中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 274-285 DOI: 10.7536/PC190602 Previous Articles   Next Articles

Two-Dimensional Covalent Organic Frameworks Photocatalysts

Suyan Zhao1, Chang Liu2, Hao Xu3, Xiaobo Yang2,**()   

  1. 1. Jilin Police College, Changchun 130117, China
    2. College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
    3. College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
  • Received: Online: Published:
  • Contact: Xiaobo Yang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21806167); Natural Science Foundation of Liaoning Province(20180550882); Innovation and Entrepreneurship Training Program for College Students(201910076)
Richhtml ( 54 ) PDF ( 1714 ) Cited
Export

EndNote

Ris

BibTeX

Two-dimensional Covalent organic frameworks(2D-COFs), as a new type of crystalline porous materials constructed with organic building blocks, possessing regular pore structure, good stability, high surface area and extended π-conjugation system, have shown good photoactivity and tremendous potential for light-driven chemical transformations. Therefore, the application of 2D-COFs in light-driven chemical transformations has recently garnered great attention in both porous materials science and photocatalysis. This review mainly summarizes and discusses the applications of photoactive 2D-COFs in light-driven chemical transformations in recent years. Future development is also prospected.

Fig.1 The development of COFs[29, 34]
Fig.2 Synthetic routine for TFPT-COF
Fig.3 Transformation of TFPT-COF during photocatalysis and subsequent recovery by reconversion[44]
Fig.4 Synthesis of two-dimensional azine-linked N x -COFs
Fig.5 Optical and photocatalytic properties of N x -COFs[45]
Fig.6 The synthesis of diacetylene based COFs
Fig.7 Synthesis of CTFs photocatalyst via a polycondensation approach under mild conditions
Fig.8 Synthesis of highly crystalline CTFs photocatalyst
Fig.9 Light-driven conversion of CO2 catalyzed by 2D-COFs[52]
Fig.10 Proposed catalytic mechanism for CO2 reduction[53]
Fig.11 Synthesis of benzothiadiazole functionalized covalent organic frameworks[56]
Fig.12 Photoreduction of Cr(Ⅵ) by BT-COFs[56]
Fig.13 Synthesis of hydrazine-based 2D-COFs[64]
Fig.14 UV/Vis spectra of TFB-COF and its monomers[64]
Fig.15 TFB-COF catalyzed visible-light driven CDC reaction[64]
Fig.16 COF-JLU5 catalyzed visible-light driven CDC reaction[65]
Fig.17 Synthesis of LZU-190, LZU-191 and LZU-192[66]
Fig.18 Substrates compatibility for the reaction[66]
Fig.19 Proposal mechanism for the LZU-190 visible-light-driven oxidative hydroxylation[66]
Fig.20 Synthesis of COFs with benzothiadiazole and pyrene units[67]
Fig.21 UV/Vis diffuse reflection spectra and plot of Kubelda-Munk function for the band gap of COF-JLU22[67]
Fig.22 Proposal mechanism for the COF-JLU22 catalyzed photocatalytic debromination[67]
Fig.23 Visible-light-induced tandem radical addition-cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks, 2D-COFs[75]
Fig.24 Optical and electrochemical properties of 2D-COF-1[75]
Fig.25 Proposed mechanism for the 2D-COF-1 catalyzed photocatalytic radical addition and cyclization[75]
Fig.26 Synthesis of a 2D porphyrin-based sp2 carbon conjugated COF[78]
Fig.27 Por-sp2c-COF catalyzed photocatalytic oxidation of secondary amines to imines[78]
Fig.28 TpTt catalyzed photocatalytic E-Z isomerization of olefins[79]
Fig.29 Photocatalytic crystalline laminar covalent organic framework for the oxidation of sulfides[80]
[1]
Service R F . Science, 2007,315:789. https://www.ncbi.nlm.nih.gov/pubmed/17289977

doi: 10.1126/science.315.5813.789 pmid: 17289977
[2]
Fukuzumi S . PCCP, 2008,10:2283. https://www.ncbi.nlm.nih.gov/pubmed/18414719

doi: 10.1039/b801198m pmid: 18414719
[3]
Kisch H . Angew. Chem. Int. Ed., 2013,52:812. https://www.ncbi.nlm.nih.gov/pubmed/23212748

doi: 10.1002/anie.201201200 pmid: 23212748
[4]
Shaw M H, Twilton J, MacMillan D W C . J. Org. Chem., 2016,81:6898. https://www.ncbi.nlm.nih.gov/pubmed/27477076

doi: 10.1021/acs.joc.6b01449 pmid: 27477076
[5]
Prier C K, Rankic D A, MacMillan D W C . Chem. Rev., 2013,113:5322. https://www.ncbi.nlm.nih.gov/pubmed/23509883

doi: 10.1021/cr300503r pmid: 23509883
[6]
Hari D P, König B . Chem. Commun., 2014,50:6688. https://www.ncbi.nlm.nih.gov/pubmed/24699920

doi: 10.1039/c4cc00751d pmid: 24699920
[7]
Fukuzumi S, Ohkubo K . Org. Biomol. Chem., 2014,12:6059. https://www.ncbi.nlm.nih.gov/pubmed/24984977

doi: 10.1039/c4ob00843j pmid: 24984977
[8]
Loh Y Y, Nagao K, Hoover A J, Hesk D, Rivera N R, Colletti S L, Davies I W, MacMillan D W C . Science, 2017,358:1182. https://www.ncbi.nlm.nih.gov/pubmed/29123019

doi: 10.1126/science.aap9674 pmid: 29123019
[9]
Joshi-Pangu A, Lévesque F, Roth H G, Oliver S F, Campeau L-C, Nicewicz D, DiRocco D A . J. Org. Chem., 2016,81:7244. https://www.ncbi.nlm.nih.gov/pubmed/27454776

doi: 10.1021/acs.joc.6b01240 pmid: 27454776
[10]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P . Chem. Rev., 2016,116:7159. https://www.ncbi.nlm.nih.gov/pubmed/27199146

doi: 10.1021/acs.chemrev.6b00075 pmid: 27199146
[11]
Chen Y, Wang D, Deng X, Li Z . Catal. Sci. Technol., 2017,7:4893.
[12]
Santaclara J G, Kapteijn F, Gascon J, van der Veen M A . CrystEngComm, 2017,19:4118.
[13]
Xiao J D, Jiang H L . Acc. Chem. Res., 2019,52:356. https://www.ncbi.nlm.nih.gov/pubmed/30571078

doi: 10.1021/acs.accounts.8b00521 pmid: 30571078
[14]
Wang W, Xu X, Zhou W, Shao Z . Adv. Sci., 2017,4:1600371. https://www.ncbi.nlm.nih.gov/pubmed/28435777

doi: 10.1002/advs.201600371 pmid: 28435777
[15]
Dhakshinamoorthy A, Li Z, Garcia H . Chem. Soc. Rev., 2018,47:8134. https://www.ncbi.nlm.nih.gov/pubmed/30003212

doi: 10.1039/c8cs00256h pmid: 30003212
[16]
Li Y, Xu H, Ouyang S, Ye J . PCCP, 2016,18:7563. https://www.ncbi.nlm.nih.gov/pubmed/26535907

doi: 10.1039/c5cp05885f pmid: 26535907
[17]
Pan L, Xu M Y, Feng L J, Chen Q, He Y J, Han B H . Polym. Chem., 2016,7:2299. http://xlink.rsc.org/?DOI=C5PY01955A

doi: 10.1039/C5PY01955A
[18]
Ding X, Han B H . Angew. Chem. Int. Ed., 2015,54:6536. https://www.ncbi.nlm.nih.gov/pubmed/25873264

doi: 10.1002/anie.201501732 pmid: 25873264
[19]
Chen D, Liu C, Tang J, Luo L, Yu G . Polym. Chem., 2019,10:1168. http://xlink.rsc.org/?DOI=C8PY01620H

doi: 10.1039/C8PY01620H
[20]
Li Z, Yang Y W . J. Mater. Chem. B, 2017,5:9278. https://www.ncbi.nlm.nih.gov/pubmed/32264531

doi: 10.1039/c7tb02647a pmid: 32264531
[21]
Zhi Y, Li K, Xia H, Xue M, Mu Y, Liu X . J. Mater. Chem. A, 2017,5:8697.
[22]
Kaur P, Hupp J T, Nguyen S T . ACS Catal., 2011,1:819.
[23]
Zhang G, Liu G, Wang L, Irvine J T S . Chem. Soc. Rev., 2016,45:5951. https://www.ncbi.nlm.nih.gov/pubmed/27704059

doi: 10.1039/c5cs00769k pmid: 27704059
[24]
Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, Yassitepe E, Buin A, Hoogland S, Sargent E H . Nature, 2015,523:324. https://www.ncbi.nlm.nih.gov/pubmed/26178963

doi: 10.1038/nature14563 pmid: 26178963
[25]
Schünemann S, Tüysüz H . Eur. J. Inorg. Chem., 2018,2018:2350.
[26]
Park G D, Lee C W, Nam K T . Curr. Opin. Electrochem., 2018,11:98.
[27]
Tan H L, Abdi F F, Ng Y H . Chem. Soc. Rev., 2019,48:1255. https://www.ncbi.nlm.nih.gov/pubmed/30761395

doi: 10.1039/c8cs00882e pmid: 30761395
[28]
Wang Z, Li C, Domen K . Chem. Soc. Rev., 2019,48:2109. https://www.ncbi.nlm.nih.gov/pubmed/30328438

doi: 10.1039/c8cs00542g pmid: 30328438
[29]
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310:1166. https://www.ncbi.nlm.nih.gov/pubmed/16293756

doi: 10.1126/science.1120411 pmid: 16293756
[30]
Waller P J, Gándara F, Yaghi O M . Acc. Chem. Res., 2015,48:3053. https://www.ncbi.nlm.nih.gov/pubmed/26580002

doi: 10.1021/acs.accounts.5b00369 pmid: 26580002
[31]
Ding S Y, Wang W . Chem. Soc. Rev., 2013,42:548. https://www.ncbi.nlm.nih.gov/pubmed/23060270

doi: 10.1039/c2cs35072f pmid: 23060270
[32]
Feng X, Ding X, Jiang D . Chem. Soc. Rev., 2012,41:6010. https://www.ncbi.nlm.nih.gov/pubmed/22821129

doi: 10.1039/c2cs35157a pmid: 22821129
[33]
Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch B V . ACS Energy Lett., 2018,3:400. https://www.ncbi.nlm.nih.gov/pubmed/29457140

doi: 10.1021/acsenergylett.7b01123 pmid: 29457140
[34]
Evans A M, Parent L R, Flanders N C, Bisbey R P, Vitaku E, Kirschner M S, Schaller R D, Chen L X, Gianneschi N C, Dichtel W R . Science, 2018,361:52. https://www.ncbi.nlm.nih.gov/pubmed/29930093

doi: 10.1126/science.aar7883 pmid: 29930093
[35]
Ma T, Kapustin E A, Yin S X, Liang L, Zhou Z, Niu J, Li L H, Wang Y, Su J, Li J, Wang X, Wang W D, Wang W, Sun J, Yaghi O M . Science, 2018,361:48. https://www.ncbi.nlm.nih.gov/pubmed/29976818

doi: 10.1126/science.aat7679 pmid: 29976818
[36]
Chen L, Furukawa K, Gao J, Nagai A, Nakamura T, Dong Y, Jiang D . J. Am. Chem. Soc., 2014,136:9806. https://www.ncbi.nlm.nih.gov/pubmed/24963896

doi: 10.1021/ja502692w pmid: 24963896
[37]
Patwardhan S, Kocherzhenko A A, Grozema F C, Siebbeles L D A . J. Phy. Chem. C, 2011,115:11768.
[38]
Ding X, Chen L, Honsho Y, Feng X, Saengsawang O, Guo J, Saeki A, Seki S, Irle S, Nagase S, Parasuk V, Jiang D . J. Am. Chem. Soc., 2011,133:14510. https://www.ncbi.nlm.nih.gov/pubmed/21863859

doi: 10.1021/ja2052396 pmid: 21863859
[39]
Zhao W, Xia L, Liu X . CrystEngComm, 2018,20:1613.
[40]
Ding X, Guo J, Feng X, Honsho Y, Guo J, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D . Angew. Chem. Int. Ed., 2011,50:1289. https://www.ncbi.nlm.nih.gov/pubmed/21290495

doi: 10.1002/anie.201005919 pmid: 21290495
[41]
Ding X, Feng X, Saeki A, Seki S, Nagai A, Jiang D . Chem. Commun., 2012,48:8952. https://www.ncbi.nlm.nih.gov/pubmed/22842924

doi: 10.1039/c2cc33929c pmid: 22842924
[42]
Jin S, Ding X, Feng X, Supur M, Furukawa K, Takahashi S, Addicoat M, El-Khouly M E, Nakamura T, Irle S, Fukuzumi S, Nagai A, Jiang D . Angew. Chem. Int. Ed., 2013,52:2017. http://doi.wiley.com/10.1002/anie.v52.7

doi: 10.1002/anie.v52.7
[43]
Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey S K, Liao L, Ambrogio M W, Botros Y Y, Duan X, Seki S, Stoddart J F, Yaghi O M . Chem. Mater., 2011,23:4094.
[44]
Stegbauer L, Schwinghammer K, Lotsch B V . Chem. Sci., 2014,5:2789.
[45]
Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V . Nat. Commun., 2015,6:8508. https://www.ncbi.nlm.nih.gov/pubmed/26419805

doi: 10.1038/ncomms9508 pmid: 26419805
[46]
Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J . J. Am. Chem. Soc., 2018,140:1423. https://www.ncbi.nlm.nih.gov/pubmed/29287143

doi: 10.1021/jacs.7b11255 pmid: 29287143
[47]
Liu M, Guo L, Jin S, Tan B . J. Mater. Chem. A, 2019,7:5153.
[48]
Schwinghammer K, Hug S, Mesch M B, Senker J, Lotsch B V . Energy Environ. Sci., 2015,8:3345.
[49]
Wang K, Yang L M, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A . Angew. Chem. Int. Ed., 2017,56:14149. https://www.ncbi.nlm.nih.gov/pubmed/28926688

doi: 10.1002/anie.201708548 pmid: 28926688
[50]
Liu M, Huang Q, Wang S, Li Z, Li B, Jin S, Tan B . Angew. Chem. Int. Ed., 2018,57:11968. https://www.ncbi.nlm.nih.gov/pubmed/30059185

doi: 10.1002/anie.201806664 pmid: 30059185
[51]
Tu W, Zhou Y, Zou Z . Adv. Mater., 2014,26:4607. https://www.ncbi.nlm.nih.gov/pubmed/24861670

doi: 10.1002/adma.201400087 pmid: 24861670
[52]
Yadav R K, Kumar A, Park N J, Kong K J, Baeg J O . J. Mater. Chem. A, 2016,4:9413.
[53]
Yang S, Hu W, Zhang X, He P, Pattengale B, Liu C, Cendejas M, Hermans I, Zhang X, Zhang J, Huang J . J. Am. Chem. Soc., 2018,140:14614. https://www.ncbi.nlm.nih.gov/pubmed/30352504

doi: 10.1021/jacs.8b09705 pmid: 30352504
[54]
Bokare A D, Choi W . Environ. Sci. Technol., 2010,44:7232. https://www.ncbi.nlm.nih.gov/pubmed/20408538

doi: 10.1021/es903930h pmid: 20408538
[55]
Costa M . Toxicol. Appl. Pharmacol., 2003,188:1. https://www.ncbi.nlm.nih.gov/pubmed/12668116

doi: 10.1016/s0041-008x(03)00011-5 pmid: 12668116
[56]
Chen W, Yang Z, Xie Z, Li Y, Yu X, Lu F, Chen L . J. Mater. Chem. A, 2019,7:998.
[57]
Yong X, Han Y F, Li Y, Song R J, Li J H . Chem. Commun., 2018,54:12816. https://www.ncbi.nlm.nih.gov/pubmed/30357170

doi: 10.1039/c8cc07587e pmid: 30357170
[58]
Ouyang X H, Li Y, Song R J, Hu M, Luo S, Li J H . Sci. Adv., 2019,5:9839.
[59]
Li R, Chen X, Wei S, Sun K, Fan L, Liu Y, Qu L, Zhao Y, Yu B . Adv. Syn. Catal., 2018,360:4807.
[60]
Shang T Y, Lu L H, Cao Z, Liu Y, He W M, Yu B . Chem. Commun., 2019,55:5408. https://www.ncbi.nlm.nih.gov/pubmed/31020957

doi: 10.1039/c9cc01047e pmid: 31020957
[61]
Liu Y, Chen X L, Sun K, Li X Y, Zeng F L, Liu X C, Qu L B, Zhao Y F, Yu B . Org. Lett., 2019,21:4019. https://www.ncbi.nlm.nih.gov/pubmed/31099576

doi: 10.1021/acs.orglett.9b01175 pmid: 31099576
[62]
Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H . Org. Lett., 2018,20:7125. https://www.ncbi.nlm.nih.gov/pubmed/30372088

doi: 10.1021/acs.orglett.8b03079 pmid: 30372088
[63]
Liu Q, Wang L, Yue H, Li J S, Luo Z, Wei W . Green Chem., 2019,21:1609. https://www.ncbi.nlm.nih.gov/pubmed/25418429

doi: 10.1002/chem.201404926 pmid: 25418429
[64]
Liu W, Su Q, Ju P, Guo B, Zhou H, Li G, Wu Q . ChemSusChem, 2017,10:664. https://www.ncbi.nlm.nih.gov/pubmed/28033455

doi: 10.1002/cssc.201601702 pmid: 28033455
[65]
Zhi Y, Li Z, Feng X, Xia H, Zhang Y, Shi Z, Mu Y, Liu X . J. Mater. Chem. A, 2017,5:22933. http://xlink.rsc.org/?DOI=C7TA07691F

doi: 10.1039/C7TA07691F
[66]
Wei P F, Qi M Z, Wang Z P, Ding S Y, Yu W, Liu Q, Wang L K, Wang H Z, An W K, Wang W . J. Am. Chem. Soc., 2018,140:4623. https://www.ncbi.nlm.nih.gov/pubmed/29584421

doi: 10.1021/jacs.8b00571 pmid: 29584421
[67]
Li Z, Zhi Y, Shao P, Xia H, Li G, Feng X, Chen X, Shi Z, Liu X . Appl. Catal. B, 2019,245:334.
[68]
Stevens N, O’Connor N, Vishwasrao H, Samaroo D, Kandel E R, Akins D L, Drain C M, Turro N J . J. Am. Chem. Soc., 2008,130:7182. https://www.ncbi.nlm.nih.gov/pubmed/18489094

doi: 10.1021/ja8008924 pmid: 18489094
[69]
Li C X, Tu D S, Yao R, Yan H, Lu C S . Org. Lett., 2016,18:4928. https://www.ncbi.nlm.nih.gov/pubmed/27681056

doi: 10.1021/acs.orglett.6b02413 pmid: 27681056
[70]
Rong J, Deng L, Tan P, Ni C, Gu Y, Hu J . Angew. Chem. Int. Ed., 2016,55:2743. https://www.ncbi.nlm.nih.gov/pubmed/26797782

doi: 10.1002/anie.201510533 pmid: 26797782
[71]
Jiang H, Cheng Y, Wang R, Zheng M, Zhang Y, Yu S . Angew. Chem. Int. Ed., 2013,52:13289. https://www.ncbi.nlm.nih.gov/pubmed/24222447

doi: 10.1002/anie.201308376 pmid: 24222447
[72]
Singh M, Yadav A K, Yadav L D S, Singh R K P . Synlett., 2018,29:176.
[73]
Fang J, Shen W G, Ao G Z, Liu F . Org. Chem. Front., 2017,4:2049.
[74]
Xiao T, Li L, Lin G, Wang Q, Zhang P, Mao Z W, Zhou L . Green Chem., 2014,16:2418.
[75]
Liu S, Pan W, Wu S, Bu X, Xin S, Yu J, Xu H, Yang X . Green Chem., 2019,21:2905.
[76]
Sharma R K, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zboril R, Varma R S, Antonietti M, Gawande M B . Mater. Horiz., 2019, DOI: 10.1039/C9MH00856J.
[77]
Jin E, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q, Jiang D . Science, 2017,357:673. https://www.ncbi.nlm.nih.gov/pubmed/28818940

doi: 10.1126/science.aan0202 pmid: 28818940
[78]
Chen R, Shi J L, Ma Y, Lin G, Lang X, Wang C . Angew. Chem. Int. Ed., 2019,58:6430. https://www.ncbi.nlm.nih.gov/pubmed/30884054

doi: 10.1002/anie.201902543 pmid: 30884054
[79]
Bhadra M, Kandambeth S, Sahoo M K, Addicoat M, Balaraman E, Banerjee R . J. Am. Chem. Soc., 2019,141:6152. https://www.ncbi.nlm.nih.gov/pubmed/30945862

doi: 10.1021/jacs.9b01891 pmid: 30945862
[80]
Jiménez-Almarza A, López-Magano A, Marzo L, Cabrera S, Mas-Ballesté R, Alemán J . ChemCatChem, DOI: 10.1002/CCTC.201901061.
[1] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[2] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[3] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[4] Honghong Wang, Wen Lei, Xiaojian Li, Zhong Huang, Quanli Jia, Haijun Zhang. Catalytic Reductive Degradation of Cr(Ⅵ) [J]. Progress in Chemistry, 2020, 32(12): 1990-2003.
[5] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[6] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[7] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[8] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[9] Di Liu, Qian Liu, Yonggang Wang, Yongfa Zhu. Bi2SiO5 Semiconductor Photocatalyst [J]. Progress in Chemistry, 2018, 30(6): 703-709.
[10] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[11] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[12] Zhang Xia, Fan Jing. Carbon Materials Modified Bismuth Based Photocatalysts and Their Applications [J]. Progress in Chemistry, 2016, 28(4): 438-449.
[13] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[14] Zhang Xiaodong, Yang Yang, Li Hongxin, Zou Xuejun, Wang Yuxin. Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs [J]. Progress in Chemistry, 2016, 28(10): 1550-1559.
[15] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.