中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1509-1523 DOI: 10.7536/PC220347 Previous Articles   Next Articles

• Review •

Research of Condensed Matter Chemistry on Ionic Liquids

Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang()   

  1. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences,Beijing 100190, China
  • Received: Revised: Online: Published:
  • Contact: Suojiang Zhang
  • Supported by:
    National Natural Science Foundation of China(21978293); National Natural Science Foundation of China(21878296); Beijing Municipal Natural Science Foundation(2202051)
Richhtml ( 41 ) PDF ( 538 ) Cited
Export

EndNote

Ris

BibTeX

Ionic liquids are new solvents that can replace traditional solvents to achieve efficient, low-carbon, clean, recycling, novel processes and technologies, and have important application values in completing the “double carbon” goal. Meanwhile, ionic liquids are a kind of typical “soft condensed matter (soft matter)”, and their fundamental understandings and applications strongly depend on the study of their inner multi-scale microstructures, which requires the idea of “condensed matter chemistry” as the future research direction, that is, performing multi-level studies on the composition, structures, properties, functions and their relationships, and thus to regulate the transport and reaction processes in the real application systems. In this paper, we briefly review the research on ionic liquids from the perspective of “condensed matter chemistry”. At first, we introduce the chemical structures and physicochemical properties of ionic liquids, pointing out that it is necessary to study their inner structures to understand the changes in these properties. We then introduce the structures of ionic liquids from the molecular level to the nano-/micro-scale, including ion pairs, hydrogen bonds, hydrogen bond networks, clusters, interfacial structures, and nano-confined structures. Finally, the future of “condensed matter chemistry” research on ionic liquids is discussed.

Contents

1 Introduction

2 Chemical structure and physicochemical properties of ionic liquids

3 Ion pairs

4 Hydrogen bonds and Hydrogen bond networks

5 Clusters of ionic liquids

6 Interfacial ionic liquid

7 Nano-confined structures

8 Conclusion and outlook

Fig. 1 The chemical structure of cations and anions of typical ionic liquids. R stands for alkyl chains which can also be replaced by other groups, such as olefins, halogens, etc.
Fig. 2 Schematic diagram of (a) formation, (b) stabilization and (c) dissociation of cationic-anion pairs[62]. Copyright 2020 American Chemical Society.
Fig. 3 Various types of hydrogen bonds in ionic liquids[80]. Copyright 2022 American Chemical Society
Fig. 4 Z bonds and hydrogen bond network. (a) The zigzag configurations in different crystal ionic liquids[80]. Copyright 2022 American Chemical Society. (b) Hydrogen bond networks in [C2mim][BF4][75]. Copyright 2012 American Chemical Society
Fig. 5 Clusters of ionic liquid system. (a) Structures of imidazole ionic liquids with different alkyl chains, red and green represent polar and non-polar aggregation regions of ionic liquid, respectively[87]. Copyright 2006 American Chemical Society. (b) Structures of [C8mim][NO3] aqueous solutions with different water content, x H 2 O is the molar fraction of water molecules, yellow and red represent polar and non-polar aggregation regions, respectively, and blue is water[93]. Copyright 2007 American Chemical Society. (c) The formation process of [C12mim][Br] vesicle in the aqueous solution, t is time, green is [C12mim]+ ion, magenta is water[94]. Copyright 2016 American Chemical Society
Fig. 6 TEM images and molecular simulation snapshots for clusters of [C12mim][Br] in aqueous solutions with different concentrations[95,96]. Copyright 2013 Royal Society of Chemistry. Copyright 2020 Elsevier
Fig. 7 Gas-liquid/solid-liquid interfaces of ionic liquids. (a) The density profiles and a typical snapshot for slabs of [Cnmim][NO3] with different alkyl chains in the vacuum[86,103]. Copyright 2007 American Chemical Society. Copyright 2008 American Chemical Society. (b) The density profiles of [Cnmim][TFSI] on negatively charged mica surface and the snapshots of [C8mim][TFSI] near the surface[104]. Copyright 2012 Wiley
Fig. 8 Ionic liquids on electrodes and ultra-thin ionic liquids films on metal surfaces. (a) The changes of the ionic liquid EDL structures with the number of negative charges on the electrodes and the changes of ordered structures of interfacial cations[113,115]. Copyright 2011 American Physical Society. Copyright 2015 Wiley. (b) Ordered/disordered structures of ultra-thin ionic liquid films on different metal surfaces[117⇓⇓~120]. Copyright 2020 Taylor & Francis. Copyright 2013 Beilstein Institute. Copyright 2020 American Chemical Society. Copyright 2020 American Chemical Society
Fig. 9 Ionic liquids in different nano-confined spaces. (a) [Ch][ZnCl3] confined in single-wall nanotubes of different diameters ( D)[124]. Copyright 2009 American Chemical Society. (b) [C4mim][PF6] confined in multi-wall carbon nanotubes of different diameters[125]. Copyright 2010 American Chemical Society. (c) [C2mim] [TFSI] confined two graphene sheets of different spacing distances[126]. Copyright 2019 Royal Society of Chemistry. (d) [C2mim] [SCN] confined in the two MOFs. The black areas in top figures show the connectivity of nanochannels in the MOFs[127]. Copyright 2018 American Chemical Society
Fig. 10 Hydrogen bonds in nano-confined ionic liquids. (a) The average number of hydrogen bonds as a function of the temperature in [C4mim][PF6] confined in the carbon nanotube of D = 1.94 nm[128]. Copyright 2011 American Chemical Society. (b) The average number of hydrogen bonds as a function of the spacing distance in [C2mim][TFSI] confined in two graphene sheets[126]. Copyright 2019 Royal Society of Chemistry
[1]
Earle M J, Seddon K R. Pure Appl. Chem., 2000, 72: 1391.

doi: 10.1351/pac200072071391
[2]
Rogers R D, Seddon KR. Science, 2003, 302: 792.

pmid: 14593156
[3]
Rosen B A, Salehi-Khojin A, Thorson M R, Zhu W, Whipple D T, Kenis P J A, Masel R I. Science, 2011, 334: 643.

doi: 10.1126/science.1209786
[4]
Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A. Science, 2016, 353: 467.

doi: 10.1126/science.aaf4767
[5]
Li F, Mocci F, Zhang X, Ji X, Laaksonen A. Chinese J. Chem. Eng., 2021, 31: 75.

doi: 10.1016/j.cjche.2020.10.029
[6]
Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8: 621.

doi: 10.1038/nmat2448
[7]
Lian C, Liu H, Li C, Wu J. AIChE J., 2019, 65: 804.

doi: 10.1002/aic.16467
[8]
Wang X, Salari M, Jiang D, Chapman Varela J, Anasori B, Wesolowski D J, Dai S, Grinstaff M W, Gogotsi Y. Nat. Rev. Mater., 2020, 5: 787.

doi: 10.1038/s41578-020-0218-9
[9]
De Gennes P G. Angew. Chemie Int. Ed., 1992, 31: 842.

doi: 10.1002/anie.199208421
[10]
De Gennes P G. Soft Matter, 2005, 1: 16.

doi: 10.1039/b419223k
[11]
Dong K, Liu X, Dong H, Zhang X, Zhang S. Chem. Rev., 2017, 117: 6636.

doi: 10.1021/acs.chemrev.6b00776 pmid: 28488441
[12]
Anderson P W. Science, 1972, 177: 393.

pmid: 17796623
[13]
Service R F. Science, 2012, 335: 1167.

doi: 10.1126/science.335.6073.1167 pmid: 22403368
[14]
Xu R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155
[15]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2019, 6: 191.

doi: 10.1093/nsr/nwy128
[16]
Zhen M, Yu J, Dai S. Adv. Mater., 2010, 22: 261.

doi: 10.1002/adma.200900603
[17]
Huang J F, Luo H, Dai S. J. Electrochem. Soc., 2006, 153: J9.

doi: 10.1149/1.2150161
[18]
Luo H. ECS Proc. Vol., 2004, 2004-24: 340.
[19]
He Z, Alexandridis P. Phys. Chem. Chem. Phys., 2015, 17: 18238.

doi: 10.1039/C5CP01620G
[20]
Maton C, De Vos N, Stevens C V. Chem. Soc. Rev., 2013, 42: 5963.

doi: 10.1039/c3cs60071h
[21]
Aparicio S, Atilhan M, Karadas F. Ind. Eng. Chem. Res., 2010, 49: 9580.

doi: 10.1021/ie101441s
[22]
Holbrey J D, Seddon K R. J. Chem. Soc. Dalt. Trans., 1999: 2133.
[23]
Ohno H. Solid State Ionics, 2002, 154/155: 303.

doi: 10.1016/S0167-2738(02)00526-X
[24]
BonẐte P, Dias A P, Papageorgiou N, Kalyanasundaram K, Grätzel M. Inorg. Chem., 1996, 35: 1168.

doi: 10.1021/ic951325x
[25]
Xu W, Cooper E I, Angell C A. J. Phys. Chem. B, 2003, 107: 6170.

doi: 10.1021/jp0275894
[26]
Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Green Chem., 2001, 3: 156.

doi: 10.1039/b103275p
[27]
Crosthwaite J M, Muldoon M J, Dixon J K, Anderson J L, Brennecke J F. J. Chem. Thermodyn., 2005, 37: 559.

doi: 10.1016/j.jct.2005.03.013
[28]
Radhakrishnan R, Gubbins K E, Sliwinska-Bartkowiak M. J. Chem. Phys., 2002, 116: 1147.

doi: 10.1063/1.1426412
[29]
Chen S, Wu G, Sha M, Huang S. J. Am. Chem. Soc., 2007, 129: 2416.

doi: 10.1021/ja067972c
[30]
Kanakubo M, Hiejima Y, Minami K, Aizawa T, Nanjo H. Chem. Commun., 2006: 1828.
[31]
Yonekura R, Grinstaff M W. Phys. Chem. Chem. Phys., 2014, 16: 20608.

doi: 10.1039/c4cp02594f pmid: 25155840
[32]
Okoturo O O, VanderNoot T J. J. Electroanal. Chem., 2004, 568: 167.

doi: 10.1016/j.jelechem.2003.12.050
[33]
Feng G, Chen M, Bi S, Goodwin Z A H, Postnikov E B, Brilliantov N, Urbakh M, Kornyshev A A. Phys. Rev. X, 2019, 9: 21024.
[34]
Matsumoto R, Thompson M W, Cummings PT. J. Phys. Chem. B, 2019.
[35]
Dimeglio J L, Rosenthal J. J. Am. Chem. Soc., 2013, 135: 8798.

doi: 10.1021/ja4033549
[36]
Kalhoff J, Eshetu G G, Bresser D, Passerini S. ChemSusChem, 2015, 8: 2154.

doi: 10.1002/cssc.201500284 pmid: 26075350
[37]
Taige M A, Hilbert D, Schubert T J S. Zeitschrift fur Phys. Chemie, 2012, 226: 129.

doi: 10.1524/zpch.2012.0161
[38]
Zhou Y, Ghaffari M, Lin M, Xu H, Xie H, Koo CM, Zhang QM. RSC Adv., 2015, 5: 71699.

doi: 10.1039/C5RA14016A
[39]
Berrod Q, Ferdeghini F, Judeinstein P, Genevaz N, Ramos R, Fournier A, Dijon J, Ollivier J, Rols S, Yu D, Mole R A, Zanotti J-M. Nanoscale, 2016, 8: 7845.

doi: 10.1039/c6nr01445c pmid: 27021047
[40]
Earle M J, Esperança J M S S, Gilea M A, Lopes J N C, Rebelo L P N, Magee J W, Seddon K R, Widegren J A. Nature, 2006, 439: 831.

doi: 10.1038/nature04451
[41]
Han X, Armstrong D W. Acc. Chem. Res., 2007, 40: 1079.

doi: 10.1021/ar700044y
[42]
Kong L, Huang W, Wang X. J. Phys. D. Appl. Phys., 2016, 49: 225301.

doi: 10.1088/0022-3727/49/22/225301
[43]
Steinrück H P, Wasserscheid P. Catal. Letters, 2015, 145: 380.

doi: 10.1007/s10562-014-1435-x
[44]
Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X, Zhang S. Chem. Rev., 2017, 117: 9625.

doi: 10.1021/acs.chemrev.7b00072
[45]
Wang S, Mahurin S M, Dai S, Jiang D E. ACS Appl. Mater. Interfaces, 2021, 13: 17511.

doi: 10.1021/acsami.1c01242
[46]
Navalpotro P, Neves C M S S, Palma J, Freire M G, Coutinho J A P, Marcilla R. Adv. Sci., 2018, 5: 1.
[47]
Berthod A, Ruiz-Ángel MJ, Carda-Broch S. J. Chromatogr. A, 2018, 1559: 2.

doi: S0021-9673(17)31406-1 pmid: 28958758
[48]
Ishii Y, Matubayasi N, Watanabe G, Kato T, Washizu H. Sci. Adv., 2021, 7: eabf0669.

doi: 10.1126/sciadv.abf0669
[49]
Law G, Watson PR. Langmuir, 2001, 17: 6138.

doi: 10.1021/la010629v
[50]
Dzyuba S V, Bartsch R A. ChemPhysChem, 2002, 3: 161.

doi: 10.1002/1439-7641(20020215)3:2【-逻*辑*与-】lt;161::AID-CPHC161【-逻*辑*与-】gt;3.0.CO;2-3
[51]
Hunt P A, Gould I R. J. Phys. Chem. A, 2006, 110: 2269.

doi: 10.1021/jp0547865
[52]
Hunt P A, Kirchner B, Welton T. Chem. - A Eur. J., 2006, 12: 6762.

doi: 10.1002/chem.200600103
[53]
Dong K, Zhang S, Wang D, Yao X. J. Phys. Chem. A, 2006, 110: 9775.

pmid: 16884211
[54]
Izgorodina E I. Phys. Chem. Chem. Phys., 2011, 13: 4189.

doi: 10.1039/c0cp02315a pmid: 21283896
[55]
Izgorodina E I, MacFarlane D R. J. Phys. Chem. B, 2011, 115: 14659.

doi: 10.1021/jp208150b
[56]
Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M. J. Phys. Chem. B, 2005, 109: 16474.

doi: 10.1021/jp0533628
[57]
Avent A G, Chaloner P A, Day M P, Seddon K R, Welton T. J. Chem. Soc. Dalt. Trans., 1994: 3405.
[58]
Bhargava B L, Balasubramanian S. J. Chem. Phys., 2007, 127: 114510.

doi: 10.1063/1.2772268
[59]
Dommert F, Wendler K, Berger R, Delle Site L, Holm C. ChemPhysChem, 2012, 13: 1625.

doi: 10.1002/cphc.201100997
[60]
Schmidt J, Krekeler C, Dommert F, Zhao Y, Berger R, Site LD, Holm C. J. Phys. Chem. B, 2010, 114: 6150.

doi: 10.1021/jp910771q
[61]
Doherty B, Zhong X, Gathiaka S, Li B, Acevedo O. J. Chem. Theory Comput., 2017, 13: 6131.

doi: 10.1021/acs.jctc.7b00520 pmid: 29112809
[62]
Nordness O, Brennecke J F. Chem. Rev., 2020, 120: 12873.

doi: 10.1021/acs.chemrev.0c00373 pmid: 33026798
[63]
Weingärtner H, Knocks A, Schrader W, Kaatze U. J. Phys. Chem. A, 2001, 105: 8646.

doi: 10.1021/jp0114586
[64]
Weingärtner H. Curr. Opin. Colloid Interface Sci., 2013, 18: 183.

doi: 10.1016/j.cocis.2013.04.001
[65]
Lee A A, Vella D, Perkin S, Goriely A. J. Phys. Chem. Lett., 2015, 6: 159.

doi: 10.1021/jz502250z
[66]
Lynden-Bell R M. Phys. Chem. Chem. Phys., 2010, 12: 1733.

doi: 10.1039/b916987c pmid: 20145837
[67]
Del PÓpolo M G, Mullan C L, Holbrey J D, Hardacre C, Ballone P. J. Am. Chem. Soc., 2008, 130: 7032.

doi: 10.1021/ja710841n
[68]
Fumino K, Wulf A, Ludwig R. Angew. Chem. Int. Ed., 2008, 47: 8731.

doi: 10.1002/anie.200803446
[69]
Katsyuba S A, Vener M V,., Zvereva E E, Fei Z, Scopelliti R, Laurenczy G, Yan N, Paunescu E, Dyson P J. J. Phys. Chem. B, 2013, 117: 9094.

doi: 10.1021/jp405255w
[70]
Roth C, Peppel T, Fumino K, Köckerling M, Ludwig R. Angew. Chem. Int. Ed., 2010, 49: 10221.

doi: 10.1002/anie.201004955
[71]
Santos C S, Murthy N S, Baker G A, Castner E W. J. Chem. Phys., 2011, 134.
[72]
Hardacre C, Holbrey J D, McMath S E J, Bowron D T, Soper A K. J. Chem. Phys., 2003, 118: 273.

doi: 10.1063/1.1523917
[73]
Köddermann T, Paschek D, Ludwig R. ChemPhysChem, 2007, 8: 2464.

pmid: 17943710
[74]
Ludwig R. Phys. Chem. Chem. Phys., 2008, 10: 4333.

doi: 10.1039/b803572e pmid: 18633554
[75]
Dong K, Song Y, Liu X, Cheng W, Yao X, Zhang S. J. Phys. Chem. B, 2012, 116: 1007.

doi: 10.1021/jp205435u
[76]
Meot-Ner Mautner M. Chemical Reviews, 2012, 112: PR22.

doi: 10.1021/cr200430n
[77]
Fumino K, Wulf A, Ludwig R. Phys. Chem. Chem. Phys., 2009, 11: 8790.

doi: 10.1039/b905634c
[78]
Fumino K, Reimann S, Ludwig R. Phys. Chem. Chem. Phys., 2014, 16: 21903.

doi: 10.1039/C4CP01476F
[79]
Hunt P A, Ashworth C R, Matthews R P. Chem. Soc. Rev., 2015, 44: 1257.

doi: 10.1039/C4CS00278D
[80]
Wang Y, He H, Wang C, Lu Y, Dong K, Huo F, Zhang S. JACS Au, 2022, 2: 543.

doi: 10.1021/jacsau.1c00538
[81]
Kelley S P, Smetana V, Mudring A V, Rogers R D. J. Coord. Chem., 2021, 74: 117.

doi: 10.1080/00958972.2021.1876851
[82]
Zhao H, Heintz R A, Dunbar K R, Rogers RD. J. Am. Chem. Soc., 1996, 118: 12844.

doi: 10.1021/ja962504w
[83]
Mukai T, Nishikawa K. Chem. Lett., 2009, 38: 402.

doi: 10.1246/cl.2009.402
[84]
Dong K, Zhang S, Wang Q. Sci. China Chem., 2015, 58: 495.

doi: 10.1007/s11426-014-5147-2
[85]
Brela M Z, Kubisiak P, Eilmes A. J. Phys. Chem. B, 2018, 122: 9527.

doi: 10.1021/acs.jpcb.8b05839
[86]
Wang Y, Jiang W, Yan T, Voth GA. Acc. Chem. Res., 2007, 40: 1193.

doi: 10.1021/ar700160p
[87]
Canongia Lopes J N A, Pádua A A H. J. Phys. Chem. B, 2006, 110: 3330.

doi: 10.1021/jp056006y
[88]
Xiao D, Rajian J R, Hines L G, Li S, Bartsch R A, Quitevis EL. J. Phys. Chem. B, 2008, 112: 13316.

doi: 10.1021/jp804417t
[89]
Fukuda S, Takeuchi M, Fujii K, Kanzaki R, Takamuku T, Chiba K, Yamamoto H, Umebayashi Y, Ishiguro S. J. Mol. Liq., 2008, 143: 2.

doi: 10.1016/j.molliq.2008.02.012
[90]
Schulz P S, Schneiders K, Wasserscheid P. Tetrahedron Asymmetry, 2009, 20: 2479.

doi: 10.1016/j.tetasy.2009.10.010
[91]
Kennedy D F, Drummondt C J. J. Phys. Chem. B, 2009, 113: 5690.

doi: 10.1021/jp900814y
[92]
Bernardes C E S, Minas Da Piedade M E, Canongia Lopes J N. J. Phys. Chem. B, 2011, 115: 2067.

doi: 10.1021/jp1113202
[93]
Jiang W, Wang Y, Voth G A. J. Phys. Chem. B, 2007, 111: 4812.

doi: 10.1021/jp067142l
[94]
Liu X, Zhou G, Huo F, Wang J, Zhang S. J. Phys. Chem. C, 2016, 120: 659.

doi: 10.1021/acs.jpcc.5b08977
[95]
Liu X, Yao X, Wang Y, Zhang S. Particuology, 2020, 48: 55.

doi: 10.1016/j.partic.2018.08.003
[96]
Wang H, Zhang L, Wang J, Li Z, Zhang S. Chem. Commun., 2013, 49: 5222.

doi: 10.1039/c3cc41908h
[97]
Takamuku T, Honda Y, Fujii K, Kittaka S. Anal. Sci., 2008, 24: 1285.

doi: 10.2116/analsci.24.1285
[98]
Zhao Y, Chen X, Wang X. J. Phys. Chem. B, 2009, 113: 2024.

doi: 10.1021/jp810613c
[99]
Zhang J, Han B, Li J, Zhao Y, Yang G. Angew. Chemie - Int. Ed., 2011, 50: 9911.

doi: 10.1002/anie.201103956
[100]
Chandran A, Prakash K, Senapati S. J. Am. Chem. Soc., 2010, 132: 12511.

doi: 10.1021/ja1055005 pmid: 20707337
[101]
Su Q, Qi Y, Yao X, Cheng W, Dong L, Chen S, Zhang S. Green Chem., 2018, 20: 3232.

doi: 10.1039/C8GC01038B
[102]
Bhargava B L, Klein M L. Mol. Phys., 2009, 107: 393.

doi: 10.1080/00268970902810283
[103]
Jiang W, Wang Y, Yan T, Voth G A. J. Phys. Chem. C, 2008, 112: 1132.

doi: 10.1021/jp077643m
[104]
Payal R S, Balasubramanian S. ChemPhysChem, 2012, 13: 1764.

doi: 10.1002/cphc.201100871
[105]
Sloutskin E, Ocko B M, Tamam L, Kuzmenko I, Gog T, Deutsch M. J. Am. Chem. Soc., 2005, 127: 7796.

pmid: 15913369
[106]
Bhargava B L, Balasubramanian S. J. Am. Chem. Soc., 2006, 128: 10073.

pmid: 16881635
[107]
Qian C, Ding B, Wu Z, Ding W, Huo F, He H, Wei N, Wang Y, Zhang X. Ind. Eng. Chem. Res., 2019, 58: 20109.

doi: 10.1021/acs.iecr.9b04480
[108]
Hayes R, Warr G G, Atkin R. Phys. Chem. Chem. Phys., 2010, 12: 1709.

doi: 10.1039/b920393a
[109]
Elbourne A, Voïtchovsky K, Warr GG, Atkin R. Chem. Sci., 2015, 6: 527.

doi: 10.1039/c4sc02727b pmid: 28936307
[110]
Segura J J, Elbourne A, Wanless E J, Warr G G, Voïtchovsky K, Atkin R. Phys. Chem. Chem. Phys., 2013, 15: 3320.

doi: 10.1039/c3cp44163f pmid: 23361257
[111]
Black J M, Baris Okatan M, Feng G, Cummings P T, Kalinin S V,., Balke N. Nano Energy, 2015, 15: 737.

doi: 10.1016/j.nanoen.2015.05.037
[112]
Lauw Y, Horne M D, Rodopoulos T, Lockett V, Akgun B, Hamilton W A, Nelson A R J. Langmuir, 2012, 28: 7374.

doi: 10.1021/la3005757
[113]
Bazant M Z, Storey B D, Kornyshev A A. Phys. Rev. Lett., 2011, 106: 6.
[114]
Elbourne A, McDonald S, Voïchovsky K, Endres F, Warr G G, Atkin R. ACS Nano, 2015, 9: 7608.

doi: 10.1021/acsnano.5b02921 pmid: 26051040
[115]
Wen R, Rahn B, Magnussen O M. Angew. Chemie - Int. Ed., 2015, 54: 6062.

doi: 10.1002/anie.201501715
[116]
Fedorov M V, Kornyshev A A. Electrochim. Acta, 2008, 53: 6835.

doi: 10.1016/j.electacta.2008.02.065
[117]
Lexow M, Maier F, Steinrück H P. Adv. Phys. X, 2020, 5: 1761266.
[118]
Uhl B, Buchner F, Alwast D, Wagner N, Jürgen Behm R. Beilstein J. Nanotechnol., 2013, 4: 903.

doi: 10.3762/bjnano.4.102
[119]
Buchner F, Bozorgchenani M, Uhl B, Farkhondeh H, Bansmann J, Behm R J. J. Phys. Chem. C, 2015, 119: 16649.

doi: 10.1021/acs.jpcc.5b03765
[120]
Meusel M, Lexow M, Gezmis A, Schötz S, Wagner M, Bayer A, Maier F, Steinrück HP. ACS Nano, 2020, 14: 9000.

doi: 10.1021/acsnano.0c03841
[121]
Zhang S, Lv Y, He H, Huo F, Wang Y, Zhang X, Dong K. The Chinese Journal of Process Engineering, 2017, 17: 883.
[122]
Zhang S, Wang Y, He H, Huo F, Lu Y, Zhang X, Dong K. Green Energy Environ., 2017, 2: 329.

doi: 10.1016/j.gee.2017.09.001
[123]
Zhang S, Zhang J, Zhang Y, Deng Y. Chem. Rev., 2017, 117: 6755.

doi: 10.1021/acs.chemrev.6b00509
[124]
Chen S, Kobayashi K, Miyata Y, Imazu N, Saito T, Kitaura R, Shinohara H. J. Am. Chem. Soc., 2009, 131: 14850.

doi: 10.1021/ja904283d
[125]
Singh R, Monk J, Hung F R. J. Phys. Chem. C, 2010, 114: 15478.

doi: 10.1021/jp1058534
[126]
Wang C, Wang Y, Lu Y, He H, Huo F, Dong K, Wei N, Zhang S. Phys. Chem. Chem. Phys., 2019, 21: 12767.

doi: 10.1039/C9CP00732F
[127]
Vicent-Luna J M, GutiÉrrez-Sevillano J J, Hamad S, Anta J, Calero S. ACS Appl. Mater. Interfaces, 2018, 10: 29694.

doi: 10.1021/acsami.8b11842
[128]
Dou Q, Sha M, Fu H, Wu G. J. Phys. Chem. C, 2011, 115: 18946.

doi: 10.1021/jp201447g
[129]
Wang Y, Huo F, He H, Zhang S. Phys. Chem. Chem. Phys., 2018, 20: 17773.

doi: 10.1039/C8CP02408A
[130]
Ren W, Tan X, Chen X, Zhang G, Zhao K, Yang W, Jia C, Zhao Y, Smith S C, Zhao C. ACS Catal., 2020, 10: 13171.

doi: 10.1021/acscatal.0c03873
[131]
Wu N, Ji X, Xie W, Liu C, Feng X, Lu X. Langmuir, 2017, 33: 11719.

doi: 10.1021/acs.langmuir.7b02204
[132]
Chen D, Ying W, Guo Y, Ying Y, Peng X. ACS Appl. Mater. Interfaces, 2017, 9: 44251.

doi: 10.1021/acsami.7b15762
[133]
Chen D, Wang W, Ying W, Guo Y, Meng D, Yan Y, Yan R, Peng X. J. Mater. Chem. A, 2018, 6: 16566.

doi: 10.1039/C8TA04753G
[134]
Ying W, Cai J, Zhou K, Chen D, Ying Y, Guo Y, Kong X, Xu Z, Peng X. ACS Nano, 2018, 12: 5385.

doi: 10.1021/acsnano.8b00367 pmid: 29874039
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[4] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[5] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[6] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[7] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[8] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[9] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[10] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[11] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[12] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[13] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[14] Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces [J]. Progress in Chemistry, 2021, 33(1): 78-86.
[15] Sicheng Yuan, Dan Lin, Xiguang Zhang, Huaiyuan Wang. Fabrication and Application of Slippery Liquid Infused Porous Functional Surface [J]. Progress in Chemistry, 2021, 33(1): 87-96.