855. https://www.ncbi.nlm.nih.gov/pubmed/17003892

doi: 10.1039/b610410j pmid: 17003892
[3]
Xu R, Xu Y. Modern Inorganic Synthetic Chemistry. 2nd ed. Amsterdam: Elsevier, 2017. 1051.
[4]
Walsh P S, Freedman D E. Acc. Chem. Res., 2018,51:1315. https://www.ncbi.nlm.nih.gov/pubmed/29812893

doi: 10.1021/acs.accounts.8b00143 pmid: 29812893
[5]
Abelson P H. Science, 1999,283:1263.
[6]
Kozlenko D P, Golosova N O, Jirak Z, Dubrovinsky L S, Savenko B N, Tucker M G. Phys. Rev. B, 2007,5:064422.
[7]
Speziale S, Milner A, Lee V E, Clark S M, Pasternak M P, Jeanloz R. Proc. Natl. Acad. Sci. U. S. A., 2005,102:17918. https://www.ncbi.nlm.nih.gov/pubmed/16330758

doi: 10.1073/pnas.0508919102 pmid: 16330758
[8]
胡娟(Hu J). 超硬材料工程(Super-hard Materials Engineering), 2006,5:48.
[9]
Zhao J, Ross N L, Angel R J. Acta Crystallogr. B, 2004,60:263. https://www.ncbi.nlm.nih.gov/pubmed/15148429

doi: 10.1107/S0108768104004276 pmid: 15148429
[10]
李莉萍(Li L), 魏诠(Wei Q), 刘宏建(Liu H), 郑大方(Zheng D), 苏文辉(Su W). 高压物理学报(Chin. J. High Pressure Phys.), 1994,3:184.
[11]
周建十(Zhou J), 苏文辉(Su W). 中国稀土学报(J. Chin. Rare Earth Soc.), 1988,2:57.
[12]
周建十(Zhou J). 高压物理学(Chin. J. High Pressure Phys.), 1992,1:7.
[13]
Frost D J, Liebske C, Langenhorst F, McCammon C A, Trønnes R G, Rubie D C. Nature, 2004,428:409. https://www.ncbi.nlm.nih.gov/pubmed/15042086

doi: 10.1038/nature02413 pmid: 15042086
[14]
Frost D J, McCammon C A. Annual Review of Earth & Planetary Sciences, 2008,36:389.
[15]
苟清泉(Gou Q). 固体物理(Solid State Physics). 北京:人民教育出版社( Beijing: Remin Education Press), 1978. 205.
[16]
Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B, Liu B. Phys. Rev. Lett., 2017,118:245701. https://www.ncbi.nlm.nih.gov/pubmed/28665670

doi: 10.1103/PhysRevLett.118.245701 pmid: 28665670
[17]
Zou Y, Liu B, Wang L, Liu D, Yu S, Wang P, Wang T, Yao M, Li Q, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B, Mao H. Proc. Natl. Acad. Sci. U.S. A., 2009,106:22135.
[18]
Zou Y, Liu B, Yao M, Hou Y, Wang L, Yu S, Wang P, Li B, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B. Phys. Rev. B, 2007,76:195417.
[19]
Caillier C, Machon D, San Miguel A, Arenal R, Montagnac G, Cardon H, Kalbac M, Zukalova M, Kavan L. Phys. Rev. B, 2008,77:125418.
[20]
Wang Y, Panzik J E, Kiefer B, Lee K K M. Sci. Rep., 2012,2:520. https://www.ncbi.nlm.nih.gov/pubmed/22816043

doi: 10.1038/srep00520 pmid: 22816043
[21]
Xu W M, Machavariani G Y, Rozenberg G K, Pasternak M P. Phys. Rev. B, 2004,70:174106.
[22]
Zakharov B A, Boldyreva E V. Cryst Eng Comm, 2019,21:10.
[23]
Kasinathan D, Koeperni K, Pickett W E. New J. Phys., 2007,9:235.
[24]
McMahon M I, Nelmes R J. Chem. Soc. Rev., 2006,35:943. https://www.ncbi.nlm.nih.gov/pubmed/17003900

doi: 10.1039/b517777b pmid: 17003900
[25]
Mao H, Hemley R J. Science, 1989,244:1462.
[26]
Li R, Han N, Cheng Y, Huang W. J. Phys: Condens. Matter, 2019,31:50550.
[27]
Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V. Nature, 2009,458:182. https://www.ncbi.nlm.nih.gov/pubmed/19279632

doi: 10.1038/nature07786 pmid: 19279632
[28]
Zhu H, Li Y, Li H, Su T, Pu C, Zhao Y, Ma Y, Zhu P, Wang X. High Pressure Res., 2017,37:36.
[29]
Wang Y, Lu X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z, Zhao Y. Am. Chem. Soc., 2015,137:11144.
[30]
Zhang Q, Ai X, Wang L, Chang Y, Luo Y, Jiang W, Cheng L. Adv. Funct. Mater., 2015,25:966. http://doi.wiley.com/10.1002/adfm.201402663

doi: 10.1002/adfm.201402663
[31]
Guo X, Qin J, Jia X, Jiang D. Inorg. Chem. Front., 2018,5:1540.
[32]
Bounos G, Karnachoriti M, Kontos A G, Stoumpos C C, Tsetseris L, Kaltzoglou A, Guo X, Lu X, Raptis Y S, Kanatzidis M G. J. Phys. Chem C, 2018,122:24004.
[33]
Christensen N, Gorczyca I, Svane A, Szwacki N G, Boguslawski P. Phys. Status Solidi(B), 2003,235:374.
[34]
Londos C, Potsidi M, Bak Misiuk J, Misiuk A, Emtsev V. Cryst. Res. Technol., 2003,38:1058.
[35]
Wang L, Yang W, Ding Y, Ren Y, Xiao S, Liu B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G. Phys. Rev. Lett., 2010,105:095701. https://www.ncbi.nlm.nih.gov/pubmed/20868175

doi: 10.1103/PhysRevLett.105.095701 pmid: 20868175
[36]
Lu X, Hu Q, Yang W, Bai L, Sheng H, Wang L, Wen J, Miller D, Huang F, Zhao Y. Am. Chem. Soc., 2013,135:13947.
[37]
Peiris S M, Sweeney J S, Campbell A J, Heinz D L. Chem. Phys., 1996,104:11.
[38]
Kolobov A V, Haines J, Pradel A, Ribes M, Fons P, Tominaga J, Katayama Y, Hammouda T, Uruga T. Phys. Rev. Lett., 2006,97:035701. https://www.ncbi.nlm.nih.gov/pubmed/16907512

doi: 10.1103/PhysRevLett.97.035701 pmid: 16907512
[39]
Caravati S, Bernasconi M, Kuhne T D, Krack M, Parrinello M. Phys. Rev. Lett., 2009,102:205502. https://www.ncbi.nlm.nih.gov/pubmed/19519039

doi: 10.1103/PhysRevLett.102.205502 pmid: 19519039
[40]
Yu Z, Xia W, Xu K, Xu M, Wang H, Wang X, Yu N, Zou Z, Zhao J, Wang L, Miao X, Guo Y. J. Phys. Chem. C, 2019,123:13885.
[41]
Du M, Yao M, Dong J, Ge P, Dong Q, Kováts É, Pekker S, Chen S, Liu R, Liu B, Cui T, Sundqvist B, Liu B. Adv. Mater., 2018,30:1706916.
[42]
Cui W, Yao M, Liu S, Ma F, Li Q, Liu R, Liu B, Zou B, Cui T, Liu B. Adv. Mater., 2014,26:7257. https://www.ncbi.nlm.nih.gov/pubmed/25227982

doi: 10.1002/adma.201402519 pmid: 25227982
[43]
Brazhkin V V, Lyapin A G, Stalgorova O V, Gromnitskaya E L, Popova S V, Tsiok O B. J. Non-Crystal. Solids, 1997,212:49. https://linkinghub.elsevier.com/retrieve/pii/S0022309396005595

doi: 10.1016/S0022-3093(96)00559-5
[44]
Wang L, Huang X, Li D, Li F, Zhao Z, Li W, Huang Y, Wu G, Zhou Q, Liu B, Cui T. J. Phys. Chem. C, 2015,119:19312. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b04246

doi: 10.1021/acs.jpcc.5b04246
[45]
Silvera I F, Wijngaarden R J. Rev. Sci. Instrum., 1985,56:121.
[46]
Dias R P, Silvera I F. Science, 2017,355:715. https://www.ncbi.nlm.nih.gov/pubmed/28126728

doi: 10.1126/science.aal1579 pmid: 28126728
[47]
Wigner E, Huntington H B. Chem. Phys., 1935,3:764.
[48]
Hazen R M, Mao H K, Finger L W. Phys. Rev. B, 1987,36:3944. https://link.aps.org/doi/10.1103/PhysRevB.36.3944

doi: 10.1103/PhysRevB.36.3944
[49]
Mazin I I, Hemley R J, Goncharov A F. Phys. Rev. Lett., 1997,78:1066. https://link.aps.org/doi/10.1103/PhysRevLett.78.1066

doi: 10.1103/PhysRevLett.78.1066
[50]
Howie R T, Guillaume C L, Scheler T. Phys. Rev. Lett., 2012,108:125501. https://www.ncbi.nlm.nih.gov/pubmed/22540596

doi: 10.1103/PhysRevLett.108.125501 pmid: 22540596
[51]
Ji C, Li B, Liu W, Smith J S, Majumdar A, Luo W, Ahuja R, Shu J, Wang J, Sinogeikin S, Meng Y, Prakapenka V B, Greenberg E, Xu R, Huang X, Yang W, Shen G, Mao W, Mao H. Nature, 2019,573:558. https://www.ncbi.nlm.nih.gov/pubmed/31554980

doi: 10.1038/s41586-019-1565-9 pmid: 31554980
[52]
Katz A I, Schiferl D, Mill R L. Phys. Chem., 1984,88:3176.
[53]
Mills R L, Olinger B, Cromer D T. Chem. Phys., 1986,84:2837. https://pubs.acs.org/doi/abs/10.1021/j100459a001

doi: 10.1021/j100459a001
[54]
Evans W J, Lipp M J, Yoo C S, Cynn H, Herberg J L, Maxwell R S. Chem. Mat., 2006,18:2520. https://pubs.acs.org/doi/10.1021/cm0524446

doi: 10.1021/cm0524446
[55]
Lipp M J, Evans W J, Baer B J, Yoo C. Nature Mater., 2005,4:211. https://doi.org/10.1038/nmat1321

doi: 10.1038/nmat1321
[56]
Sun J, Klug D D, Pickard C J, Needs R J. Phys. Rev. Lett., 2011,106:145502. https://www.ncbi.nlm.nih.gov/pubmed/21561202

doi: 10.1103/PhysRevLett.106.145502 pmid: 21561202
[57]
Santoro M, Dziubek K, Scelta D, Ceppatelli M, Gorelli F A, Bini R, Thibaud J M, Renzo F D, Cambon O, Rouquette J. Chem. Mater., 2015,27:6486. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b02596

doi: 10.1021/acs.chemmater.5b02596
[58]
Fitzgibbons T C, Guthrie M, Xu E, Crespi V H, Davidowski S K, Cody G D, Alem N, Badding J V. Nat. Mater., 2015,14:43. https://www.ncbi.nlm.nih.gov/pubmed/25242532

doi: 10.1038/nmat4088 pmid: 25242532
[59]
Wen X, Hand L, Labet V, Yang T, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O. Proc. Natl. Acad. Sci. U.S. A., 2011,108:6833. http://www.pnas.org/cgi/doi/10.1073/pnas.1103145108

doi: 10.1073/pnas.1103145108
[60]
Silveira J F R V, Muniz A R. Phys. Chem. Chem. Phys., 2017,19:7132. https://www.ncbi.nlm.nih.gov/pubmed/28229141

doi: 10.1039/c6cp08655a pmid: 28229141
[61]
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R. Nat. Mater., 2004,3:558. https://www.ncbi.nlm.nih.gov/pubmed/15235595

doi: 10.1038/nmat1146 pmid: 15235595
[62]
Zhao Z, Bao K, Li D, Duan D, Tian F, Jin X, Chen C, Huang X, Liu B, Cui T. Sci. Rep., 2014,4:4797. https://www.ncbi.nlm.nih.gov/pubmed/24762713

pmid: 24762713
[63]
Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnadi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N, Dubrovinsky L. Nat. Commun., 2018,9:2756. https://www.ncbi.nlm.nih.gov/pubmed/30013071

doi: 10.1038/s41467-018-05143-2 pmid: 30013071
[64]
Niwa K, Dzivenko D, Suzuki K, Riedel R, Troyan I, Eremets M, Hasegawa M. Inorg. Chem., 2014,53:697. https://www.ncbi.nlm.nih.gov/pubmed/24393052

doi: 10.1021/ic402885k pmid: 24393052
[65]
Laniel D, Dewaele A, Anzellini S, Guignot N. Alloy. Compd., 2018,733:53. https://linkinghub.elsevier.com/retrieve/pii/S0925838817337039

doi: 10.1016/j.jallcom.2017.10.267
[66]
Bykov M, Bykova E, Koemets E, Fedotenko T, Aprilis G, Glazyrin K, Liermann H P, Ponomareva A V, Tidholm J, Tasnádi F, Abrikosov I A, Dubrovinskaia N, Dubrovinsky L. Angew. Chem. Inter. Ed., 2018,57:9048. http://doi.wiley.com/10.1002/anie.201805152

doi: 10.1002/anie.201805152
[67]
Shi X, Yao Z, Liu B. J. Phys. Chem. C, 2020,124:4044.
[68]
Shi X, Liu B, Yao Z, Liu B B. Chin. Phys. Lett., 2020,37:047101.
[69]
Hirshberg B, Gerber R B, Krylov A I. Nat. Chem., 2014,6:52. https://www.ncbi.nlm.nih.gov/pubmed/24345947

doi: 10.1038/nchem.1818 pmid: 24345947
[70]
Liu S, Zhao L, Yao M, Miao M, Liu B. Adv. Sci., 2020, https://doi.org/10.1002/advs.201902320. https://www.ncbi.nlm.nih.gov/pubmed/5809201

pmid: 5809201
[71]
Friscic T. Mater. Chem., 2010,20:7599.
[72]
Friscic T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, Honkimaki V, Dinnebier R E. Nat. Chem., 2013,5:66. https://www.ncbi.nlm.nih.gov/pubmed/23247180

doi: 10.1038/nchem.1505 pmid: 23247180
[73]
Tanaka S, Kida K, Nagaoka T, Ota T, Miyake, Y. Chem. Commun., 2013,49:7884.
[74]
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U.S.A., 2006,103:10186. https://www.ncbi.nlm.nih.gov/pubmed/16798880

doi: 10.1073/pnas.0602439103 pmid: 16798880
[75]
Kaupp G, Schmeyers J, Boy J. Chemosphere, 2001,43:55. https://www.ncbi.nlm.nih.gov/pubmed/11233826

doi: 10.1016/s0045-6535(00)00324-6 pmid: 11233826
[76]
Grochala W. Chem. Soc. Rev., 2007,36:1632. https://www.ncbi.nlm.nih.gov/pubmed/17721587

doi: 10.1039/b702109g pmid: 17721587
[77]
Smith D F. Am. Chem. Soc., 1963,85:816.
[78]
Selig H, Claassen H H, Chernick C L, Malm J G, Huston J L. Science, 1964,143:1322. https://www.ncbi.nlm.nih.gov/pubmed/17799234

pmid: 17799234
[79]
Jephcoat A. Phys. Rev. Lett., 1987,59:2670. https://www.ncbi.nlm.nih.gov/pubmed/10035618

doi: 10.1103/PhysRevLett.59.2670 pmid: 10035618
[80]
Goettel K A, Eggert J H, Silvera I F, Moss W C. Phys. Rev. Lett., 1989,62:665. https://www.ncbi.nlm.nih.gov/pubmed/10040297

doi: 10.1103/PhysRevLett.62.665 pmid: 10040297
[81]
Agnes D, Nicholas W, Chris J P, Richard J N, Sakura P, Olivier M, Mohamed M, Tetsuo I. Nature Chem., 2016,8:784.
[82]
Hiby J W. Ann. Phys.-Berlin, 1939,426:473.
[83]
Loubeyre P, Jean Louis M, LeToullec R, Charon-Gérard L. Phys. Rev. Lett., 1993,70:181.
[84]
Liu H, Yao Y, Klug D D. Phys. Rev. B, 2015,91:014102.
[85]
Miao M, Wang X, Brgoch J, Spera F, Jackson M G, Kresse G, Lin H. Am. Chem. Soc., 2015,137:14122. https://pubs.acs.org/doi/10.1021/jacs.5b08162

doi: 10.1021/jacs.5b08162
[86]
Dong X, Oganov A R, Goncharow A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer VL, Dronskowski R, Zhou X F, Prakapenka V B, Konopkova Z, Popov I A, Boldyrev A I, Wang H. Nat. Chem., 2017,9:440. https://www.ncbi.nlm.nih.gov/pubmed/28430195

doi: 10.1038/nchem.2716 pmid: 28430195
[87]
Boles M A, Engel M, Talapin D V. Chem. Rev., 2016,116:11220. https://www.ncbi.nlm.nih.gov/pubmed/27552640

doi: 10.1021/acs.chemrev.6b00196 pmid: 27552640
[88]
Choi S H, Kim E G, Hyeon T. Am. Chem. Soc., 2006,128:2520. https://pubs.acs.org/doi/10.1021/ja0577342

doi: 10.1021/ja0577342
[89]
Wu H M, Wang Z W, Fan H Y. Am. Chem. Soc., 2014,136:7634. https://pubs.acs.org/doi/10.1021/ja503320s

doi: 10.1021/ja503320s
[90]
Zhu H, Nagaoka Y, Hills Kimball K, Tan R, Yu L, Fang Y, Wang K, Li R, Wang Z, Chen O. Am. Chem. Soc., 2017,139:8408. https://pubs.acs.org/doi/10.1021/jacs.7b04018

doi: 10.1021/jacs.7b04018
[91]
Wang T, Li R, Quan Z, Loc W S, Bassett W A, Xu H W, Cao Y, Fang J, Wang Z. Adv. Mater., 2015,27:4544. https://www.ncbi.nlm.nih.gov/pubmed/26179895

doi: 10.1002/adma.201502070 pmid: 26179895
[92]
Sata N, Shen G, Rivers M L, Sutton S R. Phys. Rev. B, 2002,65:104114.
[93]
Ono S. Phys. Conf. Ser., 2010,215:012196.
[94]
Ross M. Chem. Phys., 1972,56:4651.
[95]
Oganov A R, Glass C W. Chem. Phys., 2006,124:244704.
[96]
Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B, Konôpková Z. Science, 2013,342:1502. https://www.ncbi.nlm.nih.gov/pubmed/24357316

doi: 10.1126/science.1244989 pmid: 24357316
[97]
Ballini R. Eco-friendly Synthesis of Fine Chemicals. Cambridge: The Royal Society of Chemistry, 2009,237.
[98]
Li Q, Zhang L, Chen Z, Quan Z. J. Mater. Chem. A, 2019,7:16089. http://xlink.rsc.org/?DOI=C9TA04930D

doi: 10.1039/C9TA04930D
[99]
Ferreira A R F C, Figueiredo A B, Evtuguin D V, Saraiva J A. Green Chem., 2011,13:2764. 8ff23f92-f3bf-4a2e-a970-de5d26954dcdhttp://dx.doi.org/10.1039/c1gc15500h

doi: 10.1039/c1gc15500h
[100]
Smith D, Howie R T, Crowe I F, Simionescu C L, Muryn C, Vishnyakov V, Novoselov K S, Kim Y, Halsall M P, Gregoryanz E, Proctor J E. ACS Nano, 2015,9:8279. https://www.ncbi.nlm.nih.gov/pubmed/26256819

doi: 10.1021/acsnano.5b02712 pmid: 26256819
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[5] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[6] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[7] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Ruren Xu, Jihong Yu, Wenfu Yan. Goals and Major Scientific Issues in Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1017-1048.
[10] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[11] Xiping Jing. From Solid State Chemistry to Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1049-1059.
[12] Zheng Chen, Yingshuang Shang, Haibo Zhang, Zhenhua Jiang. Structure and Chemistry of Polymer Condensed State [J]. Progress in Chemistry, 2020, 32(8): 1115-1127.
[13] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[14] Jiang Ge, Luo Feng, Xu Yaozhong, Zhang Xiaohui. UVA Assisted 4-Thiothymidine for Cancer Treatment [J]. Progress in Chemistry, 2016, 28(8): 1224-1237.
[15] Zhao Xiang, Zhao Zongyan. Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective [J]. Progress in Chemistry, 2015, 27(7): 913-934.