中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 861-885 DOI: 10.7536/PC221133 Previous Articles   Next Articles

• Review •

Condensed Matter Chemistry in Catalytic Conversion of Small Molecules

Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang(), Fengshou Xiao()   

  1. College of Chemical and Biological Engineering, Zhejiang University,Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: liangwang@zju.edu.cn(Liang Wang); fsxiao@zju.edu.cn(Fengshou Xiao)
Richhtml ( 19 ) PDF ( 334 ) Cited
Export

EndNote

Ris

BibTeX

Catalysis has played an important role in the modern chemical industry. The processes of oil refining, petrochemical industry, fine chemical industry, pharmaceutical industry, and environmental protection strongly rely on catalysts. The catalytic transformation of small molecules is a key technology that provides solutions for energy and environmental problems, which has become one of the most important and hot topics in the international community. In this article, we summarize the progress of condensed matter chemistry and focus on the catalytic conversion of small molecules. The dehydrogenation of alkanes, hydrogenation of organic small molecules, efficient hydrogen production, and syngas conversion are summarized and discussed. The changes in the chemical properties of the condensed state caused by the metal-support interactions have been emphasized. We hope this review is helpful for the study of the structure-performance relationship between the multi-level structure of condensed matter and their catalytic properties, guiding the design of efficient catalysts in the future.

Contents

1 Introduction

2 Catalytic dehydrogenations of propane with different condensed matter structures

2.1 PtSn-based catalysts

2.2 PtZn-based catalysts

2.3 Pt-rare earth-based catalysts

2.4 Other dehydrogenation catalysts

3 Selective hydrogenations of organic molecules catalyzed by condensed matter with multi-level structure

3.1 Selective hydrogenation of nitro compounds

3.2 Reductive amination of oxygenated organic molecules

4 Hydrogen production catalyzed by condensed matter with multi-level structures

4.1 Methanol steam reforming

4.2 Water-gas shift reaction

5 Carbon monoxide oxidation catalyzed by condensed matter with multi-level structures

5.1 Gold nanoparticle catalyst for low temperature CO oxidation

5.2 Improved sinter-resistance of metal nanoparticles via condensed matter structure

5.3 Pt nanoparticle catalyst for low temperature CO oxidation

6 Syngas conversion on condensed matter structure

6.1 Identification of the active site in Rh-based catalyst

6.2 Catalysts composition

6.3 Morphologies of Rh species

6.4 Effect of additives

6.5 Effect of supports

6.6 Effect of synthetic methods

6.7 Encapsulated Rh catalysts

7 Conclusion and outlook

Fig.1 The formation process of PtZn active site proposed by Bell et al.[24]. Copyright 2021, American Chemical Society
Fig.2 (a, b) Comparison of propane dehydrogenation conversion and propylene yield between ZnO-S-1 and K-CrOx/Al2O3 catalysts; (c) Reaction mechanism of propane dehydrogenation on ZnO-S-1[26]. Copyright 2021, Nature Publishing Group
Fig.3 Two-dimensional reaction phase diagrams for the EDH reaction with the two descriptors of *C2H4 and *H on the surface of different catalysts[27]. Copyright 2020, American Chemical Society
Fig.4 Scheme showing the hydrogenation of aromatic nitro compounds
Fig.5 Scheme showing the structure of general supported metal catalyst and supported metal catalyst with multi-level condensed matter structure
Fig.6 (a) Adsorption of chloronitrobenzene on Pt/TiO2-SMSI[35], Copyright 1993, Elsevier; (b) High-resolution TEM images of Pt/TiO2-SMSI[36], Copyright 2008, American Chemical Society; (c) Pd/C, Pd/Al2O3 and Pd/ZnO catalyzed selective hydrogenation of p-chloronitrobenzene[39], Copyright 2013, American Chemical Society
Fig.7 (a) Scheme showing the synthesis of metal@carbon structure[43], Copyright 2017, Elsevier; (b) Synthesis of Ni/Al2O3 and Pt/TiO2 catalysts with tubular and encapsulated structure by ALD technique[44], Copyright 2016, Wiley-VCH; (c~e) Structural models of Pd@beta and Pd/C and the comparison of their catalytic performance in hydrogenation of nitro compounds[45], Copyright 2017, Wiley-VCH
Fig.8 (a) Reaction networks for reductive amination of furfural; (b) Time-dependent curve of furfural reductive amination on Ru/Nb2O5[51], Copyright 2017, American Chemical Society
Fig.9 (a) LT-WGS reaction catalyzed by highly efficient Ni@TiO2-x and (b) schematic diagram based on a redox mechanism[73], Copyright 2018, American Chemical Society
Fig.10 Effect of metal-support interaction on geometrical/electronic structure of catalysts
Fig.11 SMSI constructed through wet chemistry method[97] and high temperature CO2-induced method[100]. Copyright 2019, American Chemical Society; Copyright 2021, Nature Publishing Group
Fig.12 CO adsorption IR spectra on Rh-based catalyst[116]. Copyright 1992, Elsevier
Fig.13 (A) CH4 formation energy on the surface of Rh, Rh49Mn and Rh47Mn3[127], Copyright 2010, Elsevier; (B) Model of RhMn alloy catalyst[128], Copyright 2008, AIP Publishing; (C~J) H2-TPR profiles, synchrotron radiation characterizations, XPS profiles, and HRTEM characterizations of different RhMn catalysts[129], Copyright 2014, Elsevier
Fig.14 Energy barrier of C H 3 * + H* → CH4 (g) + 2* on Rh (111) surface promoted by Rh (111) and Fe[136]. Copyright 2009, American Chemical Society
Fig.15 Scheme showing the preparation of Rh/SiO2 catalyst and the catalytic performance[142]. Copyright 2013, Elsevier
Fig.16 Structural models of different supported metal catalysts
Fig.17 (a) Scheme showing the preparation of RhMn/SiO2 via strong electrostatic adsorption (SEA); (b) size distributions of metal nanoparticles; (c) dark field transmission electron microscopy of catalyst; (d) EELS elemental spectra[152]. Copyright 2013, Wiley-VCH
Fig.18 Preparation of FeOx-SiO2 composite support by sol-gel method[153]. Copyright 2013, Elsevier
Fig.19 (A) Scheme showing the synthesis of MnO/Rh/SiO2 catalyst and (B) the catalytic data[154]. Copyright 2017, American Chemical Society
Fig.20 Scheme showing the synthesis of RhMn@MSN catalyst[155]. Copyright 2012, Wiley-VCH
Fig.21 (A) Structural model, (B, C) TEM images and (D) CO hydrogenation performance of RhMn@S-1 catalyst[157]. Copyright 2020, American Chemical Society
[1]
Harris P J F. Int. Mater. Rev., 1995, 40: 97.

doi: 10.1179/imr.1995.40.3.97
[2]
Satoh N, Nakashima T, Yamamoto K. Sci. Rep., 2013, 3: 1959.

doi: 10.1038/srep01959
[3]
Guo J, Huo J, Liu Y, Wu W, Wang Y, Wu M, Liu H, Wang G. Small Methods, 2019, 3: 1900159.

doi: 10.1002/smtd.v3.9
[4]
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Chem. Soc. Rev., 2021, 50: 3315.

doi: 10.1039/d0cs00814a pmid: 33491692
[5]
Cybulskis V, Bukowski B C, Tseng H T, Gallagher J R, Wu Z, Wegener E, Kropf A J, Ravel B, Ribeiro F H, Greeley J, Miller J. ACS Catal., 2017, 7: 4173.

doi: 10.1021/acscatal.6b03603
[6]
Sattler J J H B, Martinez J R, Eduardo S J, Weckhuysen B M. Chem. Rev., 2014, 114: 10613.

doi: 10.1021/cr5002436 pmid: 25163050
[7]
Virnovskaia A, Morandi S, Rytter E, Giovanna G, Olsbye U. J. Phys. Chem. C., 2007, 111: 14732.

doi: 10.1021/jp074686u
[8]
Nagaraja B M, Shin C H, Jung K D. Appl. Catal. A., 2013, 467: 211.

doi: 10.1016/j.apcata.2013.07.022
[9]
Wu J, Peng Z M, Bell A T. J. Catal., 2014, 311: 161.

doi: 10.1016/j.jcat.2013.11.017
[10]
Mizuhata M, Yasuda K, Oguro K, Takenaka H. J. Catal., 1966, 6: 92.

doi: 10.1016/0021-9517(66)90113-8
[11]
Cortright R D, Dumesic J A. J. Catal., 1995, 157: 576.

doi: 10.1006/jcat.1995.1322
[12]
Natal-Santiago M A, Podkolzin S G, Cortright R D, Dumesic J A. Catal. Lett., 1997, 45: 155.

doi: 10.1023/A:1019004720871
[13]
Shen J, Hill J M, Watwe R M, Spiewak B E, Dumesic J A. J. Phys. Chem. B, 1999, 103: 3923.

doi: 10.1021/jp9902452
[14]
Yang M, Zhu Y, Zhou X, Sui Z, Chen D. ACS Catal., 2012, 2: 1247.

doi: 10.1021/cs300031d
[15]
Nykanen L, Honkala K. J. Phys. Chem. C., 2011, 115: 9578.

doi: 10.1021/jp1121799
[16]
Gao J, Zhao H, Yang X, Koel B E. Angew. Chem. Int. Ed., 2014, 53: 3641.

doi: 10.1002/anie.v53.14
[17]
Motagamwala A H, Almallahi R, Wortman J, Igenegbai V O, Linic S. Science, 2021, 373: 217.

doi: 10.1126/science.abg7894 pmid: 34244414
[18]
Liu L, Lopez-Haro M, Lopes C W, Rojas-Buzo S, Concepcion P, Manzorro R, Simonelli L, Sattler A, Serna P, Calvino J J, Corma A. Nat. Catal., 2020, 3: 628.

doi: 10.1038/s41929-020-0472-7
[19]
Silvestre-Albero J, Serrano-Ruiz J C, Sepulveda-Escribano A, Rodriguez-Reinoso F. Appl. Catal. A, 2005, 292: 244.

doi: 10.1016/j.apcata.2005.06.005
[20]
Silvestre-Albero J, Serrano-Ruiz J C, Sepulveda-Escribano A, Rodriguez-Reinoso F. Appl. Catal. A, 2008, 351: 16.

doi: 10.1016/j.apcata.2008.08.021
[21]
Vu B K, Song M B, Ahn I Y, Suh Y W, Suh D J, Kim W I, Koh H L, Choi Y G, Shin E W. Appl. Catal. A, 2011, 400: 25.

doi: 10.1016/j.apcata.2011.03.057
[22]
Sun Q, Wang N, Fan Q, Zeng L, Mayoral A, Miao S, Yang R, Jiang Z, Zhou W, Zhang J, Zhang T, Xu J, Zhang P, Cheng J, Yang D, Jia R, Li L, Zhang Q, Wang Y, Terasaki O, Yu J. Angew. Chem. Int. Ed., 2020, 59: 19450.

doi: 10.1002/anie.v59.44
[23]
Chen S, Zhao, Z, Mu R, Chang X, Luo J, Purdy S C, Kropf A J, Sun G, Pei C, Miller J T, Zhou X, Vovk E, Yang Y, Gong J. Chem, 2021, 7: 387.

doi: 10.1016/j.chempr.2020.10.008
[24]
Qi L, Babucci M, Zhang Y F, Lund A, Liu L M, Li J W, Chen Y Z, Hoffman A S, Bare S R, Han Y, Gates B C, Bell A T. J. Am. Chem. Soc., 2021, 143: 21364.

doi: 10.1021/jacs.1c10261
[25]
Ryoo R, Kim J, Jo C, Han S W, Kim J C, Park H, Han J, Shin H S, Shin J W. Nature, 2020, 585: 221.

doi: 10.1038/s41586-020-2671-4
[26]
Zhao D, Tian X N, Doronkin D E, Han S L, Kondratenko V A, Grunwaldt J D, Perechodjuk A, Vuong T H, Rabeah J, Eckelt R, Rodemerck U, Linke D, Jiang G Y, Jiao H J, Kondratenko E V. Nature, 2021, 599: 234.

doi: 10.1038/s41586-021-03923-3
[27]
Yang Z, Li H, Zhou H, Wang L, Wang L, Zhu Q, Xiao J, Meng X, Chen J, Xiao F S. J. Am. Chem. Soc., 2020, 142: 16429.

doi: 10.1021/jacs.0c07792
[28]
Muller T E, Hultzsch K C, Yus M, Foubelo F, Tada M. Chem. Rev., 2008, 108: 3795.

doi: 10.1021/cr0306788
[29]
Hartwig J F. Nature, 2008, 455: 314.

doi: 10.1038/nature07369
[30]
Formenti D, Ferretti F, Scharnagl F K, Beller M. Chem. Rev., 2018, 119: 2611.

doi: 10.1021/acs.chemrev.8b00547
[31]
Zhang S, Chang C, Huang Z, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y. J. Am. Chem. Soc., 2016, 138: 2629.

doi: 10.1021/jacs.5b11413 pmid: 26828123
[32]
Tauster S J, Fung S C, Garten R L. J. Am. Chem. Soc., 1978, 100: 170.

doi: 10.1021/ja00469a029
[33]
Dong J, Fu Q, Jiang Z, Mei B, Bao X. J. Am. Chem. Soc., 2018, 140: 13808.

doi: 10.1021/jacs.8b08246
[34]
Zhang Y, Liu J X, Qian K, Jia A, Li D, Shi L, Hu J, Zhu J, Huang W. Angew. Chem. Int. Ed., 2021, 60: 12074.

doi: 10.1002/anie.v60.21
[35]
Coq B, Tijani A, Dutartre R, Figueras F. J. Mol. Catal., 1993, 79: 253.

doi: 10.1016/0304-5102(93)85106-4
[36]
Corma A, Serna P, Concepcion P, Calvino J J. J. Am. Chem. Soc., 2008, 130: 8748.

doi: 10.1021/ja800959g
[37]
Macino M, Barnes A J, Althahban S M, Qu R Y, Gibson E K, Morgan D J, Freakley S J, Dimitratos N, Kiely C J, Gao X, Beale A M, Bethell D, He Q, Sankar M, Hutchings G J. Nat. Catal., 2019, 2: 873.

doi: 10.1038/s41929-019-0334-3
[38]
Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Chen J M, Lee J F, Lin T S. J. Am. Chem. Soc., 2012, 134: 10251.

doi: 10.1021/ja3033235
[39]
Cardenas-Lizana F, Hao Y F, Crespo-Quesada M, Yuranov I, Wang X D, Keane M A, Kiwi-Minsker L. ACS Catal., 2013, 3: 1386.

doi: 10.1021/cs4001943
[40]
Wang G, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B, Weidenthaler C, Schuth F. Nat. Mater., 2014, 13: 293.

doi: 10.1038/nmat3872
[41]
Murugesan K, Chandrashekhar V G, Kreyenschulte C, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2020, 59: 17408.

doi: 10.1002/anie.v59.40
[42]
Guan Q, Zhu C, Lin Y, Vovk E I, Zhou X, Yang Y, Yu H, Cao L, Wang, H, Zhang X, Liu X, Zhang M, Wei S, Li W, Lu J. Nat. Catal., 2021, 4: 840.

doi: 10.1038/s41929-021-00679-x
[43]
Liu L, Gao F, Concepcion P, Corma A. J. Catal., 2017, 350: 218.

doi: 10.1016/j.jcat.2017.03.014
[44]
Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y. Angew. Chem. Int. Ed., 2016, 55: 7081.

doi: 10.1002/anie.201600799
[45]
Zhang J, Wang L, Shao Y, Wang Y Q, Gates B C, Xiao F S. Angew. Chem. Int. Ed., 2017, 56: 9747.

doi: 10.1002/anie.201703938 pmid: 28503914
[46]
Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. Nat. Commun., 2014, 5: 5634.

doi: 10.1038/ncomms6634
[47]
Wang L, Zhu C, Xu M, Zhao C, Gu J, Cao L, Zhang X, Sun Z, Wei S, Zhou W, Li W X, Lu J. J. Am. Chem. Soc., 2021, 143: 18854.

doi: 10.1021/jacs.1c09498
[48]
Jin H, Li P, Cui P, Shi J, Zhou W, Yu X, Song W, Cao C Y. Nat. Commun., 2022, 13: 723.

doi: 10.1038/s41467-022-28367-9
[49]
Murugesan K, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2019, 131: 5118.

doi: 10.1002/ange.v131.15
[50]
Tong T, Guo W, Liu X, Guo Y, Pao C, Chen J, Hu Y, Wang Y. J. Catal., 2019, 378: 392.

doi: 10.1016/j.jcat.2019.08.024
[51]
Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. J. Am. Chem. Soc., 2017, 139: 11493.

doi: 10.1021/jacs.7b04481 pmid: 28759206
[52]
Jagadeesh R V, Murugesan K, Alshammari A S, Neumann H, Pohl M M, Radnik J, Beller M. Science, 2017, 358: 326.

doi: 10.1126/science.aan6245
[53]
Hahn G, Kunnas P, De-Jonge N, Kempe R. Nat. Catal., 2019, 2: 71.

doi: 10.1038/s41929-018-0202-6
[54]
Ho C R, Defalque V, Zheng S, Bell A T. ACS Catal., 2019, 9: 2931.

doi: 10.1021/acscatal.8b04612
[55]
Wang T, Ibanez J, Wang K, Fang L, Sabbe M, Michel C, Paul S, Pera-Titus M, Sautet P. Nat. Catal., 2019, 2: 773.

doi: 10.1038/s41929-019-0327-2
[56]
Shimizu K, Kon K, Onodera W, Yamazaki H, Kondo J N. ACS Catal., 2013, 3: 112.

doi: 10.1021/cs3007473
[57]
Schultz M G, Diehl T, Brasseur G P, Zittel W. Science, 2003, 302: 624.

pmid: 14576429
[58]
Zou X, Zhang Y. Chem. Soc. Rev., 2015, 44: 5148.

doi: 10.1039/C4CS00448E
[59]
Chen L, Hou K, Liu Y, Qi Z, Zheng Q, Lu Y, Chen J, Chen J, Pao C, Wang S, Li Y, Xie S, Liu F, Prendergast D, Klebanoff L E, Stavila V, Allendorf M D, Guo J, Zheng L, Su J, Somorjai G A. J. Am. Chem. Soc., 2019, 141: 17995.

doi: 10.1021/jacs.9b09431 pmid: 31647653
[60]
Palo D R, Dagle R A, Holladay J D. Chem. Rev., 2007, 107: 3992.

doi: 10.1021/cr050198b
[61]
Lin L, Yao S, Gao R, Liang X, Yu Q, Deng Y, Liu J, Peng M, Jiang Z, Li S, Li Y, Wen X, Zhou W, Ma D. Nat. Nanotechnol., 2019, 14: 354.

doi: 10.1038/s41565-019-0366-5
[62]
Nilekar A U, Sasaki K, Farberow C A, Adzic R R, Mavrikakis M. J. Am. Chem. Soc., 2011, 133: 18574.

doi: 10.1021/ja2072675
[63]
Cortright R D, Davda R R, Dumesic J A. Nature, 2002, 418: 964.

doi: 10.1038/nature01009
[64]
Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li Y, Shi C, Wen X, Ma D. Nature, 2017, 544: 80.

doi: 10.1038/nature21672
[65]
Patel S, Pant K K. Appl. Catal. A, 2009, 356: 189.

doi: 10.1016/j.apcata.2009.01.002
[66]
Li D, Xu F, Tang X, Dai S, Pu T, Liu X, Tian P, Xuan F, Xu Z, Wachs I E, Zhu M. Nat. Catal., 2022, 5: 99.

doi: 10.1038/s41929-021-00729-4
[67]
Yu K M K, Tong W Y, West A, Cheung K, Li T, Smith G, Guo Y L, Tsang S C E. Nat. Commun., 2012, 3: 1230.

doi: 10.1038/ncomms2242
[68]
Chen L, Qi Z, Peng X, Chen J, Pao C, Zhang X, Dun C, Young M, Prendergast D, Urban J J, Guo J H, Somorjai G A, Su J. J. Am. Chem. Soc., 2021, 143: 12074.

doi: 10.1021/jacs.1c03895
[69]
Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Perez M. Science, 2007, 318: 1757.

pmid: 18079397
[70]
Gokhale A A, Dumesic J A, Mavrikakis M. J. Am. Chem. Soc., 2008, 130: 1402.

doi: 10.1021/ja0768237 pmid: 18181624
[71]
Rodriguez J, Liu P, Hrbek J, Evans J, Perez M. Angew. Chem. Int. Ed., 2007, 46: 1329.

doi: 10.1002/(ISSN)1521-3773
[72]
Liang J, Lin J, Liu J, Wang X, Zhang T, Li J. Angew. Chem. Int. Ed., 2020, 59: 12868.

doi: 10.1002/anie.v59.31
[73]
Xu M, Yao S, Rao D, Niu Y, Liu N, Peng M, Zhai P, Man Y, Zheng L, Wang B, Zhang B, Ma D, Wei M. J. Am. Chem. Soc., 2018, 140: 11241.

doi: 10.1021/jacs.8b03117
[74]
Yang M, Li S, Wang Y, Herron J A, Xu Y, Allard L F, Lee S, Huang J, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2016, 346: 1498.

doi: 10.1126/science.1260526
[75]
Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P, Chen B, Crumlin E, Guo J, Zuo Z, Li W Z, Xie J L, Lu L, Kiely C J, Gu L, Shi C, Rodriguez J A, Ma D. Science, 2017, 357: 389.

doi: 10.1126/science.aah4321
[76]
Zhang X, Zhang M T, Deng Y C, Xu M Q, Artiglia L, Wen W, Gao R, Chen B, Yao S, Zhang X, Peng M, Yan J, Li A, Jiang Z, Gao X, Cao S, Yang C, Kropf A J, Shi J, Xie J, Bi M, van Bokhoven J A, Li Y, Wen X, Flytzani-Stephanopoulos M, Shi C, Zhou W, Ma D. Nature, 2021, 589: 396.

doi: 10.1038/s41586-020-03130-6
[77]
Freund H J, Meijer G, Scheffler M, Schlogl R, Wolf M. Angew. Chem. Int. Ed., 2011, 50: 10064.

doi: 10.1002/anie.201101378
[78]
Twigg M V. Appl. Catal. B, 2007, 70: 2.

doi: 10.1016/j.apcatb.2006.02.029
[79]
Liu K, Wang A, Zhang T. ACS Catal., 2012, 2: 1165.

doi: 10.1021/cs200418w
[80]
Haruta M, Yamada N, Kobayashi T, Iijima S. J. Catal., 1989, 115: 301.

doi: 10.1016/0021-9517(89)90034-1
[81]
Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987, 16: 405.

doi: 10.1246/cl.1987.405
[82]
Comotti M, Li W, Spliethoff B, Schüth F. J. Am. Chem. Soc., 2006, 128: 917.

doi: 10.1021/ja0561441
[83]
Arab L, Boutahala M, Djellouli B, Dintzer T, Pitchon V. Appl. Catal. A, 2014, 475: 446.

doi: 10.1016/j.apcata.2014.02.003
[84]
Lizuka Y, Tode T, Takao T, Yatsu K, Takeuchi T, Tsubota S, Haruta M. J. Catal., 1999, 187: 50.

doi: 10.1006/jcat.1999.2604
[85]
Mavrikakis M, Stoltze P, Nørskov J K. Catal. Lett., 2000, 64: 101.

doi: 10.1023/A:1019028229377
[86]
Lopez N,. Janssens T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T, Nørskov J K. J. Catal., 2004, 223: 232.

doi: 10.1016/j.jcat.2004.01.001
[87]
Saavedra J,. Doan H A, Pursell C J, Grabow L C, Chandler B D. Science, 2014, 345: 1599.

doi: 10.1126/science.1256018 pmid: 25190716
[88]
Green I X, Tang W, Neurock M, Yates J T. Science, 2011, 333: 736.

doi: 10.1126/science.1207272
[89]
Yoon B, Ha¨kkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Judai K, Heiz U. Science, 2005, 307: 403.

doi: 10.1126/science.1104168
[90]
Wang S, Zhao Q, Wei H, Wang J Q, Cho M, Cho H S, Terasaki O, Wan Y. J. Am. Chem. Soc., 2013, 135: 11849.

doi: 10.1021/ja403822d
[91]
Xiao J, Pan X, Guo S, Ren P, Bao X H. J. Am. Chem. Soc., 2015, 137: 477.

doi: 10.1021/ja511498s
[92]
Tauster S J. Acc. Chem. Res., 1987, 20: 389.

doi: 10.1021/ar00143a001
[93]
Van Deelen T M, Mejía C H, De Jong K P. Nat. Catal., 2019, 2: 955.

doi: 10.1038/s41929-019-0364-x
[94]
Tang H, Su Y, Zhang B, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y, Huang J, Haruta M, Qiao B, Liu X, Jin C, Su D S, Wang J H, Zhang T. Sci. Adv., 2017, 3: e1700231.

doi: 10.1126/sciadv.1700231
[95]
Liu S, Xu W, Niu Y, Zhang B, Zheng L, Liu W, Li L, Wang J H. Nat. Commun., 2019, 10: 5790.

doi: 10.1038/s41467-019-13755-5
[96]
Wang Y, Widmann D, Heenemann M, Diemant T, Biskupek J, Schlögl R, Behm R J. J. Catal., 2017, 354: 46.

doi: 10.1016/j.jcat.2017.07.029
[97]
Zhang J, Wang H, Wang L, Ali S, Wang C, Wang L, Meng X, Li B, Su D S, Xiao F S. J. Am. Chem. Soc., 2019, 141: 2975.

doi: 10.1021/jacs.8b10864 pmid: 30677301
[98]
Tauster S J, Fung S C, Baker R T K, Horsley J A. Science, 1981, 211: 1121.

doi: 10.1126/science.211.4487.1121 pmid: 17755135
[99]
Matsubu J C, Zhang S, De Rita L, Marinkovic N S, Chen J G G, Graham G W, Pan X, Christopher P. Nat. Chem., 2017, 9: 120.

doi: 10.1038/nchem.2607 pmid: 28282057
[100]
Wang H, Wang L, Lin D, Feng X, Niu Y, Zhang B, Xiao F S. Nat. Catal., 2021, 4: 418.

doi: 10.1038/s41929-021-00611-3
[101]
Wang H, Wang L, Xiao F S. Sci. China Chem., 2022, 65: 2051.

doi: 10.1007/s11426-022-1356-3
[102]
Dong J, Fu Q, Li H, Xiao J, Yang B, Zhang B, Bai Y, Song T, Zhang R, Gao L, Cai J, Zhang H, Liu Z, Bao X. J. Am. Chem. Soc., 2020, 142: 17167.

doi: 10.1021/jacs.0c08139
[103]
Chen H, Yang Z, Wang X, Polo-Garzon F, Halstenberg P W, Wang T, Sun X, Yang S Z, Meyer H M, Wu Z, Dai S. J. Am. Chem. Soc., 2021, 143: 8521.

doi: 10.1021/jacs.0c12817 pmid: 34081447
[104]
Yu J, Sun X, Tong X, Zhang J, Li J, Li S, Liu Y, Tsubaki N, Abe T, Sun J. Nat. Commun., 2021, 12: 7209.

doi: 10.1038/s41467-021-27557-1
[105]
Zhang J, Zhu D, Yan J, Wang C A. Nat. Commun., 2021, 12: 6665.

doi: 10.1038/s41467-021-27000-5 pmid: 34795268
[106]
Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma, Gu X K, Chen L, Wang Z, Zhang H, Wang B, Bao X H. Science, 2010, 328: 1141.

doi: 10.1126/science.1188267
[107]
Cao L, Liu W, Luo Q, Yin R, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z, Ma C, Zhang W, Chen S, Wang H, Guan Q, Yao T, Wei S, Yang J, Lu J L. Nature, 2019, 565: 631.

doi: 10.1038/s41586-018-0869-5
[108]
Chen G, Zhao Y, Fu G, Duchesne P N, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao C W, Lee J F, Zheng N F. Science, 2014, 344: 495.

doi: 10.1126/science.1252553
[109]
Nie L, Mei D H, Xiong H, Peng B, Ren Z, Hernandez X I P,. De La Riva A, Wang M, Engelhard M H, Kovarik L, Datye A K, Wang Y. Science, 2017, 358: 1419.

doi: 10.1126/science.aao2109
[110]
Watson P R, Somorgai G A. J. Catal., 1981, 72: 347.

doi: 10.1016/0021-9517(81)90018-X
[111]
Watson P R, Somorgai G A. J. Catal., 1982, 74: 282.

doi: 10.1016/0021-9517(82)90034-3
[112]
Katzer J R, Sleight A W, Gajardo P, Michel J B, Gleason E F, McMillan S. Faraday Discuss., 1981, 72: 121.
[113]
Favre T L F, Vanderlee G, Ponec V. J. Chem. Soc. Chem. Commun., 1985, 4: 230.
[114]
Vanderlee G, Schuller B, Post H, Favre T L F, Ponec V. J. Catal., 1986, 98: 522.

doi: 10.1016/0021-9517(86)90340-4
[115]
Chuang S S C, Stevens R W, Khatri R. Top. Catal., 2005, 32: 225.

doi: 10.1007/s11244-005-2897-2
[116]
Chuang S S C, Pien S I. J. Catal., 1992, 135: 618.

doi: 10.1016/0021-9517(92)90058-P
[117]
Castner D G, Sexton B A, Somorjai G A. Surf. Sci., 1978, 71: 519.

doi: 10.1016/0039-6028(78)90444-2
[118]
Thiel P A, Williams E D, Yates J T, Weinberg W H. Surf. Sci., 1979, 84: 54.

doi: 10.1016/0039-6028(79)90279-6
[119]
Yates J T, Williams E D, Weinberg W H. Surf. Sci., 1980, 91: 562.

doi: 10.1016/0039-6028(80)90351-9
[120]
Gorodetskii V V, Nieuwenhuys B E. Surf. Sci., 1981, 105: 299.

doi: 10.1016/0039-6028(81)90163-1
[121]
Bowker M, Guo Q M, Joyner R. Surf. Sci., 1991, 253: 33.

doi: 10.1016/0039-6028(91)90579-H
[122]
Batteas J D, Gardin D E, Van Hove M A, Somorjai G A. Surf. Sci., 1993, 297: 11.

doi: 10.1016/0039-6028(93)90010-H
[123]
Sexton B A, Somorjai G A. J. Catal., 1977, 46: 167.

doi: 10.1016/0021-9517(77)90198-1
[124]
Castner D G, Somorjai G A. Surf. Sci., 1979, 83: 60.

doi: 10.1016/0039-6028(79)90480-1
[125]
Liu W, Ren D M. Surf. Sci., 1990, 232: 323.

doi: 10.1016/0039-6028(90)90125-R
[126]
Kim M J, Chae H J, Ha K S, Jeong K E, Kim C U, Jeong S Y, Kim T W. J. Nanosci. Nanotechnol., 2013, 13: 7511.

doi: 10.1166/jnn.2013.7909
[127]
Mei D, Rousseau R, Kathmann S M, Glezakou V A, Engelhard M H, Jiang W, Wang C, Gerber M A, White J F, Stevens D J. J. Catal., 2010, 271: 325.

doi: 10.1016/j.jcat.2010.02.020
[128]
Ma X, Deng H, Yang M M, Li W X. J. Chem. Phys., 2008, 129: 244711.

doi: 10.1063/1.3046691
[129]
Liu J, Guo Z, Childers D, Schweitzer N, Marshall C L, Klie R F, Miller J T, Meyer R J. J. Catal., 2014, 313: 149.

doi: 10.1016/j.jcat.2014.03.002
[130]
Jackson S D, Brandreth B J, Winstanley D A. J. Catal., 1987, 106: 464.

doi: 10.1016/0021-9517(87)90259-4
[131]
Bhasin M. J. Catal., 1978, 54: 120.

doi: 10.1016/0021-9517(78)90035-0
[132]
Liu W, Wang S, Sun T, Wang S,. Catal. Lett., 2015, 145: 1741.

doi: 10.1007/s10562-015-1577-5
[133]
Mo X, Gao J, Jmnajkaseam N, GoodwinJ G. J. Catal., 2009, 267: 167.

doi: 10.1016/j.jcat.2009.08.007
[134]
Nonneman L E Y, Bastein A G T M, Ponec V, Burch R. Appl. Catal., 1990, 62: L23.

doi: 10.1016/S0166-9834(00)82230-7
[135]
Burch R, Petch M I. Appl. Catal. A, 1992, 88: 61.

doi: 10.1016/0926-860X(92)80196-J
[136]
Choi Y, Liu P. J. Am. Chem. Soc., 2009, 131: 13054.

doi: 10.1021/ja903013x
[137]
Chuang S C, Goodwin J G, Wender I. J. Catal., 1985, 95: 435.

doi: 10.1016/0021-9517(85)90121-6
[138]
Egbebi A, Schwartz V, Overbury S H, Spivey J J. Catal. Today, 2010, 149: 91.

doi: 10.1016/j.cattod.2009.07.104
[139]
Du Y H, Chen D A, Tsai K R. Appl. Catal., 1987, 35: 77.
[140]
Jiang D, Ding Y, Pan Z, Chen W, Luo H. Catal. Lett., 2008, 121: 241.

doi: 10.1007/s10562-007-9322-3
[141]
Yu J, Mao D, Han L, Guo Q, Lu G. Fuel Process. Technol., 2013, 106: 344.

doi: 10.1016/j.fuproc.2012.08.020
[142]
Yu J, Mao D, Han L, Guo Q, Lu G. J. Mol. Catal. A Chem., 2013, 367: 38.

doi: 10.1016/j.molcata.2012.10.022
[143]
Han L, Mao D, Yu J, Guo Q, Lu G. Catal. Commun., 2012, 23: 20.

doi: 10.1016/j.catcom.2012.02.032
[144]
Han L, Mao D, Yu J, Guo Q, Lu G. Appl. Catal. A, 2013, 454: 81.

doi: 10.1016/j.apcata.2013.01.008
[145]
Chai S H, Howe J Y, Wang X Q, Kidder M, Schwartz V, Golden M L, Overbury S H, Dai S, Jiang D. Carbon, 2012, 50: 1574.

doi: 10.1016/j.carbon.2011.11.036
[146]
Arakawa H, Takeuchi K, Matsuzaki T, Sugi Y. Chem. Lett., 1984, 1607.
[147]
Fan Z, Chen W, Pan X, Bao X. Catal. Today, 2009, 147: 86.

doi: 10.1016/j.cattod.2009.03.004
[148]
Ichikawa M, Shikakura K, Kawai M.Proceedings of Symposium, Dalian, China, 1982.
[149]
Tauster S J, Fung S C. J. Catal., 1978, 55: 29.

doi: 10.1016/0021-9517(78)90182-3
[150]
Kip B J, Smeets P A T, Van Grondelle J, Prins R. Appl. Catal., 1987, 33: 181.

doi: 10.1016/S0166-9834(00)80592-8
[151]
Subramanian N D, Gao J, Mo X H, Goodwin J G, Torres W, Spivey J J. J. Catal., 2010, 272: 204.

doi: 10.1016/j.jcat.2010.03.019
[152]
Liu J, Tao R, Guo Z, Regalbuto J R, Marshall C L, Klie R F, Miller J T, Meyer R J. ChemCatChem, 2013, 5: 3665.

doi: 10.1002/cctc.201300479
[153]
Wang J, Zhang Q, Wang Y. Catal. Today, 2011, 171: 257.

doi: 10.1016/j.cattod.2011.03.023
[154]
Yang N, Yoo J S, Schumann J, Bothra P, Singh J A, Valle E, Abild-Pedersen F, Nørskov J K, Bent S F. ACS Catal., 2017, 7: 5746.

doi: 10.1021/acscatal.7b01851
[155]
Huang Y, Deng W, Guo E, Chung P W, Chen S, Trewyn B G, Brown R C, Lin V S Y. ChemCatChem., 2012, 4: 674.

doi: 10.1002/cctc.v4.5
[156]
Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat. Mater., 2007, 6: 507.

doi: 10.1038/nmat1916
[157]
Wang C, Zhang J, Qin G, Wang L, Zuidema E, Yang Q, Dang S, Yang C, Xiao J, Meng X, Mesters C, Xiao F S. Chem, 2020, 6: 646.

doi: 10.1016/j.chempr.2019.12.007
[1] Yuenan Zheng, Jiaqi Yang, Zhen-An Qiao. Condensed Matter Chemistry: The Defect Engineering of Porous Materials [J]. Progress in Chemistry, 2023, 35(6): 954-967.
[2] Nan Wang, Yingxu Wei, Zhongmin Liu. Methanol to Olefins (MTO): A Condensed Matter Chemistry [J]. Progress in Chemistry, 2023, 35(6): 839-860.
[3] Xuetao Qin, Ziqiao Zhou, Ding Ma. Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts [J]. Progress in Chemistry, 2023, 35(6): 928-939.
[4] Qinghe Li, Botao Qiao, Tao Zhang. Condensed Matter Chemistry in Single-Atom Catalysis [J]. Progress in Chemistry, 2023, 35(6): 821-838.
[5] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[6] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[7] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[8] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[9] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[10] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[11] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[12] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[13] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[14] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[15] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.