中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1148-1158 DOI: 10.7536/PC190131 Previous Articles   Next Articles

Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation

Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang**(), Yinxian Peng**()   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received: Online: Published:
  • Contact: Jing Wang, Yinxian Peng
  • About author:
    ** E-mail: (Jing Wang)
    (Yinxian Peng)
  • Supported by:
    National Natural Science Foundation of China(21705060); National Natural Science Foundation of China(21605105); Social Development Key Project Fund of Zhenjiang(SH2018011)
Richhtml ( 12 ) PDF ( 568 ) Cited
Export

EndNote

Ris

BibTeX

Functionalized porous materials(FPMs) as ideal materials for specific idenpngication and separation have attracted a great deal of attention due to their excellent controllability of preparation, great specific surface area and unique three-dimensional macrostructures with well-defined interconnected porous networks. In this paper, the preparation of FPMs and their applications in specific recognition and separation are reviewed and prospected systematically. Firstly, the basic theory of the preparation of FPMs and the concept of frontier design are expounded systematically. Then, through the in-depth analysis of the preparation principle and key factors during synthesis of FPMs, the mechanism and applications for FPMs in the fields of specific recognition, extraction natural functional ingredients, separation and removal pollutants and catalytic reaction are reviewed. The problems and development trends of FPMs in the fields of specific recognition, catalysis and separation are analyzed and forecasted.

Fig. 1 Formation mechanism of magnetic porous adsorbent[33]
Fig. 2 Representative molecular structures for networks CMP(0~4)[34].Reprinted with permission from ref. 34. Copyright [2008] American Chemical Society
Fig. 3 Morphological characterizations of the polymer microspheres. SEM(a and b) and TEM(c) micrographs of PMMA Reprinted with permission from ref 47. Copyright [2005] American Chemical Society.
Fig. 4 Schematic illustration for the synthesis of MPMMA by Pickering emulsion polymerization[82]
Fig. 5 Schematic illustration of the synthesis of Cr3+-HPFs-1-H+ and the conversion of carbohydrate into HMF in [Emim]Cl under atmospheric pressure[84]
Fig. 6 Schematic of fabrication process of the Ho-SnO2@MIPs[87]
Fig. 7 The chemical structures of TFSE compound(a), NUS-30(b), NUS-31(c) and NUS-32(d). Reprinted with permission from ref 89. Copyright [2019] American Chemical Society.
Fig. 8 Synthesis of CC10 by [4 + 6] Schiff-base cycloimination reaction[94]
[1]
Xie S, Wu S, Bao S, Wang Y, Zheng Y, Deng D, Huang L, Zhang L, Lee M, Huang Z . Advanced Materials, 2018,1800683.
[2]
Schneider D, Mehlhorn D, Zeigermann P, Kärger J, Valiullin R . Chemical Society Reviews, 2016,47:3439.
[3]
Pan J, Chen W, Ma Y, Pan G . Chemical Society Reviews, 2018,47:5574. https://www.ncbi.nlm.nih.gov/pubmed/29876564

doi: 10.1039/c7cs00854f pmid: 29876564
[4]
Gunathilake T M S U, Ching Y C, Ching K Y, Cheng H C, Abdullah L C . Polymers, 2017,9:160.
[5]
Blin J L, Impérorclerc M . Chemical Society Reviews, 2013,42:4071. https://www.ncbi.nlm.nih.gov/pubmed/23258529

doi: 10.1039/c2cs35362h pmid: 23258529
[6]
Cai R, Ellis P R, Yin J, Liu J, Brown C M, Griffin R, Chang G, Yang D, Ren J, Cooke K . Small, 2018,14:1703734.
[7]
Wu R, Ma Y, Pan J, Lee S H, Liu J, Zhu H, Gu R, Shea K J, Pan G . Biosensors & Bioelectronics, 2018,101:52. https://www.ncbi.nlm.nih.gov/pubmed/29040914

doi: 10.1016/j.bios.2017.10.003 pmid: 29040914
[8]
Xu X, Li Y, Yang D, Zheng X, Wang Y, Pan J, Zhang T, Xu J, Qiu F, Yan Y . Journal of Cleaner Production, 2017,171:264.
[9]
Easun T L, Moreau F, Yan Y, Yang S, Schroeder M . Chemical Society Reviews, 2017,46:239. https://www.ncbi.nlm.nih.gov/pubmed/27896354

doi: 10.1039/c6cs00603e pmid: 27896354
[10]
Li H, Meng B, Mahurin S M, Chai S, Nelson K, Baker D C, Liu H, Dai S . Journal of Materials Chemistry A, 2015,3(42):20913.
[11]
Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310:1166. https://www.ncbi.nlm.nih.gov/pubmed/16293756

doi: 10.1126/science.1120411 pmid: 16293756
[12]
Wang X, Lu S, Li J, Liu Y, Li C . Catalysis Science & Technology, 2015,5(5):2585.
[13]
任浩(Ren H), 朱广山(Zhu G S) . 化学学报( Acta Chimica Sinica), 2015,73:587.
[14]
Xu X, Qiu F, Yang D, Zheng X, Wang Y, Pan J, Zhang T, Xu J, Li C . Applied Organometallic Chemistry, 2017,32:e4114
[15]
Pan J, Liu J, Ma Y, Huang X, Niu X, Zhang T, Chen X, Qiu F . Chemical Engineering Journal, 2017,317:317.
[16]
Hyuk I S, Jeong U, Xia Y . Nature Materials, 2005,4:671. https://www.ncbi.nlm.nih.gov/pubmed/16086022

doi: 10.1038/nmat1448 pmid: 16086022
[17]
Yu L, Yu X Y, Lou X W D . Advanced Materials, 2018,1800939.
[18]
Ma F X, Hu H, Wu H B, Xu C Y, Xu Z, Zhen L, Lou X W D . Advanced Materials, 2015,27:4097. https://www.ncbi.nlm.nih.gov/pubmed/26038182

doi: 10.1002/adma.201501130 pmid: 26038182
[19]
Jiang B, Li C, Qian H, Msa H, Malgras V, Yamauchi Y . Angew. Chem. Int. Ed. Engl., 2017,129:7836.
[20]
Ovcharov M, Shcherban N, Filonenko S, Mishura A, Skoryk M, Shvalagin V, Granchak V . Materials Science & Engineering B, 2015,202:1.
[21]
Wang Y, Chang B, Guan D, Pei K, Chen Z, Yang M, Dong X . Materials Letters, 2014,135:172.
[22]
Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C, Su B L . Chemical Society Reviews, 2017,46:481. https://www.ncbi.nlm.nih.gov/pubmed/27906387

doi: 10.1039/c6cs00829a pmid: 27906387
[23]
Kaneti Y V, Tang J, Salunkhe R R, Jiang X, Yu A, Wu C W, Yamauchi Y . Advanced Materials, 2017,29:1604898.
[24]
Okubo M, Takekoh R, Suzuki A . Colloid & Polymer Science, 2002,280:1057.
[25]
Okubo M, Konishi Y, Inohara T, Minami H . Colloid & Polymer Science, 2003,281:302.
[26]
Song T, Luo W, Mu J, Cai Y, Wei , Li H . Journal of Colloid and Interface Science, 2019,535:371. https://www.ncbi.nlm.nih.gov/pubmed/30316124

doi: 10.1016/j.jcis.2018.09.103 pmid: 30316124
[27]
Ohta S, Hashimoto K, Fu X, Kamihira M, Sakai Y, Ito T . Journal of Bioscience & Bioengineering, 2018,126(4):533. https://www.ncbi.nlm.nih.gov/pubmed/29776730

doi: 10.1016/j.jbiosc.2018.04.017 pmid: 29776730
[28]
Akamatsu K, Ide Y, Inabe T, Nakao S I . Industrial & Engineering Chemistry Research, 2018,57(29):9465.
[29]
Kamio E, Yonemura S, Ono T, Yoshizawa H . Langmuir, 2008,24:13287. https://www.ncbi.nlm.nih.gov/pubmed/18666759

doi: 10.1021/la800758d pmid: 18666759
[30]
Xu S, Chen L, Li J, Qin W, Ma J . Journal of Materials Chemistry, 2011,21:12047.
[31]
Côtél A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310(5751):1166 https://www.ncbi.nlm.nih.gov/pubmed/16293756

doi: 10.1126/science.1120411 pmid: 16293756
[32]
Ji W, Sun R, Geng Y, Liu W, Wang X . Analytica Chimica Acta, 2018,1001:179. https://www.ncbi.nlm.nih.gov/pubmed/29291801

doi: 10.1016/j.aca.2017.12.001 pmid: 29291801
[33]
Ma Y, Zhou Q, Li A, Shuang C, Shi Q, Zhang M . Journal of Hazardous Materials, 2014,266:84. https://www.ncbi.nlm.nih.gov/pubmed/24380891

doi: 10.1016/j.jhazmat.2013.12.015 pmid: 24380891
[34]
Jiang J, Su F, Trewin A, Wood C D, Niu H, Jones J T A, Khimyak Y Z, Cooper A I . Journal of the American Chemical Society, 2008,130(24):7710. https://www.ncbi.nlm.nih.gov/pubmed/18500800

doi: 10.1021/ja8010176 pmid: 18500800
[35]
Jiang J, Su F, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I . Angewandte Chemie International Edition, 2007,46(45):8574. https://www.ncbi.nlm.nih.gov/pubmed/17899616

doi: 10.1002/anie.200701595 pmid: 17899616
[36]
Cheng G, Hasell T, Trewin A, Adams D J . Angewandte Chemie International Edition, 2012,51(51):12727. https://www.ncbi.nlm.nih.gov/pubmed/23143745

doi: 10.1002/anie.201205521 pmid: 23143745
[37]
Geng T, Zhang C, Chen G, Ma L, Zhang W, Xia H . Microporous and Mesoporous Materials, 2019, doi.: 10.1016/j.micromeso.2019.04.036.
[38]
Ding H, Zhang Y, Wang S, Xu J, Xu S, Li G . Chemistry of Materials, 2012,24:4572.
[39]
Luis A D S, Bonnefond A, Barrado M, Guraya T, Iturrondobeitia M, Okariz A, Paulis M, Leiza J R . Chemical Engineering Journal, 2016,313:261.
[40]
Tan X, Fang M, Tan L, Liu H, Ye X, Hayat T, Wang X . Environmental Science Nano, 2018,5:1140.
[41]
Tan C, Zhu G, Hojamberdiev M, Lokesh K S, Luo X, Lei J, Zhou J, Peng L . Journal of Hazardous Materials, 2014,278:572. https://www.ncbi.nlm.nih.gov/pubmed/25016456

doi: 10.1016/j.jhazmat.2014.06.019 pmid: 25016456
[42]
Cho M S, Kim J W, Chung G Y . Korean Journal of Chemical Engineering, 1996,13:515.
[43]
Zeng X, Liu G, Tao W, Ma Y, Zhang X, He F, Pan J, Mei L, Pan G . Advanced Functional Materials, 2017,27:1605985.
[44]
Wang Y, Xu J, Xu X, Yang D, Zheng X, Pan J, Zhang T, Qiu F, Li C . Applied Organometallic Chemistry, 2017,32:e4182.
[45]
Yu B, Xue T, Pang L, Zhang X, Shen Y, Cong H . Materials, 2018,11:705.
[46]
Okubo M, Ise E, Yonehara H, Yamashita T . Colloid & Polymer Science, 2001,279:539.
[47]
He X, Ge X W, Liu H, Wang M Z, Zhang Z . Chemistry of Materials, 2005,17:5891.
[48]
He X, Ge X W, Liu H, Wang M Z, Zhang Z . Journal of Polymer Science Part A Polymer Chemistry, 2007,45:933.
[49]
Huang H, Li J, Wang K, Han T, Tong M, Li L, Xie Y, Yang Q, Liu D, Zhong C . Nature Communications, 2015,6:8847. https://www.ncbi.nlm.nih.gov/pubmed/26548441

doi: 10.1038/ncomms9847 pmid: 26548441
[50]
Wu T, Ge Z, Liu S Y . Chemistry of Materials, 2011,23:2370.
[51]
Park M K, Xia C, Advincula R C . Langmuir, 2001,17:7670.
[52]
Liu W, Chen G, He G, He Z, Qian Z . Journal of Materials Science, 2011,46:6758.
[53]
Zhang X, Yan W, Yang H, Liu B, Li H . Polymer, 2008,49:5446.
[54]
Flores P A, Ojeda J, Irala C, Zalts A, Montserrat J . Waste Management, 2018,78:532.
[55]
Tahiri Y, Reinisch J . Clinics in Plastic Surgery, 2019,46(2):223. https://www.ncbi.nlm.nih.gov/pubmed/30851753

doi: 10.1016/j.cps.2018.11.006 pmid: 30851753
[56]
Stephan S, Reinisch J . Facial Plastic Surgery Clinics of North America, 2018,26(1):69. https://www.ncbi.nlm.nih.gov/pubmed/29153190

doi: 10.1016/j.fsc.2017.09.009 pmid: 29153190
[57]
Ke Y, Wang F, Xu P, Yang B . Building and Environment, 2018,145:85.
[58]
Fan X, Fan P, Li S, Wu Y, Shao S, Zhai L . Polymer Materials Science & Engineering, 2018,34:185.
[59]
Zeng H, Wang W, Li J, Luo J, Chen S. ACS Appl . Mater. Interfaces, 2018,8721.
[60]
Li Y, Wang S, Hao P, Tian J, Cui H, Wang X . Sensors & Actuators B Chemical, 2018,273:751.
[61]
Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao X, Wang Y, Dou H, Zhang X, Yamauchi Y . Nature Communications, 2017,8:15717. https://www.ncbi.nlm.nih.gov/pubmed/28604671

doi: 10.1038/ncomms15717 pmid: 28604671
[62]
Bing Y, Zeng Y, Liu C, Qiao L, Sui Y, Zou B, Zheng W, Zou G . Sensors & Actuators B Chemical, 2014,190:370.
[63]
Silverstein M S . Progress in Polymer Science, 2014,39:199.
[64]
Li Z, Liu H, Zeng L, Liu H, Wang Y . Journal of Materials Science, 2016,51:9005.
[65]
Zhu Y, Zheng Y, Feng W, Wang A . Chemical Engineering Journal, 2016,284:422.
[66]
Huå S, Kolar M, Krajnc P . Journal of Chromatography A, 2016,1437:168. https://www.ncbi.nlm.nih.gov/pubmed/26875120

doi: 10.1016/j.chroma.2016.02.012 pmid: 26875120
[67]
Liu S, Jin M, Chen Y, Gao H, Shi X, Cheng W, Ren L, Wang Y . Journal of Materials Chemistry B, 2017,5:2671. https://www.ncbi.nlm.nih.gov/pubmed/32264046

doi: 10.1039/c7tb00145b pmid: 32264046
[68]
Woodward R T, De L F, Roberts A D . Bismarck A. Materials, 2016,9:776.
[69]
Peng H, Ma G, Sun K, Mu J, Zhang Z, Lei Z . Journal of Physical Chemistry C, 2014,118:29507.
[70]
Lissant K J . Journal of Colloid & Interface Science, 1966,22:462.
[71]
Fan X, Zhang S, Zhu Y, Chen J . RSC Advances, 2018,8:10141.
[72]
Grant N C, Cooper A I, Zhang H. ACS Appl . Mater. Interfaces, 2010,2:1400.
[73]
Woodward R T, Markoulidis F, Luca F D, Anthony D B, Malko D, McDonald T O, Shaffer M S P, Bismarck A . Journal of Materials Chemistry A, 2018,6(4):1840.
[74]
Zhang W, Ruan G, Li X, Jiang X, Huang Y, Du F Y, Li J . Analytica Chimica Acta, 2019, doi: 10.1016/j.aca.2019.04.041.
[75]
Velev O D, Furusawa K, Nagayama K . Langmuir, 1996,12:2385. https://pubs.acs.org/doi/10.1021/la950679y

doi: 10.1021/la950679y
[76]
Velev O D, Nagayama K . Langmuir, 1997,13:1856.
[77]
Dinsmore A D, Ming F H, Nikolaides M G, Marquez M, Bausch A R, Weitz D A . Science, 2002,298:1006. https://www.ncbi.nlm.nih.gov/pubmed/12411700

doi: 10.1126/science.1074868 pmid: 12411700
[78]
Yang Y, Wei Z, Wang C, Tong Z . Chemical Communications, 2013,49:7144. https://www.ncbi.nlm.nih.gov/pubmed/23831814

doi: 10.1039/c3cc42270d pmid: 23831814
[79]
Azhar U, Huo Z, Yaqub R, Xu A, Zhang S, Geng B . Polymer, 2019,172:160.
[80]
Jiao B, Shi A, Wang Q, Binks B P . Angewandte Chemie International Edition, 2018,57:9274. https://www.ncbi.nlm.nih.gov/pubmed/29845713

doi: 10.1002/anie.201801350 pmid: 29845713
[81]
Pan J, Yin Y, Gan M, Meng M, Dai X, Wu R, Shi W, Yan Y . Chemical Engineering Journal, 2015,266:299.
[82]
Zeng J, Peng Y, Pan J, Gao H, Wu R, Yin Y, Yan Y . Chemical Engineering Journal, 2015,266:1.
[83]
Parlett C M, Wilson K, Lee A F . Chemical Society Reviews, 2013,42:3876. https://www.ncbi.nlm.nih.gov/pubmed/23139061

doi: 10.1039/c2cs35378d pmid: 23139061
[84]
Gao H P, Pan J, Han D, Zhang Y, Shi W, Zeng J, Peng Y, Yan Y . Journal of Materials Chemistry A, 2015,3:13507.
[85]
Salimi K, Usta D D, Celikbıcak Ö, Pınar A, Salih B, Tuncel A . Journal of Chromatography A, 2017,1496:9. https://www.ncbi.nlm.nih.gov/pubmed/28351536

doi: 10.1016/j.chroma.2017.03.052 pmid: 28351536
[86]
Pan J, Huang X B, Gao L, Peng Y, Liu S, Gu R . Chemical Engineering Journal, 2017,312:263.
[87]
Jia Q, Ma Y, Peng Y, Liu Y, Zhang W . Chemical Engineering Journal, 2018,342:293.
[88]
Jia Q, Peng Y, Pan J, Huang X, Niu X, Zhang T . New Journal of Chemistry, 2017,41:3308
[89]
Dong J, Li Xu, Peh S B, Yuan Y, Wang Y, Ji D, Peng S, Liu G, Ying S, Yuan D, Jiang J, Ramakrishna S, Zhao D . Chemistry of Materials, 2019,31(1):146.
[90]
Zhang Y, Pan J, Chen Y, Shi W, Yan Y, Yu L . Chemical Engineering Journal, 2015,283:956.
[91]
Zhang Y, Chen Y, Pan J, Liu M, Jin P, Yan Y . Chemical Engineering Journal, 2017,313:1593.
[92]
Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y . Angewandte Chemie International Edition, 2014,53(11):2878. https://www.ncbi.nlm.nih.gov/pubmed/24604810

doi: 10.1002/anie.201310500 pmid: 24604810
[93]
Song H, Li X, He Y, Peng Y, Pan J, Niu X, Zhao H, Lan M . Microchimica Acta, 2019,186:354. https://www.ncbi.nlm.nih.gov/pubmed/31098776

doi: 10.1007/s00604-019-3488-4 pmid: 31098776
[94]
Zhang J, Xie S, Wang B, He P, Yuan L . Journal of Chromatography A, 2015,1426:174. https://www.ncbi.nlm.nih.gov/pubmed/26632517

doi: 10.1016/j.chroma.2015.11.038 pmid: 26632517
[95]
Mazaj M, Logar N Z, Žagar E, Kovacic S . Journal of Materials Chemistry A, 2017,5:1967.
[96]
Chen M, Sun F, Xu W, Zhou L, Zhang F . Journal of Materials Science, 2016,51:5113.
[97]
Liu Y. Xiong Q, Song H, Peng Y, Liu L, Jiang C . Cellulose, 2019,26(4):2573
[98]
Liu J, Pan J, Ma Y, Liu S, Qiu F, Yan Y . Chemical Engineering Journal, 2018,332:517.
[99]
Yin Y, Pan J, Cao J, Ma Y, Pan G, Wu R, Dai X, Meng M, Yan Y . Chemical Engineering Journal, 2016,286:485.
[100]
Xiao Z, Zhang M, Fan W, Qian Y, Yang Z, Xu B, Kang Z, Wang R, Sun D . Chemical Engineering Journal, 2017,326:640.
[101]
Wang X, Chen X, Peng Y, Pan J . RSC Advances, 2019,9:7228.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[13] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.