中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 328-341 DOI: 10.7536/PC201249 Previous Articles   Next Articles

• Review •

New Porous Materials Used as Chiral Stationary Phase for Chromatography

Bo Tang, Wei Wang, Aiqin Luo()   

  1. Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology,Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Aiqin Luo
  • Supported by:
    National Key R&D Program of China(2019YFA0904104)
Richhtml ( 60 ) PDF ( 522 ) Cited
Export

EndNote

Ris

BibTeX

It is well established that enantiomers often exhibit different biological and pharmacological responses. However, enantiomers remain a challenge to separate and analyze due to their identical physical and chemical properties in an achiral environment. Research on specialized separation techniques continues to be developed to obtain optically pure compounds. The separation of enantiomers by chromatographic methods, such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrochromatography (CEC), has become one of increasingly important research contents in chemistry over the past few decades due to the demand for pharmaceuticals, agrochemical, and food analysis. The chiral stationary phase (CSP) is key to separating and analyzing chiral compounds for these chromatographic resolution methods. With the rapid development of materials science, diverse types of porous materials as CSP have been studied in recent years. This review mainly focuses on investigating chiral porous materials as CSP for high-performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrochromatography (CEC) over the past five years. The chiral porous materials include chiral metal-organic frameworks (CMOFs), chiral covalent organic frameworks (CCOFs), chiral porous organic cages (CPOCs), chiral metal-organic cages (CMOCs), chiral microporous organic networks (MONs), and chiral mesoporous silicas (CMSs). Chiral recognition mechanisms of novel chiral porous materials are also discussed briefly. Finally, the related problems and prospects for CSP were briefly discussed.

Contents

1 Introduction

2 CSP of HPLC

2.1 CMOFs used as CSP

2.2 CCOFs used as CSP

2.3 Other materials used as CSP

3 CSP of GC

3.1 CMOFs used as CSP

3.2 CPOCs used as CSP

3.3 CMOCs used as CSP

3.4 Other materials used as CSP

4 CSP for CEC

4.1 CMOFs used as CSP

4.2 CCOFs used as CSP

4.3 Other materials used as CSP

5 CSP for other chromatography

6 Chiral separation mechanism

7 Conclusion and outlook

Table 1 Separations of racemates on HPLC with chiral porous materials as CSP
Fig.1 Schematic demonstration for the preparation of D-His-ZIF-8@SiO2 core-shell microspheres[56]
Fig.2 Synthesis of the 3D chiral COFs[66]
Fig.3 The structure of CPOCs[86⇓⇓⇓~90]
Figure 4 Synthesis of MDI-β-CD-modified COF through the bottom-up strategy[120]
Table 2 Separations of racemates on chiral porous materials coated column of CEC
Table 3 The CSPs and the main separation compounds introduced in this paper
Types Types of materials Name of CSPs Main separation analytes ref
HPLC CMOFs [Cd2(d-cam)3] ·2Hdma·4dma alcohol, naphthol, ketone, and base compounds 48
γ-CDMOF aromatic alcohol 49
[Zn(L-tyr)]n(L-tyrZn) alcohols, amines, ketones, ethers, organic acids 50
[Zn4(btc)2(Hbtc)(L-His)2(H2O)4]·1.5H2O
{[Zn2(L-trp)2(bpe)2(H2O)2] ·2H2O·2NO3}n
[Co2(L-Trp)(INT)2(H2O)2(ClO4)]
[Co2(sdba)((L-Trp)2]
[Co(L-Glu)(H2O)·H2O]
[Cu(H2O)2(S-TA)2]·6H2O ibuprofen, benzoin, furoin, thalidomide, trans-2,3-
Diphenyloxirane, 1-phenyl-ethan-1-ol, and flavanone
51
[Zn(BDA)(bpe)]·2DMA sulfoxides, sec-alcohols and flavanones 52
[Zn(BDA)(bpa)]·2DMA
(R)-CuMOF-2 sec-alcohols, sulfoxides, epoxides, lactone, 1,3-dioxolan-2-one, and oxazolidinone 53
[Zn[(R)-1]2(NMF)2]·NMF sulfoxides, sec-alcohols, β-lactams, benzoins, flavanones and epoxides 54
[Nd3(D-cam)8(H2O)4Cl]n alcohols, amines, ketones, α-amino acids 55
D-his-ZIF-8@SiO2 alcohol, phenol, amine, ketone, and organic acid 56
Cu2((+)-Cam)2Dabco@SiO2 carboxylic acid, ketones and phenols 57
[Zn2(bdc)(L-lac)(dmf)](DMF) (±)-methyl phenyl sulfoxide 58
CCOFs BtaMth@SiO2 nitrotoluene, nitrochlorobenzene, beta-cypermethrin,
metconazole
64
biomolecule⊂COF 1 DL-tryptophan, DL-leucine, DL-threonine, DL-lysine, DL-aspartic acid, ofloxacin, propranolol hydrochloride, metoprolol tartrate, alanyl glutamine, chlorpheniramine, benzoin 65
(R, R)-CCOF-6 1-phenyl-2-propanol, 1-phenyl-1-pentanol, 1-phenyl-1-propanol and 1-(4-bromophenyl)ethanol 66
CMSs HOCMS (C14-L-AlaA) alcohols, ketones, amines, aldehydes and organic acids 75
CMPs MP-CDPs 1-phenyl-1-propanol, 3-chloro-1-phenyl -1-propanol, mandelic acid, D/L-prolinol 76
GC CMOFs MIL-101(Al)-Xs (Xs=S-2-Ppa, R-Epo,
(+)-Ac-l-Ta, l-Pro, 1S-(+)-Cam)
alcohols, amines, nitriles, esters and aldehydes 83
CMOM-3S aromatic alcohols and nitriles 84
PSO/CCS-3S aromatic alcohols, amines, nitriles, lactones, organic acid 85
CPOCs CC3-R/CC3-S chiral alcohols and amines 86
CC3-R chiral alcohols, diols, amines, alcohol amines, esters, ketones, ethers, halohydrocarbons, organic acids, amino acid methyl esters, and sulfoxides 87
CC10 chiral alcohols, esters, ketones, ethers, halohydrocarbons, epoxides, and organic acids 88
CC9 chiral alcohols, esters, ethers and epoxides 89
CC5 derivatized amino acids, alcohols, alcohol amines, esters, ethers, ketones, and epoxides 90
POC-1 alcohols, diols, esters, lactones, halohydrocarbons, ethers, epoxides, ketones and sulfoxides 91
CC9-OH alcohols, diols, halohydrocarbons, epoxides, esters, lactones, ketones, ethers, and organic acids 92
CC3R-OH chiral alcohols 93
CMOCs [Zn3L2] alcohols, diols, epoxides, ethers, halohydrocarbons, and esters 98
aMOP-A chiral alcohols, ethers, organic acids, amino acid derivatives 99
MOC-PA ethers, organic acids, ethers, amino acid derivatives 100
CCOFs CTpPa-1 (±)-1-phenylethanol; (±)-1-phenyl-1-propanol; (±)-limonene; (±)-methyl lactate 101
CMS HOCMS (C14-L-AlaA) chiral alcohols, aldehydes, esters, organic acids, epoxides, and amino acid derivatives 102
HOCMS (C14-L-Val) chiral alcohols, epoxides and amino acid derivatives 103
CMONs MON-TGC/MON-MSA/MON-NAC chiral alcohols 104
CEC CMOFs [Zn2(D-Cam)2(4,4'-bpy)]n DL-Phenylalanine, DL-Tyrosine 114
JLU-Liu23 epinephrine, isoprenaline, synephrine, terbutaline 115
Cu-SD@PD chiral Dns-amino acids 116
BSA@ZIF-8 epicatechin/catechin and salbutamol 117
CCOFs cellulase@poly(GMA-EDMA-SNW-1) (±)-atenolol,(±)-Metoprolol, (±)-bisoprolol,(±)-propranolol, (±)-esmolol,(±)-azelastine,(±)-warfarin, (±)-labetalol 118
β-CD COF (±)-sotalol, (±)-terbutaline, (±)-propranolol, (±)-Metoprolol, (±)-salbutamol and (±)-esmolol 119
MDI-β-CD-modified COF tryptophan, tyrosine, arginine, lysine, atenolol, labetalol, sotalol, and celiprolol 120
CPOCs CC3-R furoin, benzoin, alprenlol 121
CMOCs Zn3 L 2 1 Ofloxacin, Furoin, Benzoin, Omeprazole, Bendroflumethiazide 122
Zn3 L 2 2 Warfarin sodium, Ofloxacin, Mandelic acid, Ketoprofen
[Fe4 L 6 3](ClO4)8·Solvent Ofloxacin, 1-(Naphthalen-1-yl)ethanol, Flavanone, Trans-stilbene oxide
Zn3L2@poly(IL-co-EDMA) mandelic acid, benzoin, furoin 123
[1]
Lee C J, Qiu T A, Sweedler J V. Biochim. Et Biophys. Acta BBA Proteins Proteom., 2020, 1868(11): 140482.
[2]
Engel K H. J. Agric. Food Chem., 2020, 68(38): 10265.

doi: 10.1021/acs.jafc.0c01512
[3]
Pinto M M M, Fernandes C, Tiritan M E. Molecules, 2020, 25: 1931.

doi: 10.3390/molecules25081931
[4]
Alvarez-Rivera G, Bueno M, Ballesteros-Vivas D, Cifuentes A. Trac Trends Anal. Chem., 2020, 123: 115761.

doi: 10.1016/j.trac.2019.115761
[5]
Carrão D B, Perovani I S, de Albuquerque N C P, de Oliveira A R M. Trac Trends Anal. Chem., 2020, 122: 115719.

doi: 10.1016/j.trac.2019.115719
[6]
Yao G J, Gao J, Zhang C T, Jiang W Q, Wang P, Liu X K, Liu D H, Zhou Z Q. Environ. Sci. Pollut. Res., 2019, 26(2): 1558.

doi: 10.1007/s11356-018-3594-6
[7]
Menestrina F, Ronco N R, Romero L M, Castells C B. Microchem. J., 2018, 140: 52.

doi: 10.1016/j.microc.2018.03.037
[8]
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan M. Molecules, 2018, 23(2): 262.

doi: 10.3390/molecules23020262
[9]
Gübitz G. Chromatographia, 1990, 30(9/10): 555.

doi: 10.1007/BF02269804
[10]
Liu M X, Li X J, Bai Y, Liu H W. Chinese Journal of Chromatography, 2020, 38: 317.
( 刘明霞, 李向军, 白玉, 刘虎威. 色谱, 2020, 38: 317.)

doi: 10.3724/SP.J.1123.2019.10019
[11]
Teixeira J, Tiritan M E, Pinto M M M, Fernandes C. Molecules, 2019, 24(5): 865.

doi: 10.3390/molecules24050865
[12]
Adhikari S, Lee W. J. Pharm. Investig., 2018, 48(3): 225.

doi: 10.1007/s40005-017-0348-2
[13]
Schmarr H G, Mathes M, Wall K, Metzner F, Fraefel M. J. Chromatogr. A, 2017, 1516: 135.

doi: 10.1016/j.chroma.2017.08.010
[14]
Lubomirsky E, PadrÓ J M, di Loreto H, Castells C B. Electrophoresis, 2017, 38(15): 1948.

doi: 10.1002/elps.201600528 pmid: 28432770
[15]
Xie S M, Yuan L M. J. Sep. Sci., 2017, 40(1): 124.

doi: 10.1002/jssc.201600808
[16]
Weng X L, Bao Z B, Luo F, Su B G, Yang Y W, Ren Q L. Prog. Chem., 2014, 26: 415.
( 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 壬其龙. 化学进展, 2014, 26: 415.)

doi: 10.7536/PC130776
[17]
Mohamedali M, Ibrahim H, Henni A. Metal-Organic Frameworks. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018:123/161.
[18]
Jin E, Lee S, Kang E, Kim Y, Choe W. Coord. Chem. Rev., 2020, 425: 213526.

doi: 10.1016/j.ccr.2020.213526
[19]
Lee S, Jeong H, Nam D, Lah M S, Choe W. Chem. Soc. Rev., 2021, 50(1): 528.

doi: 10.1039/D0CS00443J
[20]
Haase F, Lotsch B V. Chem. Soc. Rev., 2020, 49(23): 8469.

doi: 10.1039/D0CS01027H
[21]
Mendes R F, Figueira F, Leite J P, Gales L, Almeida Paz F A. Chem. Soc. Rev., 2020, 49(24): 9121.

doi: 10.1039/D0CS00883D
[22]
Li H Y, Zhao S N, Zang S Q, Li J. Chem. Soc. Rev., 2020, 49(17): 6364.

doi: 10.1039/C9CS00778D
[23]
Wu Q, Sun Y M, Gao J, Dong S Q, Luo G Y, Li H, Zhao L. Trac Trends Anal. Chem., 2017, 95: 140.

doi: 10.1016/j.trac.2017.08.005
[24]
Duan X L, Fu Y, Zhang J L, Li W. Prog. Chem., 2013, 25(8): 1272.
( 段小丽, 付雁, 张金利, 李韡. 化学进展, 2013, 25(8): 1272.)
[25]
Yu N, Ding H M, Wang C. Prog. Chem., 2016, 28(12): 1721.

doi: 10.7536/PC160727
( 喻娜, 丁慧敏, 汪成. 化学进展, 2016, 28(12): 1721.)

doi: 10.7536/PC160727
[26]
Zhang H, Zhou Y J, Song X K. Prog. Chem., 2015, 27(2/3): 174.

doi: 10.7536/PC140925
( 张慧, 周雅静, 宋肖锴. 化学进展, 2015, 27(2/3)
[27]
Sun Z F, Hou J J, Li L S, Tang Z Y. Coord. Chem. Rev., 2020, 425: 213481.

doi: 10.1016/j.ccr.2020.213481
[28]
Wu Q, Lv H, Zhao L. Trac Trends Anal. Chem., 2020, 129: 115941.

doi: 10.1016/j.trac.2020.115941
[29]
Qian H L, Yang C X, Wang W L, Yang C, Yan X P. J. Chromatogr. A, 2018, 1542: 1.

doi: 10.1016/j.chroma.2018.02.023
[30]
Tang W Q, Xu J Y, Gu Z Y. Chem. Asian J., 2019, 14(20): 3462.

doi: 10.1002/asia.v14.20
[31]
Xie S M, Yuan L M., J. Sep. Sci., 2019, 42: 6.

doi: 10.1002/jssc.v42.1
[32]
Gus’kov V Y, Maistrenko V N. J. Anal. Chem., 2018, 73(10): 937.

doi: 10.1134/S1061934818100027
[33]
Zhang Y, Jin X N, Ma X F, Wang Y. Anal. Methods, 2021, 13(1): 8.

doi: 10.1039/D0AY01831G
[34]
Li G, Dai X, Min Y X, Yu C, Ikai T, Zhang L L, Shen J, Okamoto Y. Cellulose, 2021, 28(1): 347.

doi: 10.1007/s10570-020-03514-x
[35]
Yang Y, Hu J W, Fang H, Hou X B, Hou Z, Sang L H, Yang X Y. J. Chromatogr. A, 2020, 1632: 461598.

doi: 10.1016/j.chroma.2020.461598
[36]
Cai L Z, Xue M Y, Lun J, Li S, Yu J, Guo X J. Electrophoresis, 2020, 41(24): 2092.

doi: 10.1002/elps.v41.24
[37]
ALOthman Z A, ALanazi A G, Suhail M, Ali I. J. Chromatogr. B, 2020, 1157: 122335.

doi: 10.1016/j.jchromb.2020.122335
[38]
Merino M E D, Lancioni C, PadrÓ J M, Castells C B. J. Chromatogr. A, 2020, 1624: 461240.

doi: 10.1016/j.chroma.2020.461240
[39]
Chen X, Qiao Z W, Hou B, Jiang H, Gong W, Dong J Q, Li H Y, Cui Y, Liu Y. Nano Res., 2021, 14(2): 466.

doi: 10.1007/s12274-020-2905-7
[40]
Chang C L, Qi X Y, Zhang J W, Qiu Y M, Li X J, Wang X, Bai Y, Sun J L, Liu H W. Chem. Commun., 2015, 51(17): 3566.

doi: 10.1039/C4CC09988E
[41]
Okur S, Qin P, Chandresh A, Li C, Zhang Z J, Lemmer U, Heinke L. Angew. Chem. Int. Ed., 2021, 60(7): 3566.

doi: 10.1002/anie.v60.7
[42]
Zhang Y, Jin X, Ma X, Wang Y. Anal. Methods, 2021, 13: 8.

doi: 10.1039/D0AY01831G
[43]
Li L, Lu Z C, Chen Y L, A W W, Li G K, Hu Y L. Journal of Instrumental Analysis, 2019, 38: 618.
( 李亮, 卢梓程, 陈彦龙, 阿文伟, 李攻科, 胡玉玲. 分析测试学报, 2019, 38: 618.)
[44]
Zhang M, Pu Z J, Chen X L, Gong X L, Zhu A X, Yuan L M. Chem. Commun., 2013, 49(45): 5201.

doi: 10.1039/c3cc41966e
[45]
Kuang X, Ma Y, Su H, Zhang J N, Dong Y B, Tang B. Anal. Chem., 2014, 86(2): 1277.

doi: 10.1021/ac403674p pmid: 24380495
[46]
Kong J, Zhang M, Duan A H, Zhang J H, Yang R, Yuan L M. J. Sep. Science, 2015, 38(4): 556.

doi: 10.1002/jssc.201401034
[47]
Zhang J, Chen Z L. J. Chromatogr. A, 2017, 1530: 1.

doi: S0021-9673(17)31587-X pmid: 29150064
[48]
Zhang M, Chen X L, Zhang J H, Kong J, Yuan L M. Chirality, 2016, 28(4): 340.

doi: 10.1002/chir.22588 pmid: 26901397
[49]
Yang C X, Zheng Y Z, Yan X P. RSC Adv., 2017, 7(58): 36297.

doi: 10.1039/C7RA06558B
[50]
Zhang J H, Nong R Y, Xie S M, Wang B J, Ai P, Yuan L M. Electrophoresis, 2017, 38(19): 2513.

doi: 10.1002/elps.v38.19
[51]
Corella-Ochoa M N, Tapia J B, Rubin H N, Lillo V, González-Cobos J, Núñez-Rico J L, Balestra S R G, Almora-Barrios N, LledÓs M, Güell-Bara A, Cabezas-GimÉnez J, Escudero-Adán E C, Vidal-Ferran A, Calero S, Reynolds M, Martí-Gastaldo C, Galán-MascarÓs J R. J. Am. Chem. Soc., 2019, 141(36): 14306.

doi: 10.1021/jacs.9b06500 pmid: 31426632
[52]
Tanaka K, Hotta N, Nagase S, Yoza K. New J. Chem., 2016, 40(6): 4891.

doi: 10.1039/C6NJ00090H
[53]
Tanaka K, Kawakita T, Morawiak M, Urbanczyk-Lipkowska Z. CrystEngComm, 2019, 21(3): 487.

doi: 10.1039/C8CE01791C
[54]
Tanaka K, Muraoka T, Otubo Y, Takahashi H, Ohnishi A. RSC Adv., 2016, 6(26): 21293.

doi: 10.1039/C5RA26520G
[55]
Zhang P, Wang L, Zhang J H, He Y J, Li Q, Luo L, Zhang M, Yuan L M. J. Liq. Chromatogr. Relat. Technol., 2018, 41(15/16): 903.

doi: 10.1080/10826076.2018.1537978
[56]
Yu Y Y, Xu N Y, Zhang J H, Wang B J, Xie S M, Yuan L M. ACS Appl. Mater. Interfaces, 2020, 12(14): 16903.

doi: 10.1021/acsami.0c01023
[57]
Wang C J, Zhang L, Li X L, Yu A, Zhang S S. Talanta, 2020, 218: 121155.

doi: 10.1016/j.talanta.2020.121155
[58]
Wang X, Lamprou A, Svec F, Bai Y, Liu H W. J. Sep. Sci., 2016, 39(23): 4544.

doi: 10.1002/jssc.201600810 pmid: 27730732
[59]
Li X L, Cai S L, Sun B, Yang C Q, Zhang J, Liu Y. Matter, 2020, 3(5): 1507.

doi: 10.1016/j.matt.2020.09.007
[60]
Han X, Yuan C, Hou B, Liu L J, Li H Y, Liu Y, Cui Y. Chem. Soc. Rev., 2020, 49(17): 6248.

doi: 10.1039/D0CS00009D
[61]
Hou B, Yang S, Yang K W, Han X, Tang X H, Liu Y, Jiang J W, Cui Y. Angew. Chem. Int. Ed., 2021, 60(11): 6086.

doi: 10.1002/anie.v60.11
[62]
Kang X, Wu X W, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci., 2020, 11(6): 1494.

doi: 10.1039/C9SC04882K
[63]
Han X, Zhang J, Huang J J, Wu X W, Yuan D Q, Liu Y, Cui Y. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[64]
Zhang K, Cai S L, Yan Y L, He Z H, Lin H M, Huang X L, Zheng S R, Fan J, Zhang W G. J. Chromatogr. A, 2017, 1519: 100.

doi: S0021-9673(17)31312-2 pmid: 28899554
[65]
Zhang S N, Zheng Y L, An H D, Aguila B, Yang C X, Dong Y Y, Xie W, Cheng P, Zhang Z J, Chen Y, Ma S Q. Angew. Chem. Int. Ed., 2018, 57(51): 16754.

doi: 10.1002/anie.v57.51
[66]
Han X, Huang J J, Yuan C, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(3): 892.

doi: 10.1021/jacs.7b12110
[67]
Wan Y, Zhao D Y. Chem. Rev., 2007, 107(7): 2821.

doi: 10.1021/cr068020s
[68]
Atluri R, Hedin N, Garcia-Bennett A E. J. Am. Chem. Soc., 2009, 131(9): 3189.

doi: 10.1021/ja8096477
[69]
Newham G, Mathew R K, Wurdak H, Evans S D, Ong Z Y. J. Colloid Interface Sci., 2021, 584: 669.

doi: 10.1016/j.jcis.2020.10.133
[70]
Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Nanoscale, 2020, 12(21): 11333.

doi: 10.1039/D0NR00732C
[71]
Wu S H, Mou C Y, Lin H P. Chem. Soc. Rev., 2013, 42(9): 3862.

doi: 10.1039/c3cs35405a
[72]
Ling D S, Lee N, Hyeon T. Acc. Chem. Res., 2015, 48(5): 1276.

doi: 10.1021/acs.accounts.5b00038
[73]
Wang J, Ma Q Q, Wang Y Q, Li Z H, Li Z H, Yuan Q. Chem. Soc. Rev., 2018, 47(23): 8766.

doi: 10.1039/c8cs00658j pmid: 30306180
[74]
Cui M S, Zhang W, Xie L Y, Chen L, Xu L. Molecules, 2020, 25(17): 3899.

doi: 10.3390/molecules25173899
[75]
Peng B, Fu S G, Li Y X, Zhang J H, Xie S M, Li L, Lyu Y, Duan A H, Chen X X, Yuan L M. Chem. Res. Chin. Univ., 2019, 35(6): 978.

doi: 10.1007/s40242-019-9162-x
[76]
Chen Y L, Lu Z C, Li G K, Hu Y L. J. Chromatogr. A, 2020, 1626: 461341.

doi: 10.1016/j.chroma.2020.461341
[77]
Xie S M, Zhang Z J, Wang Z Y, Yuan L M. J. Am. Chem. Soc., 2011, 133(31): 11892.

doi: 10.1021/ja2044453
[78]
Xie S M, Zhang X H, Zhang Z J, Yuan L M. Anal. Lett., 2013, 46(5): 753.

doi: 10.1080/00032719.2012.735306
[79]
Yang J R, Xie S M, Liu H, Zhang J H, Yuan L M. Chromatographia, 2015, 78(7/8): 557.

doi: 10.1007/s10337-015-2863-5
[80]
Xie S M, Wang B J, Zhang X H, Zhang J H, Zhang M, Yuan L M. Chirality, 2014, 26(1): 27.

doi: 10.1002/chir.v26.1
[81]
Zhang X H, Xie S M, Duan A H, Wang B J, Yuan L M. Chromatographia, 2013, 76(13/14): 831.

doi: 10.1007/s10337-013-2484-9
[82]
Xue X, Zhang M, Xie S, Yuan L. Acta Chromatogr., 2015, 27(1): 15.

doi: 10.1556/AChrom.27.2015.1.2
[83]
Kou W T, Yang C X, Yan X P. J. Mater. Chem. A, 2018, 6(37): 17861.

doi: 10.1039/C8TA06804F
[84]
Zhang S Y, Yang C X, Shi W, Yan X P, Cheng P, Wojtas L, Zaworotko M J. Chem, 2017, 3(2): 281.

doi: 10.1016/j.chempr.2017.07.004
[85]
Wang Z M, Yang C X, Yan X P. J. Chromatogr. A, 2019, 1608: 460420.

doi: 10.1016/j.chroma.2019.460420
[86]
Kewley A, Stephenson A, Chen L J, Briggs M E, Hasell T, Cooper A I. Chem. Mater., 2015, 27(9): 3207.

doi: 10.1021/acs.chemmater.5b01112
[87]
Zhang J H, Xie S M, Chen L, Wang B J, He P G, Yuan L M. Anal. Chem., 2015, 87(15): 7817.

doi: 10.1021/acs.analchem.5b01512
[88]
Zhang J H, Xie S M, Wang B J, He P G, Yuan L M. J. Chromatogr. A, 2015, 1426: 174.

doi: 10.1016/j.chroma.2015.11.038
[89]
Xie S M, Zhang J H, Fu N, Wang B J, Chen L, Yuan L M. Anal. Chimica Acta, 2016, 903: 156.

doi: 10.1016/j.aca.2015.11.030
[90]
Zhang J H, Xie S M, Wang B J, He P G, Yuan L M. J. Sep. Sci., 2018, 41(6): 1385.

doi: 10.1002/jssc.201701095
[91]
Li H X, Xie T P, Xie S M, Wang B J, Zhang J H, Yuan L M. Chromatographia, 2020, 83(6): 703.

doi: 10.1007/s10337-020-03895-y
[92]
Li H X, Xie T P, Yan K Q, Xie S M, Wang B J, Zhang J H, Yuan L M. Microchimica Acta, 2020, 187(5): 1.

doi: 10.1007/s00604-019-3921-8
[93]
Wang Z M, Cui Y Y, Yang C X, Yan X P. ACS Appl. Nano Mater., 2020, 3(1): 479.

doi: 10.1021/acsanm.9b02053
[94]
Vardhan H, Yusubov M, Verpoort F. Coord. Chem. Rev., 2016, 306: 171.

doi: 10.1016/j.ccr.2015.05.016
[95]
Pan M, Wu K, Zhang J H, Su C Y. Coord. Chem. Rev., 2019, 378: 333.

doi: 10.1016/j.ccr.2017.10.031
[96]
Chen L J, Yang H B, Shionoya M. Chem. Soc. Rev., 2017, 46(9): 2555.

doi: 10.1039/C7CS00173H
[97]
Chen L, Chen Q H, Wu M Y, Jiang F L, Hong M C. Acc. Chem. Res., 2015, 48(2): 201.

doi: 10.1021/ar5003076
[98]
Xie S M, Fu N, Li L, Yuan B Y, Zhang J H, Li Y X, Yuan L M. Anal. Chem., 2018, 90(15): 9182.

doi: 10.1021/acs.analchem.8b01670
[99]
Tang B, Sun C Y, Wang W, Geng L N, Sun L Q, Luo A Q. Chirality, 2020, 32(9): 1178.

doi: 10.1002/chir.23263 pmid: 32623797
[100]
Tang B, Zhang X, Geng L N, Sun L Q, Luo A Q. J. Chromatogr. A, 2021, 1636: 461792.

doi: 10.1016/j.chroma.2020.461792
[101]
Qian H L, Yang C X, Yan X P. Nat. Commun., 2016, 7(1): 1.
[102]
Li Y X, Fu S G, Zhang J H, Xie S M, Li L, He Y Y, Zi M, Yuan L M. J. Chromatogr. A, 2018, 1557: 99.

doi: 10.1016/j.chroma.2018.05.005
[103]
He Y Y, Pu Q, Zhang J H, Xie S M, Chen X X, Yuan L M. Separation Science Plus, 2019, 2(12): 432.

doi: 10.1002/sscp.v2.12
[104]
Cui Y Y, Yang C X, Yan X P. ACS Appl. Mater. Interfaces, 2020, 12(4): 4954.

doi: 10.1021/acsami.9b22023
[105]
Ahmed M A, Felisilda B M B, Quirino J P. Anal. Chimica Acta, 2019, 1088: 20.

doi: 10.1016/j.aca.2019.08.016
[106]
Mangelings D, Vander Heyden Y. Electrophoresis, 2011, 32(19): 2583.

doi: 10.1002/elps.201100009 pmid: 21910129
[107]
Ding W, Ma M X, Du Y X, Chen C, Ma X F. Microchimica Acta, 2020, 187(12): 1.

doi: 10.1007/s00604-019-3921-8
[108]
Li Z T, Mao Z K, Chen Z L. Microchimica Acta, 2019, 186(7): 1.

doi: 10.1007/s00604-018-3127-5
[109]
Li Z T, Mao Z K, Hu C J, Li Q Y, Chen Z L. J. Chromatogr. A, 2020, 1625: 461269.

doi: 10.1016/j.chroma.2020.461269
[110]
Fan S T, Guan J, Yan F, Zhang D X, Shi S, Wang S L. Separation Science Plus, 2020, 3(6): 255.

doi: 10.1002/sscp.v3.6
[111]
Aydoğan c. Trac Trends Anal. Chem., 2019, 121: 115693.

doi: 10.1016/j.trac.2019.115693
[112]
Fanali C. Trac Trends Anal. Chem., 2019, 120: 115640.

doi: 10.1016/j.trac.2019.115640
[113]
Fei Z X, Zhang M, Zhang J H, Yuan L M. Anal. Chimica Acta, 2014, 830: 49.

doi: 10.1016/j.aca.2014.04.054
[114]
Ye N S, Ma J C, An J X, Li J, Cai Z M, Zong H. RSC Adv., 2016, 6(47): 41587.

doi: 10.1039/C6RA02741E
[115]
Pan C J, Lv W, Niu X Y, Wang G X, Chen H L, Chen X G. J. Chromatogr. A, 2018, 1541: 31.

doi: 10.1016/j.chroma.2018.02.015
[116]
Li Z T, Mao Z K, Zhou W, Chen Z L. Talanta, 2020, 218: 121160.

doi: 10.1016/j.talanta.2020.121160
[117]
Wang T T, Wang Y, Zhang Y L, Cheng Y H, Ye J N, Chu Q C, Cheng G F. J. Chromatogr. A, 2020, 1625: 461284.

doi: 10.1016/j.chroma.2020.461284
[118]
Xu S J, Wang Y Y, Li W, Ji Y B. J. Chromatogr. A, 2019, 1602: 481.

doi: 10.1016/j.chroma.2019.06.018
[119]
Wang Y Y, Zhuo S Q, Hou J W, Li W, Ji Y B. ACS Appl. Mater. Interfaces, 2019, 11(51): 48363.

doi: 10.1021/acsami.9b16720
[120]
Li Y J, Lin X T, Qin S L, Gao L D, Tang Y M, Liu S R, Wang Y Y. Chirality, 2020, 32(7): 1008.

doi: 10.1002/chir.v32.7
[121]
Zhang J H, Zhu P J, Xie S M, Zi M, Yuan L M. Anal. Chimica Acta, 2018, 999: 169.

doi: 10.1016/j.aca.2017.11.021
[122]
He L X, Tian C R, Zhang J H, Xu W, Peng B, Xie S M, Zi M, Yuan L M. Electrophoresis, 2020, 41(1/2): 104.

doi: 10.1002/elps.v41.1-2
[123]
Li Z T, Mao Z K, Zhou W, Chen Z L. Anal. Chimica Acta, 2020, 1094: 160.

doi: 10.1016/j.aca.2019.10.002
[124]
Jakubec P, Douša M, Nováková L. J. Sep. Sci., 2020, 43(13): 2675.

doi: 10.1002/jssc.202000085 pmid: 32233109
[125]
Deng H M, Ji Y, Tang S, Yang F, Tang G L, Shi H W, Lee H K. J. Chromatogr. A, 2020, 1634: 461684.

doi: 10.1016/j.chroma.2020.461684
[126]
Harps L C, Joseph J F, Parr M K. J. Pharm. Biomed. Anal., 2019, 162: 47.

doi: 10.1016/j.jpba.2018.08.061
[127]
West C. Trac Trends Anal. Chem., 2019, 120: 115648.

doi: 10.1016/j.trac.2019.115648
[128]
Felletti S, Ismail O H, De Luca C, Costa V, Gasparrini F, Pasti L, Marchetti N, Cavazzini A, Catani M. Chromatographia, 2019, 82(1): 65.

doi: 10.1007/s10337-018-3606-1
[129]
Schenk C, Kutzscher C, Drache F, Helten S, Senkovska I, Kaskel S. ACS Appl. Mater. Interfaces, 2017, 9(3): 2006.

doi: 10.1021/acsami.6b13092
[130]
Zhang M, Zhong S, Liu H, Yang K L, Rao G X. China Pharm., 2018, 29(13): 1764.
( 张美, 钟帅, 刘涵, 杨宽林, 饶高雄. 中国药房, 2018, 29(13): 1764.)
[131]
Fu Q Q, Ran Y M, Zhang X, Ge J P. ACS Appl. Mater. Interfaces, 2020, 12(39): 44058.

doi: 10.1021/acsami.0c12443
[132]
Tang H T, Yang K K, Wang K Y, Meng Q, Wu F fang Y, Wu X, Li Y G, Zhang W C, Luo Y F, Zhu C F, Zhou H C. Chem. Commun., 2020, 56(63): 9016.

doi: 10.1039/D0CC00897D
[133]
Dalgliesh C E. J. Chem. Soc., 1952: 3940.
[134]
Lämmerhofer M. J. Chromatogr. A, 2010, 1217(6): 814.

doi: 10.1016/j.chroma.2009.10.022 pmid: 19906381
[1] Sun Xiaojie, Xing Jun, Zhai Yuxiu, Li Zhaoxin. The Development of Ionic Liquids as Stationary Phases for Gas Chromatography [J]. Progress in Chemistry, 2014, 26(04): 647-656.
[2] Xie Shengming, Yuan Liming. Metal-Organic Frameworks Used as Chromatographic Stationary Phases [J]. Progress in Chemistry, 2013, 25(10): 1763-1770.
[3] Wu Liang, Mu Chunlei, Zhang Qunlin*, Lü Chen, Zhang Xiaoyue. Nanoparticle-Involved Luminol Chemiluminescence and Its Analytical Applications [J]. Progress in Chemistry, 2013, 25(07): 1187-1197.
[4] Zhao Beibei, Zhang Yan, Tang Tao, Wang Fengyun, Zhang Weibing, Li Tong. Silica Based Stationary Phases for High Performance Liquid Chromatography [J]. Progress in Chemistry, 2012, 24(01): 122-130.
[5] . Characterization of Polymers by High Performance Liquid Chromatography [J]. Progress in Chemistry, 2010, 22(04): 706-712.
[6] . Development of Identification for Post-Translational Modifications in Histones by Mass Spectrometry Based Proteomics [J]. Progress in Chemistry, 2010, 22(04): 713-719.
[7] Chai Xinsheng1,2** Fu Shiyu1 Mo Shuhuan2 Wan Shuangang2 Zhu Junyong3. Static Headspace-Gas Chromatography [J]. Progress in Chemistry, 2008, 20(05): 762-766.
[8] Zhou Ying**|Ye Li,Zhu Xinping. Speciation and Bioavailability of Selenium and Arsenic in Foods by HPLC-ICP-MS [J]. Progress in Chemistry, 2007, 19(06): 982-995.
[9] Li Li,Zi Min,Ren Chaoxing,Yuan Liming **. The Development of Chiral Stationary Phase in Gas Chromatography [J]. Progress in Chemistry, 2007, 19(0203): 393-403.
[10] Ruijuan Yuan1,Huaifeng Wang1,Danning Liu1,Yugao Guo1,Huafeng Fu1,2**. Recent Advances in Capillary Electrochromatography [J]. Progress in Chemistry, 2006, 18(09): 1181-1187.
[11] Fumin Peng1,2,Junde Wang2|Haiyang Li2**,Xixian Zhang1|Anlin Li2 . Development of High-Speed Gas Chromatography [J]. Progress in Chemistry, 2006, 18(0708): 974-986.
[12] Dun Huijuan1**,Zhao Huimin1,Chen Liren2. Modification and Application of Zirconia2Based Packings in HPLC Separations [J]. Progress in Chemistry, 2005, 17(06): 1116-1122.
[13] Li Laisheng1,2,Da Shilu1**,Feng Yuqi1,Liu Min1. Application of Calixarenes for High Performance Liquid Chromatography, Capillary Electrophoresis and Electrochromatography [J]. Progress in Chemistry, 2005, 17(03): 523-530.
[14] Cai Yaqi,Liu Jiyan,Jiang Guibin**. Progress of Coupling Solid-Phase Microextraction to Liquid Chromatography [J]. Progress in Chemistry, 2004, 16(05): 708-.
[15] Li Ruiping,Huang Junxiong**. Recent Progress of Column Technology in Preparative High Performance Liquid Chromatography [J]. Progress in Chemistry, 2004, 16(02): 273-.