中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 839-860 DOI: 10.7536/PC230208 Previous Articles   Next Articles

• Review •

Methanol to Olefins (MTO): A Condensed Matter Chemistry

Nan Wang, Yingxu Wei(), Zhongmin Liu()   

  1. National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: weiyx@dicp.ac.cn (Yingxu Wei);liuzm@dicp.ac.cn (Zhongmin Liu)
  • Supported by:
    The National Natural Science Foundation of China(22288101); The National Natural Science Foundation of China(21991092); The National Natural Science Foundation of China(21991090); The Excellent Postdoctoral Support Program of Dalian Institute of Chemical Physics, CAS and the Excellent Research Assistant Funding Project of CAS
Richhtml ( 23 ) PDF ( 462 ) Cited
Export

EndNote

Ris

BibTeX

Catalysis is an essential component of condensed matter chemistry, with broad applications in contemporary industrial manufacturing and daily life. Methanol-to-olefins (MTO) reaction, facilitated by condensed-matter porous materials, represents a significant catalytic pathway for the production of light olefins from non-petroleum sources, exemplifying heterogeneous catalytic applications. Investigating reaction mechanisms and catalyst coking/decoking mechanisms is a central focus in catalysis research. The MTO reaction, transpiring within the confined spaces of zeolites and/or molecular sieves, encompasses a dynamic chemical process comprising an induction period, a highly efficient stage, catalyst deactivation, and catalyst regeneration. The formation, evolution, and degradation of active organic species and coke species within the nano-confined spaces of zeolites guide the course of the catalytic reaction. This feature review primarily highlights zeolite/molecular sieve catalysts for the MTO reaction, elucidating the structural-reaction-deactivation relationship based on host-guest chemistry, activation mechanisms of C1 reactants, the catalytic reaction network governed by dynamic mechanisms, chemistries involved in zeolite coking and decoking behavior, as well as the mechanisms of catalyst deactivation and regeneration. The ultimate aim is to provide a profound understanding of condensed matter chemistry in the context of heterogeneous methanol-to-olefins chemistry, thus advancing zeolite catalysis theory and fostering the development of efficient MTO catalysts and high-efficiency, low-carbon catalytic processes under the guidance of condensed matter chemistry.

Contents

1 Introduction

2 Catalysts for methanol-to-olefins

2.1 ZSM-5 catalyst with MFI topology structure

2.2 SAPO-34 with CHA topology structure

2.3 Other catalysts with 8-MR pore opening and cavity structure

3 Catalytic reaction mechanism for methanol conversion

3.1 Direct mechanism

3.2 Indirect mechanism

4 Mechanisms of catalyst deactivation/regeneration by zeolite coking/decoking for methanol conversion

4.1 Deactivation mechanism and chemistry involved in zeolite coking

4.2 Regeneration mechanism and chemistry involved in zeolite decoking

5 Conclusions and outlook

Fig.1 The framework (a) and pore structures (b) of MFI
Fig.2 Illustrations of CHA topology (SAPO-34 molecular sieve)
Fig.3 Molecular sieves with 8 MR and cavity structure
Fig.4 MTH chronology shows milestones in the development of condensed-matter materials as catalysts, industrial processes and reaction mechanism study of MTO
Fig.5 Schematic of regeneration processes of coked SAPO-34 molecular sieve[38]. Copyright 2021 Elsevier Inc
Fig.6 (a)13C CP/MAS NMR spectra of the HZSM-5 catalyst after13C methanol conversion at 300℃ for 25~240 seconds. * indicates the spinning sideband. (b) In situ solid-state13C MAS NMR spectra recorded during 13C methanol conversion over HZSM-5 at 300℃. The spectra were recorded every 20 s from 0 to 5 min and then every 60 seconds from 5 to 12 min[57]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 1 A series of carbenium ions observed in zeolites with solid-state NMR spectroscopy during methanol reaction[13]. Copyright 2022 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.7 The traditional dual cycles and the cyclopentadienes-based cycle newly proposed for methanol conversion
Fig.8 Schematic of the coking behavior and the deactivation mechanism of SAPO-34 molecular sieve proposed by Haw et al. in 2003[15]. Copyright 2003 American Chemical Society
Fig.9 Deactivation mechanism of SAPO-34 during MTO reaction proposed by Gao et al. in 2018[61]. Copyright 2018 Elsevier Inc
Fig.10 The possible routes of coke precursor evolution over H-SAPO-34 at 350℃[90]. Copyright 2020 The Royal Society of Chemistry
Fig.11 Confined coke after methanol conversion at 300, 325 and 350℃. (a) Deactivated catalysts; (b) extracted organics in CH2Cl2 solution from dissolved catalysts; (c) main coke species determined with GC-MS; (d) resonance peak intensity comparison of1H-13C CP/MAS NMR spectra of confined organics[91]. Copyright 2012 The Royal Society of Chemistry
Fig.12 (a) Molecular evolution route of PAHs; (b) molecular structure analysis of deactivating species in cage-structured molecular sieves by MALDI FT-ICR mass spectra[64]. Copyright 2020 Springer Nature
Fig.13 Electron diffraction mapping and distribution of coke species in ZSM-5 zeolites[93]. Copyright 2022 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.14 Schematic of the effect of water addition on the distribution of coke at individual crystal level during methanol-to-olefin (MTO) reaction[110]. Copyright 2016 American Chemical Society
Fig.15 Selective transformation of coke into specific naphthalenic species-rich catalyst, and improvement of MTO performance and atom economy implemented in the circulating fluidized bed reactor-regenerator configuration[40]. Copyright 2021 Springer Nature
Fig.16 A schematic compiling the molecule-resolved interpretation of full-spectrum MTO products evolution trajectory as well as the coking chemistry for MTO reaction over SAPO-34 and decoking chemistry for steam regeneration[39]. Copyright 2022 Elsevier Inc
[1]
Berzelius J J. Royal Swedisch Academy of Sciences, 1835.
[2]
Van Houten J. J. Chem. Educ., 2002, 79(2): 146.

doi: 10.1021/ed079p146
[3]
Olmsted J III. J. Chem. Educ., 2010, 87(10): 1045.

doi: 10.1021/ed100201t
[4]
Tian P, Wei Y X, Ye M, Liu Z M. ACS Catal., 2015, 5(3): 1922.

doi: 10.1021/acscatal.5b00007
[5]
Li Y, Yu J H. Nat. Rev. Mater., 2021, 6(12): 1156.

doi: 10.1038/s41578-021-00347-3
[6]
Davis M E. Nature, 2002, 417(6891): 813.

doi: 10.1038/nature00785
[7]
Dusselier M, Davis M E. Chem. Rev., 2018, 118(11): 5265.

doi: 10.1021/acs.chemrev.7b00738 pmid: 29746122
[8]
Busca G. Chem. Rev., 2007, 107(11): 5366.

doi: 10.1021/cr068042e
[9]
Corma A. Chem. Rev., 1995, 95(3): 559.

doi: 10.1021/cr00035a006
[10]
Wang S, Chen Y Y, Wei Z H, Qin Z F, Liang T Y, Dong M, Li J F, Fan W B, Wang J G. J. Phys. Chem. C, 2016, 120(49): 27964.

doi: 10.1021/acs.jpcc.6b08154
[11]
Smit B, Maesen T L M. Chem. Rev., 2008, 108(10): 4125.

doi: 10.1021/cr8002642
[12]
Smit B, Maesen T L M. Nature, 2008, 451(7179): 671.

doi: 10.1038/nature06552
[13]
Zhang W N, Wei Y X, Liu Z M. In The Chemical Transformations of C1 Compounds, 2022, DOI: 10.1002/9783527831883.ch3.

doi: 10.1002/9783527831883.ch3
[14]
Argauer R J, Landolt G R. US3702886, 1972.
[15]
Haw J F, Song W G, Marcus D M, Nicholas J B. Acc. Chem. Res., 2003, 36(5): 317.

doi: 10.1021/ar020006o
[16]
Hereijgers B P C, Bleken F, Nilsen M H, Svelle S, Lillerud K P, Bjørgen M, Weckhuysen B M, Olsbye U. J. Catal., 2009, 264(1): 77.

doi: 10.1016/j.jcat.2009.03.009
[17]
Conte M, Lopez-Sanchez J A, He Q, Morgan D J, Ryabenkova Y, Bartley J K, Carley A F, Taylor S H, Kiely C J, Khalid K, Hutchings G J. Catal. Sci. Technol., 2012, 2(1): 105.

doi: 10.1039/C1CY00299F
[18]
Goguen P W, Xu T, Barich D H, Skloss T W, Song W G, Wang Z K, Nicholas J B, Haw J F. J. Am. Chem. Soc., 1998, 120(11): 2650.

doi: 10.1021/ja973920z
[19]
Chen J L, Liang T Y, Li J F, Wang S, Qin Z F, Wang P F, Huang L Z, Fan W B, Wang J G. ACS Catal., 2016, 6(4): 2299.

doi: 10.1021/acscatal.5b02862
[20]
Galletero M S, Corma A, Ferrer B, FornÉs V, García H. J. Phys. Chem. B, 2003, 107(5): 1135.

doi: 10.1021/jp0210531
[21]
Margarit V J, Osman M, Al-Khattaf S, Martínez C, Boronat M, Corma A. ACS Catal., 2019, 9(7): 5935.

doi: 10.1021/acscatal.9b00763
[22]
Wang N, Sun W J, Hou Y L, Ge B H, Hu L, Nie J Q, Qian W Z, Wei F. J. Catal., 2018, 360: 89.

doi: 10.1016/j.jcat.2017.12.024
[23]
Liu X L, Wang C M, Zhou J, Liu C, Liu Z C, Shi J, Wang Y D, Teng J W, Xie Z K. Chem. Soc. Rev., 2022, 51(19): 8174.

doi: 10.1039/D2CS00079B
[24]
Shen B Y, Wang H Q, Xiong H, Chen X, Bosch E G T, Lazić I, Qian W Z, Wei F. Nature, 2022, 607(7920): 703.

doi: 10.1038/s41586-022-04876-x
[25]
Brent M, Celeste A, Patton R, Gajek R, Cannan T, Lanigen E, Lok B, Messina C, Flanigen E. EP103117-A1, 1984.
[26]
Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. J. Am. Chem. Soc., 1984, 106(20): 6092.

doi: 10.1021/ja00332a063
[27]
Wang H D, Jiao F, Ding Y, Liu W J, Xu Z C, Pan X L, Bao X H. Natl. Sci. Rev., 2022, 9(9): nwac146.

doi: 10.1093/nsr/nwac146
[28]
Lin S F, Zhi Y C, Chen W, Li H, Zhang W N, Lou C Y, Wu X Q, Zeng S, Xu S T, Xiao J P, Zheng A M, Wei Y X, Liu Z M. J. Am. Chem. Soc., 2021, 143(31): 12038.

doi: 10.1021/jacs.1c03475
[29]
Olsbye U, Svelle S, Lillerud K P, Wei Z H, Chen Y Y, Li J F, Wang J G, Fan W B. Chem. Soc. Rev., 2015, 44(20): 7155.

doi: 10.1039/c5cs00304k pmid: 26185806
[30]
Ye M, Tian P, Liu Z M. Engineering, 2021, 7(1): 17.

doi: 10.1016/j.eng.2020.12.001
[31]
Gao B B, Yang M, Qiao Y Y, Li J Z, Xiang X, Wu P F, Wei Y X, Xu S T, Tian P, Liu Z M. Catal. Sci. Technol., 2016, 6(20): 7569.

doi: 10.1039/C6CY01461E
[32]
Wu P F, Yang M, Zhang W N, Xu S T, Guo P, Tian P, Liu Z M. Chem. Commun., 2017, 53(36): 4985.

doi: 10.1039/C7CC01834G
[33]
Sun Q M, Xie Z K, Yu J H. Natl. Sci. Rev., 2018, 5(4): 542.

doi: 10.1093/nsr/nwx103
[34]
Zhong J W, Han J F, Wei Y X, Xu S T, He Y L, Zheng Y J, Ye M, Guo X W, Song C S, Liu Z M. Chem. Commun., 2018, 54(25): 3146.

doi: 10.1039/C7CC09239C
[35]
Arora S S, Nieskens D L S, Malek A, Bhan A. Nat. Catal., 2018, 1(9): 666.

doi: 10.1038/s41929-018-0125-2
[36]
Zhao X B, Li J Z, Tian P, Wang L Y, Li X F, Lin S F, Guo X W, Liu Z M. ACS Catal., 2019, 9(4): 3017.

doi: 10.1021/acscatal.8b04402
[37]
Zhou J B, Zhi Y C, Zhang J L, Liu Z Q, Zhang T, He Y L, Zheng A M, Ye M, Wei Y X, Liu Z M. J. Catal., 2019, 377: 153.

doi: 10.1016/j.jcat.2019.06.014
[38]
van Vreeswijk S H, Weckhuysen B M. Joule, 2021, 5(4): 757.

doi: 10.1016/j.joule.2021.03.008
[39]
Wang N, Wang L, Zhi Y C, Han J F, Zhang C W, Wu X Q, Zhang J L, Wang L Y, Fan B H, Xu S T, Zheng Y J, Lin S F, Wu R N, Wei Y X, Liu Z M. J. Energy Chem., 2023, 76: 105.

doi: 10.1016/j.jechem.2022.09.014
[40]
Zhou J B, Gao M B, Zhang J L, Liu W J, Zhang T, Li H, Xu Z C, Ye M, Liu Z M. Nat. Commun., 2021, 12: 17.

doi: 10.1038/s41467-020-20193-1
[41]
Zhou J B, Zhao J P, Zhang J L, Zhang T, Ye M, Liu Z M. Chin. J. Catal., 2020, 41(7): 1048.

doi: 10.1016/S1872-2067(20)63552-5
[42]
Li J Z, Wei Y X, Chen J R, Xu S T, Tian P, Yang X F, Li B, Wang J B, Liu Z M. ACS Catal., 2015, 5(2): 661.

doi: 10.1021/cs501669k
[43]
Yang M, Li B, Gao M B, Lin S F, Wang Y, Xu S T, Zhao X B, Guo P, Wei Y X, Ye M, Tian P, Liu Z M. ACS Catal., 2020, 10(6): 3741.

doi: 10.1021/acscatal.9b04703
[44]
Pinilla-Herrero I, Olsbye U, Márquez-Álvarez C, Sastre E. J. Catal., 2017, 352: 191.

doi: 10.1016/j.jcat.2017.05.008
[45]
Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Nat. Catal., 2018, 1(6): 398.

doi: 10.1038/s41929-018-0078-5
[46]
Xu S T, Zhi Y C, Han J F, Zhang W N, Wu X Q, Sun T T, Wei Y X, Liu Z M. Advances in Catalysis. Amsterdam: Elsevier, 2017. 37.
[47]
Chen W, Li G C, Yi X F, Day S J, Tarach K A, Liu Z Q, Liu S B, Edman Tsang S C, GÓra-Marek K, Zheng A M. J. Am. Chem. Soc., 2021, 143(37): 15440.

doi: 10.1021/jacs.1c08036 pmid: 34478267
[48]
Chowdhury A D, Houben K, Whiting G T, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Baldus M, Weckhuysen B M. Angew. Chem. Int. Ed., 2016, 55(51): 15840.

doi: 10.1002/anie.201608643 pmid: 27805783
[49]
Chu Y Y, Yi X F, Li C B, Sun X Y, Zheng A M. Chem. Sci., 2018, 9(31): 6470.

doi: 10.1039/C8SC02302F
[50]
Comas-Vives A, Valla M, CopÉret C, Sautet P. ACS Cent. Sci., 2015, 1(6): 313.

doi: 10.1021/acscentsci.5b00226
[51]
Li J F, Wei Z H, Chen Y Y, Jing B Q, He Y, Dong M, Jiao H J, Li X K, Qin Z F, Wang J G, Fan W B. J. Catal., 2014, 317: 277.

doi: 10.1016/j.jcat.2014.05.015
[52]
Liu Y, Müller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez-Sanchez M, Lercher J A. Angew. Chem. Int. Ed., 2016, 55(19): 5723.

doi: 10.1002/anie.201511678
[53]
Parvulescu A N, Mores D, Stavitski E, Teodorescu C M, Bruijnincx P C A, Gebbink R J M K, Weckhuysen B M. J. Am. Chem. Soc., 2010, 132(30): 10429.

doi: 10.1021/ja102566b pmid: 20662520
[54]
Sun T T, Chen W, Xu S T, Zheng A M, Wu X Q, Zeng S, Wang N, Meng X J, Wei Y X, Liu Z M. Chem, 2021, 7(9): 2415.

doi: 10.1016/j.chempr.2021.05.023
[55]
Wang C, Chu Y Y, Xu J, Wang Q, Qi G D, Gao P, Zhou X, Deng F. Angew. Chem. Int. Ed., 2018, 57(32): 10197.

doi: 10.1002/anie.v57.32
[56]
Wang W, Buchholz A, Seiler M, Hunger M. J. Am. Chem. Soc., 2003, 125(49): 15260.

doi: 10.1021/ja0304244 pmid: 14653761
[57]
Wu X Q, Xu S T, Zhang W N, Huang J D, Li J Z, Yu B W, Wei Y X, Liu Z M. Angew. Chem. Int. Ed., 2017, 56(31): 9039.

doi: 10.1002/anie.201703902
[58]
Yang L, Yan T T, Wang C M, Dai W L, Wu G J, Hunger M, Fan W B, Xie Z K, Guan N J, Li L D. ACS Catal., 2019, 9(7): 6491.

doi: 10.1021/acscatal.9b00641
[59]
Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K P, Kolboe S, Bjørgen M. J. Am. Chem. Soc., 2006, 128(46): 14770.

doi: 10.1021/ja065810a pmid: 17105263
[60]
Zhang W N, Zhi Y C, Huang J D, Wu X Q, Zeng S, Xu S T, Zheng A M, Wei Y X, Liu Z M. ACS Catal., 2019, 9(8): 7373.

doi: 10.1021/acscatal.9b02487
[61]
Gao S S, Xu S T, Wei Y X, Qiao Q L, Xu Z C, Wu X Q, Zhang M Z, He Y L, Xu S L, Liu Z M. J. Catal., 2018, 367: 306.

doi: 10.1016/j.jcat.2018.09.010
[62]
Goetze J, Meirer F, Yarulina I, Gascon J, Kapteijn F, Ruiz-Martínez J, Weckhuysen B M. ACS Catal., 2017, 7(6): 4033.

doi: 10.1021/acscatal.6b03677 pmid: 28603658
[63]
Guisnet M, Magnoux P. Appl. Catal., 1989, 54(1): 1.
[64]
Wang N, Zhi Y C, Wei Y X, Zhang W N, Liu Z Q, Huang J D, Sun T T, Xu S T, Lin S F, He Y L, Zheng A M, Liu Z M. Nat. Commun., 2020, 11: 1079.

doi: 10.1038/s41467-020-14493-9 pmid: 32103001
[65]
Guisnet M. Deactivation and Regeneration of Zeolite Catalysts. Imperial College Press, 2011. 217.
[66]
Wang F, Damascene Harindintwali J, Yuan Z Z, Wang M, Wang F M, Li S, Yin Z G, Huang L, Fu Y H, Li L, Chang S X, Zhang L J, Rinklebe J, Yuan Z Q, Zhu Q G, Xiang L L, Tsang D C W, Xu L, Jiang X, Liu J H, Wei N, Kästner M, Zou Y, Ok Y S, Shen J L, Peng D L, Zhang W, BarcelÓ D, Zhou Y J, Bai Z H, Li B Q, Zhang B, Wei K, Cao H J, Tan Z L, Zhao L B, He X, Zheng J X, Bolan N, Liu X H, Huang C P, Dietmann S, Luo M, Sun N N, Gong J R, Gong Y L, Brahushi F, Zhang T T, Xiao C D, Li X F, Chen W F, Jiao N Z, Lehmann J, Zhu Y G, Jin H G, Schäffer A, Tiedje J M, Chen J M. Innov., 2021, 2(4): 100180.
[67]
Bartholomew C H. Appl. Catal. A Gen., 2001, 212(1/2): 17.

doi: 10.1016/S0926-860X(00)00843-7
[68]
Bartholomew C, Argyle M. Catalysts, 2015, 5(2): 949.

doi: 10.3390/catal5020949
[69]
Wu X Q, Xu S T, Wei Y X, Zhang W N, Huang J D, Xu S L, He Y L, Lin S F, Sun T T, Liu Z M. ACS Catal., 2018, 8(8): 7356.

doi: 10.1021/acscatal.8b02385
[70]
Zhang W N, Zhang M Z, Xu S T, Gao S S, Wei Y X, Liu Z M. ACS Catal., 2020, 10(8): 4510.

doi: 10.1021/acscatal.0c00799
[71]
Dessau R. J. Catal., 1982, 78(1): 136.

doi: 10.1016/0021-9517(82)90292-5
[72]
Mole T. J. Catal., 1983, 84(2): 435.

doi: 10.1016/0021-9517(83)90014-3
[73]
Mole T, Whiteside J A, Seddon D. Journal of Catalysis, 1983, 82 (2): 261.

doi: 10.1016/0021-9517(83)90192-6
[74]
Chen N, Reagan W. J. Catal., 1979, 59(1): 123.

doi: 10.1016/S0021-9517(79)80050-0
[75]
Dahl I M, Kolboe S. J. Catal., 1994, 149(2): 458.

doi: 10.1006/jcat.1994.1312
[76]
Dahl I M, Kolboe S. J. Catal., 1996, 161(1): 304.

doi: 10.1006/jcat.1996.0188
[77]
Lesthaeghe D, HorrÉ A, Waroquier M, Marin G, Van Speybroeck V. Chem. Eur. J., 2009, 15(41): 10803.

doi: 10.1002/chem.200901723
[78]
Haw J F, Marcus D M. Top. Catal., 2005, 34(1/4): 41.

doi: 10.1007/s11244-005-3798-0
[79]
Bjørgen M, Lillerud K P, Olsbye U, Svelle S. In Studies in Surface Science and Catalysis, BellotNoronha F, SchmalM, FalabellaSousa-Aguiar E.Eds.; Elsevier, 2007. Vol. 167.
[80]
Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U. J. Catal., 2007, 249(2): 195.

doi: 10.1016/j.jcat.2007.04.006
[81]
Dai W L, Wang C M, Dyballa M, Wu G J, Guan N J, Li L D, Xie Z K, Hunger M. ACS Catal., 2015, 5(1): 317.

doi: 10.1021/cs5015749
[82]
Castaño P. Catalysts, 2021, 11(7): 798.

doi: 10.3390/catal11070798
[83]
Martín A J, Mitchell S, Mondelli C, Jaydev S, PÉrez-Ramírez J. Nat. Catal., 2022, 5(10): 854.

doi: 10.1038/s41929-022-00842-y
[84]
Chen D, Rebo H P, Moljord K, Holmen A. In Studies in Surface Science and Catalysis, BartholomewC H, FuentesG A.Eds. Elsevier, 1997. Vol. 111.
[85]
Guisnet M, Magnoux P. Catal. Today, 1997, 36(4): 477.

doi: 10.1016/S0920-5861(96)00238-6
[86]
Guisnet M, Magnoux P. Appl. Catal. A Gen., 2001, 212(1/2): 83.

doi: 10.1016/S0926-860X(00)00845-0
[87]
Vogt C, Weckhuysen B M. Nat. Rev. Chem., 2022, 6(2): 89.

doi: 10.1038/s41570-021-00340-y
[88]
Borodina E, Meirer F, Lezcano-González I, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Ruiz-Martinez J, Weckhuysen B M. ACS Catal., 2015, 5(2): 992.

doi: 10.1021/cs501345g
[89]
Borodina E, Sharbini Harun Kamaluddin H, Meirer F, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Ruiz-Martinez J, Weckhuysen B M. ACS Catal., 2017, 7(8): 5268.

doi: 10.1021/acscatal.7b01497 pmid: 28824823
[90]
Yu B W, Zhang W N, Wei Y X, Wu X Q, Sun T T, Fan B H, Xu S T, Liu Z M. Chem. Commun., 2020, 56(58): 8063.

doi: 10.1039/D0CC02408B
[91]
Wei Y X, Li J Z, Yuan C Y, Xu S T, Zhou Y, Chen J R, Wang Q Y, Zhang Q, Liu Z M. Chem. Commun., 2012, 48(25): 3082.

doi: 10.1039/c2cc17676a
[92]
Müller S, Liu Y, Vishnuvarthan M, Sun X Y, van Veen A C, Haller G L, Sanchez-Sanchez M, Lercher J A. J. Catal., 2015, 325: 48.

doi: 10.1016/j.jcat.2015.02.013
[93]
Wennmacher J T C, Mahmoudi S, Rzepka P, Sik Lee S, Gruene T, Paunović V, van Bokhoven J A. Angewandte Chemie Int. Ed., 2022, 61(29): e202205413.
[94]
Lee S, Choi M. J. Catal., 2019, 375: 183.

doi: 10.1016/j.jcat.2019.05.030
[95]
Dahl I M, Mostad H, Akporiaye D, Wendelbo R. Microporous Mesoporous Mater., 1999, 29(1/2): 185.

doi: 10.1016/S1387-1811(98)00330-8
[96]
Ilias S, Bhan A. ACS Catal., 2013, 3(1): 18.

doi: 10.1021/cs3006583
[97]
Bleken F, Bjørgen M, Palumbo L, Bordiga S, Svelle S, Lillerud K P, Olsbye U. Top. Catal., 2009, 52(3): 218.

doi: 10.1007/s11244-008-9158-0
[98]
Yuen L T, Zones S I, Harris T V, Gallegos E J, Auroux A. Microporous Mater., 1994, 2(2): 105.

doi: 10.1016/0927-6513(93)E0039-J
[99]
Guisnet M, Costa L, Ribeiro F R. J. Mol. Catal. A Chem., 2009, 305(1/2): 69.

doi: 10.1016/j.molcata.2008.11.012
[100]
Zhong J W, Han J F, Wei Y X, Tian P, Guo X W, Song C S, Liu Z M. Catal. Sci. Technol., 2017, 7(21): 4905.

doi: 10.1039/C7CY01466J
[101]
Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M, Yu J H, Xu R R. J. Phys. Chem. C, 2013, 117(16): 8214.

doi: 10.1021/jp312857p
[102]
Dai W L, Wu G J, Li L D, Guan N J, Hunger M. ACS Catal., 2013, 3(4): 588.

doi: 10.1021/cs400007v
[103]
Vogt E T C, Weckhuysen B M. Chem. Soc. Rev., 2015, 44(20): 7342.

doi: 10.1039/c5cs00376h pmid: 26382875
[104]
Wang A Y, Chen Y, Walter E D, Washton N M, Mei D H, Varga T, Wang Y L, Szanyi J, Wang Y, Peden C H F, Gao F. Nat. Commun., 2019, 10: 1137.

doi: 10.1038/s41467-019-09021-3
[105]
Zhang R D, Liu N, Lei Z G, Chen B H. Chem. Rev., 2016, 116(6): 3658.

doi: 10.1021/acs.chemrev.5b00474
[106]
Stanciakova K, Weckhuysen B M. Trends Chem., 2021, 3(6): 456.

doi: 10.1016/j.trechm.2021.03.004
[107]
Marchi A J, Froment G F. Appl. Catal., 1991, 71(1): 139.

doi: 10.1016/0166-9834(91)85011-J
[108]
Gayubo A G, Aguayo A T, Sánchez del Campo A E, Benito P L, Bilbao J. In Studies in Surface Science and Catalysis, Delmon B, Froment G F. Amsterdam: Elsevier, 1999. 126:129.
[109]
Wu X C, Anthony R G. Appl. Catal. A Gen., 2001, 218(1/2): 241.

doi: 10.1016/S0926-860X(01)00651-2
[110]
De Wispelaere K, Wondergem C S, Ensing B, Hemelsoet K, Meijer E J, Weckhuysen B M, Van Speybroeck V, Ruiz-Martı?nez J. ACS Catal., 2016, 6(3): 1991.

doi: 10.1021/acscatal.5b02139
[111]
Wang H Q, Hou Y L, Sun W J, Hu Q K, Xiong H, Wang T F, Yan B H, Qian W Z. ACS Catal., 2020, 10(9): 5288.

doi: 10.1021/acscatal.9b05552
[112]
Liu G Y, Tian P, Li J Z, Zhang D Z, Zhou F, Liu Z M. Microporous Mesoporous Mater., 2008, 111(1/3): 143.

doi: 10.1016/j.micromeso.2007.07.023
[113]
Yang L, Wang C, Zhang L N, Dai W L, Chu Y Y, Xu J, Wu G J, Gao M B, Liu W J, Xu Z C, Wang P F, Guan N J, Dyballa M, Ye M, Deng F, Fan W B, Li L D. Nat. Commun., 2021, 12: 4661.

doi: 10.1038/s41467-021-24403-2 pmid: 34341350
[114]
Wang C, Yang L, Gao M B, Shao X, Dai W L, Wu G J, Guan N J, Xu Z C, Ye M, Li L D. J. Am. Chem. Soc., 2022, 144(46): 21408.

doi: 10.1021/jacs.2c10495
[115]
Watanabe Y, Koiwai A, Takeuchi H, Hyodo S A, Noda S. J. Catal., 1993, 143(2): 430.

doi: 10.1006/jcat.1993.1287
[1] Qingping Li, Tao Li, Chenchen Shao, Wei Liu. Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(7): 1053-1064.
[2] Shiying Yang, Zhen Yang. Mechanism of Phase Transition on Zero-Valent Aluminum Surface and Its Effect on Pollutant Removal [J]. Progress in Chemistry, 2023, 35(7): 1030-1039.
[3] Yuenan Zheng, Jiaqi Yang, Zhen-An Qiao. Condensed Matter Chemistry: The Defect Engineering of Porous Materials [J]. Progress in Chemistry, 2023, 35(6): 954-967.
[4] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[5] Xuetao Qin, Ziqiao Zhou, Ding Ma. Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts [J]. Progress in Chemistry, 2023, 35(6): 928-939.
[6] Qinghe Li, Botao Qiao, Tao Zhang. Condensed Matter Chemistry in Single-Atom Catalysis [J]. Progress in Chemistry, 2023, 35(6): 821-838.
[7] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[12] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[13] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[14] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[15] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.