中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1308-1320 DOI: 10.7536/PC210838 Previous Articles   Next Articles

• Review •

MOF-COF Hybrid Frameworks Materials

Jie Wang1, Yaqing Feng1,2,3, Bao Zhang1,2,3()   

  1. 1 School of Chemical Engineering and Technology, Tianjin University,Tianjin 300350, China
    2 Collaborative Innovation Center of Chemical Science and Engineering,Tianjin 300072, China
    3 Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center,Jieyang 522000, China
  • Received: Revised: Online: Published:
  • Contact: Bao Zhang
  • Supported by:
    National Natural Science Foundation of China(22078241); Fundamental Research Funds for the Central Universities.
Richhtml ( 174 ) PDF ( 3008 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two porous crystalline materials, which have a large specific surface area, and high porosity and can be synthesized and modified via various methods. Therefore, they have found potential applications in hydrogen evolution, oxygen evolution, CO2 reduction, organic pollution degradation, gas separation and so on. However, MOF and COF still have many defects themselves. For example, most MOFs are unstable in the aqueous solution due to the collapse of the structures; and COFs with no metals involved are poor in catalytic performance. Furthermore, COFs normally lack certain functions. As a new area, MOF-COF hybrid materials have been explored in recent years. They can combine the characteristics of the two materials to solve some of their own defects, and have a wide range of application prospects. Herein, this article summarizes the development of MOF-COF materials in recent years from three aspects: the types, synthetic methods and applications of MOF-COF hybrid materials. A prospect is also proposed.

Contents

1 Introduction

1.1 MOF materials

1.2 COF materials

1.3 MOF-COF hybrid materials

2 Synthesis

2.1 MOF-on-COF

2.2 COF-on-MOF

3 Applications

3.1 Catalysis

3.2 Absorption and separation

3.3 Sensing

3.4 Others

4 Conclusion and outlook

Fig. 1 Construction units and porous structure of MOF
Fig. 2 Self-condensation of boric acid to form COFs
Fig. 3 Synthesis of TpPa-1 by combined reversible and irreversible reactions
Fig. 4 Preparation of COF-MOF composite membrane[40]. Copyright 2016, American Chemical Society
Fig. 5 Synthesis of NH2-UiO-66/TpPa-1-COF[36]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 6 (a) Modular synthesis strategy in organic chemistry; (b) Construction of multicomponent frameworks through modular synthesis strategy in reticular chemistry; (c) Construction of complex structures by modular synthesis strategy[43]. Copyright 2020, American Chemical Society
Fig. 7 Construction of (COF-303@PCN-160(Zr))@MOF-5 three-mode hierarchical structure[43]. Copyright 2020, American Chemical Society
Fig. 8 Synthesis of NH2-MIL-68@TPA-COF[46]. Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 9 Preparation process of aza-MOF@COF[55]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 10 (a) The growth process of COF/Mn-MOF hybrid and SEM images; (b) The 3D structure of Mn-MOF; (c) The interlinked COF and Mn-MOF units based on the Mn-N interaction; (d) Side views of the COF/Mn-MOF hybrid[37]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 1 Applications of MOF-COF hybrid framework
Fig. 11 The Hybrid membrane material COF-300@ZIF-8[40]. Copyright 2016, American Chemical Society
[1]
Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5415.

doi: 10.1039/C4CS90059F
[2]
Dhakshinamoorthy A, Asiri A M, García H. Angew. Chem. Int. Ed., 2016, 55(18): 5414.

doi: 10.1002/anie.201505581 pmid: 26970539
[3]
Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T,Yazaydın A Ö Hupp J T. J. Am. Chem. Soc., 2012, 134(36): 15016.

doi: 10.1021/ja3055639 pmid: 22906112
[4]
Huang S M, Kou X X, Shen J, Chen G S, Ouyang G F. Angew. Chem. Int. Ed., 2020, 59(23): 8786.

doi: 10.1002/anie.201916474
[5]
Rasheed T, Hassan A A, Bilal M, Hussain T, Rizwan K. Chemosphere, 2020, 259: 127369.

doi: 10.1016/j.chemosphere.2020.127369
[6]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444
[7]
Roy A S, Mondal J, Banerjee B, Mondal P, Bhaumik A, Islam S M. Appl. Catal. A Gen., 2014, 469: 320.

doi: 10.1016/j.apcata.2013.10.017
[8]
Subudhi S, Mansingh S, Tripathy S P, Mohanty A, Mohapatra P, Rath D, Parida K. Catal. Sci. Technol., 2019, 9(23): 6585.

doi: 10.1039/C9CY01431D
[9]
Kuila A, Surib N A, Mishra N S, Nawaz A, Leong K H, Sim L C, Saravanan P, Ibrahim S. ChemistrySelect, 2017, 2(21): 6163.

doi: 10.1002/slct.201700998
[10]
Zhu B J, Zou R Q, Xu Q. Adv. Energy Mater., 2018, 8(24): 1801193.

doi: 10.1002/aenm.201801193
[11]
Shrestha N K, Patil S A, Cho S, Jo Y, Kim H, Im H. J. Mater. Chem. A, 2020, 8(46): 24408.

doi: 10.1039/D0TA07716J
[12]
Zhu W, Zhang C F, Li Q, Xiong L K, Chen R X, Wan X B, Wang Z, Chen W, Deng Z, Peng Y. Appl. Catal. B Environ., 2018, 238: 339.

doi: 10.1016/j.apcatb.2018.07.024
[13]
Lawson H D, Walton S P, Chan C. ACS Appl. Mater. Interfaces, 2021, 13(6): 7004.

doi: 10.1021/acsami.1c01089
[14]
Chen B L, Eddaoudi M, Reineke T M, Kampf J W, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2000, 122(46): 11559.

doi: 10.1021/ja003159k
[15]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130(42): 13850.

doi: 10.1021/ja8057953
[16]
DeCoste J B, Peterson G W, Schindler B J, Killops K L, Browe M A, Mahle J J. J. Mater. Chem. A, 2013, 1(38): 11922.

doi: 10.1039/c3ta12497e
[17]
DeCoste J B, Peterson G W, Jasuja H, Glover T G, Huang Y G, Walton K S. J. Mater. Chem. A, 2013, 1(18): 5642.

doi: 10.1039/c3ta10662d
[18]
Feng L, Wang K Y, Day G S, Ryder M R, Zhou H C. Chem. Rev., 2020, 120(23): 13087.

doi: 10.1021/acs.chemrev.0c00722
[19]
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. CrystEngComm, 2014, 16(23): 4919.

doi: 10.1039/C4CE00032C
[20]
Liu Y, Zhou W Q, Teo W L, Wang K, Zhang L Y, Zeng Y F, Zhao Y L. Chem, 2020, 6(12): 3172.

doi: 10.1016/j.chempr.2020.08.021
[21]
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369
[22]
Geng K Y, Arumugam V, Xu H J, Gao Y N, Jiang D L. Prog. Polym. Sci., 2020, 108: 101288.

doi: 10.1016/j.progpolymsci.2020.101288
[23]
Yang Q, Luo M L, Liu K W, Cao H M, Yan H J. Appl. Catal. B Environ., 2020, 276: 119174.

doi: 10.1016/j.apcatb.2020.119174
[24]
Chen M H, Li H R, Liu C X, Liu J Y, Feng Y Q, Wee A G H, Zhang B. Coord. Chem. Rev., 2021, 435: 213778.

doi: 10.1016/j.ccr.2021.213778
[25]
Guo J, Xu Y H, Jin S B, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D L. Nat. Commun., 2013, 4: 2736.

doi: 10.1038/ncomms3736 pmid: 24220603
[26]
Kaur P, Hupp J T, Nguyen S T. ACS Catal., 2011, 1(7): 819.

doi: 10.1021/cs200131g
[27]
Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Angew. Chem. Int. Ed., 2020, 59(33): 13722.

doi: 10.1002/anie.202004796
[28]
Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11(6): 587.

doi: 10.1038/s41557-019-0238-5
[29]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334 pmid: 30485740
[30]
Tripathy S P, Subudhi S, Parida K. Coord. Chem. Rev., 2021, 434: 213786.

doi: 10.1016/j.ccr.2021.213786
[31]
Li Y, Yang C X, Yan X P. Chem. Commun., 2017, 53(16): 2511.

doi: 10.1039/C6CC10188G
[32]
Zhang L, Wang J, Ren X Y, Zhang W T, Zhang T S, Liu X N, Du T, Li T, Wang J L. J. Mater. Chem. A, 2018, 6(42): 21029.

doi: 10.1039/C8TA07349J
[33]
Shan Y Y, Chen L Y, Pang H, Xu Q. Small Struct., 2021, 2(2): 2000078.

doi: 10.1002/sstr.202000078
[34]
Cheng Y D, Ying Y P, Zhai L Z, Liu G L, Dong J Q, Wang Y X, Christopher M P, Long S C, Wang Y X, Zhao D. J. Membr. Sci., 2019, 573: 97.

doi: 10.1016/j.memsci.2018.11.060
[35]
Li F, Wang D K, Xing Q J, Zhou G, Liu S S, Li Y, Zheng L L, Ye P, Zou J P. Appl. Catal. B Environ., 2019, 243: 621.

doi: 10.1016/j.apcatb.2018.10.043
[36]
Zhang F M, Sheng J L, Yang Z D, Sun X J, Tang H L, Lu M, Dong H, Shen F C, Liu J, Lan Y Q. Angew. Chem. Int. Ed., 2018, 57(37): 12106.

doi: 10.1002/anie.201806862
[37]
Sun W W, Tang X X, Yang Q S, Xu Y, Wu F, Guo S Y, Zhang Y F, Wu M H, Wang Y. Adv. Mater., 2019, 31(37): 1903176.

doi: 10.1002/adma.201903176
[38]
Zhuang G L, Gao Y F, Zhou X, Tao X Y, Luo J M, Gao Y J, Yan Y L, Gao P Y, Zhong X, Wang J G. Chem. Eng. J., 2017, 330: 1255.

doi: 10.1016/j.cej.2017.08.076
[39]
Gao M L, Qi M H, Liu L, Han Z B. Chem. Commun., 2019, 55(45): 6377.

doi: 10.1039/C9CC02174D
[40]
Fu J R, Das S, Xing G L, Ben T, Valtchev V, Qiu S L. J. Am. Chem. Soc., 2016, 138(24): 7673.

doi: 10.1021/jacs.6b03348
[41]
Firoozi M, Rafiee Z, Dashtian K. ACS Omega, 2020, 5(16): 9420.

doi: 10.1021/acsomega.0c00539 pmid: 32363294
[42]
Jiang H L, Fu Q B, Wang M L, Lin J M, Zhao R S. Food Chem., 2021, 345: 128841.

doi: 10.1016/j.foodchem.2020.128841
[43]
Feng L, Wang K Y, Lv X L, Yan T H, Li J R, Zhou H C. J. Am. Chem. Soc., 2020, 142(6): 3069.

doi: 10.1021/jacs.9b12408
[44]
Huang A S, Bux H, Steinbach F, Caro J. Angew. Chemi. Int. Ed., 2010, 49(29): 4958.
[45]
Yuan Y C, Sun B, Cao A M, Wang D, Wan L J. Chem. Commun., 2018, 54(47): 5976.

doi: 10.1039/C8CC02381F
[46]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.

doi: 10.1002/adma.201705454
[47]
Sun D R, Jang S, Yim S J, Ye L, Kim D P. Adv. Funct. Mater., 2018, 28(13): 1707110.

doi: 10.1002/adfm.201707110
[48]
Lu G L, Huang X B, Li Y, Zhao G X, Pang G S, Wang G. J. Energy Chem., 2020, 43: 8.

doi: 10.1016/j.jechem.2019.07.014
[49]
Cai M K, Li Y L, Liu Q L, Xue Z Q, Wang H P, Fan Y N, Zhu K L, Ke Z F, Su C Y, Li G Q. Adv. Sci., 2019, 6(8): 1802365.

doi: 10.1002/advs.201802365
[50]
GarzÓn-Tovar L, PÉrez-Carvajal J, Yazdi A, Hernández-Muñoz J, Tarazona P, Imaz I, Zamora F, Maspoch D. Angew. Chem. Int. Ed., 2019, 58(28): 9512.

doi: 10.1002/anie.201904766
[51]
Zhang L, Liu Z W, Deng Q Q, Sang Y J, Dong K, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2021, 60(7): 3469.

doi: 10.1002/anie.202012487 pmid: 33118263
[52]
Yola M L, Atar N. Nanoscale, 2020, 12(38): 19824.

doi: 10.1039/D0NR05614F
[53]
Wang X Y, Yin H Q, Yin X B. ACS Appl. Mater. Interfaces, 2020, 12(18): 20973.

doi: 10.1021/acsami.0c04147
[54]
Rahmati E, Rafiee Z. J. Porous Mater., 2021, 28(1): 19.

doi: 10.1007/s10934-020-00965-2
[55]
Peng H J, Raya J, Richard F, Baaziz W, Ersen O, Ciesielski A, Samorì P. Angew. Chem. Int. Ed., 2020, 59(44): 19602.

doi: 10.1002/anie.202008408
[56]
Zhang H W, Zhu Q Q, Yuan R R, He H M. Sens. Actuat. B Chem., 2021, 329: 129144.

doi: 10.1016/j.snb.2020.129144
[57]
Li W T, Shi W, Hu Z J, Yang T, Chen M L, Zhao B, Wang J H. Appl. Surf. Sci., 2020, 530: 147254.

doi: 10.1016/j.apsusc.2020.147254
[58]
Chen Z P, He Z L, Luo X G, Wu F S, Tang S, Zhang J. Food Anal. Methods, 2020, 13(6): 1346.

doi: 10.1007/s12161-020-01750-2
[59]
Lin G Q, Ding H M, Yuan D Q, Wang B S, Wang C. J. Am. Chem. Soc., 2016, 138(10): 3302.

doi: 10.1021/jacs.6b00652
[60]
Chen L Y, Luque R, Li Y W. Dalton Trans., 2018, 47(11): 3663.

doi: 10.1039/C8DT00092A
[61]
Jiang X, Li S W, He S S, Bai Y P, Shao L. J. Mater. Chem. A, 2018, 6(31): 15064.

doi: 10.1039/C8TA03872D
[62]
Liu X K, Hu M Y, Wang M H, Song Y P, Zhou N, He L H, Zhang Z H. Biosens. Bioelectron., 2019, 123: 59.

doi: 10.1016/j.bios.2018.09.089
[1] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[2] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[3] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[4] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[5] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[6] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[7] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[8] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[9] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.
[10] Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao. Fabrication and Application of New Polymer-Based Materials by Freeze-Drying [J]. Progress in Chemistry, 2014, 26(11): 1832-1839.
[11] Wang Wenqian, Chen Linfeng, Wen Yongqiang*, Zhang Xueji, Song Yanlin, Jiang Lei. Mesoporous Silica Nanoparticle-Based Controlled-Release System [J]. Progress in Chemistry, 2013, 25(05): 677-691.
[12] Fu Yanyan, Yan Xiuping*. Metal-Organic Framework Composites [J]. Progress in Chemistry, 2013, 25(0203): 221-232.
[13] Ma Liqun, Zhai Shangru, Liu Na, Zhai Bin, An Qingda. Controlled Fabrication and Application of Platelet SBA-15 Materials [J]. Progress in Chemistry, 2012, 24(04): 471-482.
[14] Xu Shujun, Liang Liyun, Li Buyi, Luo Yali, Liu Chengmei, Tan Bien. Research Progress on Microporous Organic Polymers [J]. Progress in Chemistry, 2011, 23(10): 2085-2094.
[15] . Hydrogen Storage by Encapsulation on Porous Materials [J]. Progress in Chemistry, 2010, 22(11): 2238-2247.
Viewed
Full text


Abstract

MOF-COF Hybrid Frameworks Materials