中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 940-953 DOI: 10.7536/PC221216 Previous Articles   Next Articles

• Review •

Nano-State Layered Double Hydroxides Based Materials for Photo-Driven C1 Chemical Conversion

Chi Duan1, Zhenhua Li1(), Tierui Zhang1,2()   

  1. 1 Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: lizhenhua@mail.ipc.ac.cn(Zhenhua Li); tierui@mail.ipc.ac.cn(Tierui Zhang)
  • Supported by:
    The National Natural Science Foundation of China(51825205); The National Natural Science Foundation of China(52120105002); The National Natural Science Foundation of China(22088102); The National Natural Science Foundation of China(22209190); The Postdoctoral Science Foundation of China(2021M703288); The Postdoctoral Science Foundation of China(2022T150665)
Richhtml ( 43 ) PDF ( 480 ) Cited
Export

EndNote

Ris

BibTeX

Energy is the basic guarantee for human survival. As an important reaction in field of energy, C1 chemical conversion has safeguarded the development of human society. With the proposal of "double carbon" goal, energy saving-emission reduction and environmental friendliness have been the new pursuit of C1 catalytic conversion researchers. Recently, photo-driven C1 chemical conversion has attracted researchers’ attention through which C1 small molecules can be transformed into various value-added products under ambient condition. Layered double hydroxides (LDH) have gained wide application in photo-driven C1 chemical conversion for their distinctive two-dimensional layered structure. Herein, we review the latest progress achieved in nano-state LDH based materials for photo-driven C1 chemical conversion from three aspects containing LDH precursors acting as catalyst, LDH derivatives acting as catalyst and LDH acting as catalyst carrier, and conclude the challenges this field may face in the future. Through analyzing and discussing above-mentioned work, we hope to offer researchers some inspiration on photo-driven C1 chemistry.

Contents

1 Introduction

2 A brief introduction of LDH

2.1 Structural composition of LDH

2.2 Basic properties of LDH

3 Application of LDH based materials in photo-driven C1 conversion

3.1 LDH precursors as catalyst

3.2 LDH derivatives as catalyst

3.3 LDH as catalyst carrier

4 Conclusion and outlook

Fig.1 (a) Scheme of ZnM-LDH structure and corresponding photocatalytic CO2 reduction product; The Gibbs free energy diagram of (b) H2 evolution, (c) photocatalytic CO2 reduction to CO and (d) photocatalytic CO2 reduction to CH4 over ZnM-LDH[43].Copyright 2020, Elsevier
Fig.2 (a) Synthesis scheme of bulk and ultrathin ZnAl-LDH; (b) Photocatalytic CO2 reduction cycling studies of ultrathin ZnAl-LDH; (c) Adsorption energies of CO2 and H2O molecules on a) ultrathin ZnAl-LDH system and b) bulk ZnAl-LDH[54].Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.3 (a) Scheme of MIL-100@NiMn-LDH synthesis[59]; (b) EPR spectra of NiMn-LDH and MIL-100@NiMn-LDH[59]; (c) Illustration for defects on MIL-100@NiMn-LDH(M = Ni, Mn)[59]; (d) S-scheme photocatalytic DRM mechanism over g-C3N4/Ti3C2T/CoAlLa-LDH[60].Copyright 2022, American Chemical Society
Fig.4 (a) Ni 2p XPS spectra of Ni-x[71]; The potential energy profile of (b) CH4 formation and (c) C-C coupling on Ni(111) and 4O/Ni(111)[71]; (d) Co K-edge EXAFS spectra for Co-x[73]; The potential energy profile of (e) CO dissociation and (f) CH2 coupling and C2H4 hydrogenation on Co(111)/Co3O4(220) and Co(111)[73]. Copyright 2016&2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.5 (a) Synthetic mechanism of CuOx&FeOx/MAO; (b) Space confined effect and (c) Activation mechanism of CO2 and H2 on CuOx&FeOx/MAO[86]
Fig.6 (a) Illustration of CoFe-x catalysts formation and corresponding CO2 hydrogenation products[22]; (b) XRD spectra for Fe-x[93]; (c) HRTEM image for Fe-500[93]; (d) CO2 hydrogenation performance of Fe-500 using a flow system[93]; (e) The potential energy profile of CH4 formation (up) and C-C coupling (down) on 3O/Fe(110) and Fe(110)[93]. Copyright 2017&2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.7 (a) DRM stability test for Ni3Fe1 under UV-vis irradiation; (b) Schematic illustration for the photo-driven DRM reaction over Ni3Fe1; (c) DRM activation energy under light and dark conditions for Ni3Fe1, respectively; Catalytic performance of Ni3Fe1 for DRM at (d) 300℃ and (e) 400℃ under different light intensities[107].Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.8 (a) Scheme for the synthesis of Pd/NiAl; (b) CH4-TPD spectra and (c) CH4 adsorption energy of NiAl and Pd/NiAl[113].Copyright 2022, American Chemical Society
Fig.9 (a) Diffuse reflection spectra of the catalysts and LDH precursors; (b) H2 and liquid products yield rate and (c) CH4 adsorption energy for CoAl-650R, NiAl-650R and NiCo-alloy, respectively[115]; (d) Continuous stability test of the photocatalytic OCM over Au-ZnO/TiO2 in a gas flow reactor[116]; (e) Potential energy diagrams for OCM to C2H6 or CO2 on Au-ZnO/TiO2[116]. Copyright 2022, IOP Publishing Ltd
Fig.10 (a) Co 2p, (b) Pd 3d XPS spectra of Pd/CoAl-x[127]; (c) CO/H2 ratio of photocatalytic CO2 reduction products for Pd/CoAl-x[127]; (d) Illustration of Pt SA structure evolution vs light intensity[128]; (e) Selectivity and (f) Reaction mechanism of photocatalytic CO2 reduction driven by Pt SA under different light intensity[128].Copyright 2022, American Chemical Society
Fig.11 (a) Scheme of formation of ultrathin LDH structure with abundant surface hydroxyl groups; The concentration change of (b) CO2 and (c) CH4 over Ru loaded catalysts and FL@LDH using a flow system (S1, Ru@FL-LDH; S2, Ru@LDH; S3, Ru@SiO2; S4, FL-LDH); (d) Stability test of CO2 hydrogenation over Ru@FL-LDH[129].Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Khodakov A Y, Chu W, Fongarland P. Chem. Rev., 2007, 107(5): 1692.

doi: 10.1021/cr050972v pmid: 17488058
[2]
Pakhare D, Spivey J. Chem. Soc. Rev., 2014, 43(22): 7813.

doi: 10.1039/C3CS60395D
[3]
Kondratenko E V, Mul G, Baltrusaitis J, Larrazábal G O, PÉrez-Ramírez J. Energy Environ. Sci., 2013, 6(11): 3112.

doi: 10.1039/c3ee41272e
[4]
Bulushev D A, Ross J R H. ChemSusChem, 2018, 11(5): 821.

doi: 10.1002/cssc.201702075 pmid: 29316342
[5]
Schwach P, Pan X L, Bao X H. Chem. Rev., 2017, 117(13): 8497.

doi: 10.1021/acs.chemrev.6b00715 pmid: 28475304
[6]
Haynes A, Maitlis P M, Morris G E, Sunley G J, Adams H, Badger P W, Bowers C M, Cook D B, Elliott P I P, Ghaffar T, Green H, Griffin T R, Payne M, Pearson J M, Taylor M J, Vickers P W, Watt R J. J. Am. Chem. Soc., 2004, 126(9): 2847.

doi: 10.1021/ja039464y
[7]
Song H, Ye J H. Chem, 2022, 8(5): 1181.

doi: 10.1016/j.chempr.2022.04.015
[8]
Song C Q, Liu X, Xu M, Masi D, Wang Y G, Deng Y C, Zhang M T, Qin X T, Feng K, Yan J, Leng J, Wang Z H, Xu Y, Yan B H, Jin S Y, Xu D S, Yin Z, Xiao D Q, Ma D. ACS Catal., 2020, 10(18): 10364.

doi: 10.1021/acscatal.0c02244
[9]
Wang Y B, Zhao J, Li Y X, Wang C Y. Appl. Catal. B: Environ., 2018, 226: 544.

doi: 10.1016/j.apcatb.2018.01.005
[10]
Long R, Li Y, Liu Y, Chen S M, Zheng X S, Gao C, He C H, Chen N S, Qi Z M, Song L, Jiang J, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2017, 139(12): 4486.

doi: 10.1021/jacs.7b00452 pmid: 28276680
[11]
Zhang W Q, Fu C F, Low J, Duan D L, Ma J, Jiang W B, Chen Y H, Liu H J, Qi Z M, Long R, Yao Y F, Li X B, Zhang H, Liu Z, Yang J L, Zou Z G, Xiong Y J. Nat. Commun., 2022, 13: 2806.

doi: 10.1038/s41467-022-30532-z
[12]
Ma J, Low J, Wu D, Gong W B, Liu H J, Liu D, Long R, Xiong Y J. Nanoscale Horiz., 2023, 8(1): 63.

doi: 10.1039/D2NH00457G
[13]
Sideris P J, Nielsen U G, Gan Z H, Grey C P. Science, 2008, 321(5885): 113.

doi: 10.1126/science.1157581 pmid: 18599785
[14]
Guo X X, Zhang F Z, Evans D G, Duan X. Chem. Commun., 2010, 46(29): 5197.

doi: 10.1039/c0cc00313a
[15]
Leroux F, Besse J P. Chem. Mater., 2001, 13(10): 3507.

doi: 10.1021/cm0110268
[16]
Vaccari A. Layered Double Hydroxides: Present and Future,Rives V. (Ed.), New York: Nova Science Publishers, Inc., 2001.
[17]
Rives V, Angeles Ulibarri M. Coord. Chem. Rev., 1999, 181(1): 61.

doi: 10.1016/S0010-8545(98)00216-1
[18]
Wang Q, O’Hare D. Chem. Rev., 2012, 112(7): 4124.

doi: 10.1021/cr200434v
[19]
Gabrovska M, Ivanov I, Nikolova D, Kovacheva D, Tabakova T. Int. J. Hydrog. Energy, 2021, 46(1): 458.

doi: 10.1016/j.ijhydene.2020.09.214
[20]
Jing C, Zhang Q, Liu X Y, Chen Y X, Wang X, Xia L H, Zeng H, Wang D C, Zhang W Z, Dong F. RSC Adv., 2019, 9(17): 9604.

doi: 10.1039/C9RA01341E
[21]
Yang J S, Li C, Liang D R, Liu Y, Li Z S, Wang H Y, Huang H H, Xia C F, Zhao H, Liu Y Y, Zhang Q, Meng Z L. J. Colloid Interface. Sci., 2021, 590: 571.

doi: 10.1016/j.jcis.2021.01.075
[22]
Chen G B, Gao R, Zhao Y F, Li Z H, Waterhouse G I N, Shi R, Zhao J Q, Zhang M T, Shang L, Sheng G Y, Zhang X P, Wen X D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(3): 1704663.

doi: 10.1002/adma.v30.3
[23]
Guo X L, Zheng X Q, Hu X L, Zhao Q N, Li L, Yu P, Jing C, Zhang Y X, Huang G S, Jiang B, Xu C H, Pan F S. Nano Energy, 2021, 84: 105932.

doi: 10.1016/j.nanoen.2021.105932
[24]
Saber O, Hatano B, Tagaya H. Mater. Sci. Eng. C, 2005, 25(4): 462.

doi: 10.1016/j.msec.2004.12.005
[25]
Nie L F, Fan G J, Wang A Q, Zhang L, Guan J, Han N, Chen Y F. Sens. Actuat. B Chem., 2021, 345: 130412.

doi: 10.1016/j.snb.2021.130412
[26]
Yang H, Xiong C S, Liu X Y, Liu A, Li T Y, Ding R, Shah S P, Li W H. Constr. Build. Mater., 2021, 307: 124991.

doi: 10.1016/j.conbuildmat.2021.124991
[27]
Kooli F, Rives V, Ulibarri M A. Inorg. Chem., 1995, 34(21): 5114.

doi: 10.1021/ic00125a007
[28]
Zhang S T, Dou Y B, Zhou J Y, Pu M, Yan H, Wei M, Evans D G, Duan X. ChemPhysChem, 2016, 17(17): 2754.

doi: 10.1002/cphc.v17.17
[29]
Markov L. Solid State Ion., 1990, 39(3/4): 187.

doi: 10.1016/0167-2738(90)90397-A
[30]
Chivu V, Gilea D, Cioatera N, Carja G, Mureseanu M. Appl. Surf. Sci., 2020, 513: 145853.

doi: 10.1016/j.apsusc.2020.145853
[31]
Liu Q, Wang J M, An K, Zhang S R, Liu G L, Liu Y. Energy Technol., 2020, 8(9): 2000205.

doi: 10.1002/ente.v8.9
[32]
Han J B, Dou Y B, Wei M, Evans D, Duan X. Angew. Chem. Int. Ed., 2010, 49(12): 2171.

doi: 10.1002/anie.v49:12
[33]
Kowalik P, Konkol M, Kondracka M, PrÓchniak W, Bicki R, Wiercioch P. Appl. Catal. A Gen., 2013, 464/465: 339.

doi: 10.1016/j.apcata.2013.05.048
[34]
Gavinehroudi R G, Mahjoub A, Karimi M, Sadeghi S, Heydari A, Mohebali H, Ghamami S. Green Chem., 2022, 24(18): 6965.

doi: 10.1039/D2GC00208F
[35]
Zhao Y X, Zheng L R, Shi R, Zhang S, Bian X A, Wu F, Cao X Z, Waterhouse G I N, Zhang T R. Adv. Energy Mater., 2020, 10(34): 2002199.

doi: 10.1002/aenm.v10.34
[36]
Zhang S, Zhao Y X, Shi R, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Adv. Energy Mater., 2020, 10(8): 1901973.

doi: 10.1002/aenm.v10.8
[37]
Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew. Chem. Int. Ed., 2012, 51(32): 8008.

doi: 10.1002/anie.201201847 pmid: 22760849
[38]
Iguchi S, Hasegawa Y, Teramura K, Hosokawa S, Tanaka T. J. CO2 Util., 2016, 15: 6.
[39]
Jo W K, Kumar S, Tonda S. Compos. B Eng., 2019, 176: 107212.

doi: 10.1016/j.compositesb.2019.107212
[40]
Bi Z X, Guo R T, Hu X, Wang J, Chen X, Pan W G. Nanoscale, 2022, 14(9): 3367.

doi: 10.1039/D1NR08235C
[41]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6): 3962.

doi: 10.1021/acs.chemrev.8b00400
[42]
Wu H L, Li X B, Tung C H, Wu L Z. Adv. Mater., 2019, 31(36): 1900709.

doi: 10.1002/adma.v31.36
[43]
Xiong X Y, Zhao Y F, Shi R, Yin W J, Zhao Y X, Waterhouse G I N, Zhang T R. Sci. Bull., 2020, 65(12): 987.

doi: 10.1016/j.scib.2020.03.032
[44]
Wang R N, Wang X Y, Xiong Y H, Hou Y Y, Wang Y X, Ding J, Zhong Q. ACS Appl. Mater. Interfaces, 2022, 14(31): 35654.

doi: 10.1021/acsami.2c07940
[45]
Xiao Q L, Xu J Y, Zhang J, Sun Y H, Zhu Y. J. Energy Chem., 2017, 26(3): 325.

doi: 10.1016/j.jechem.2017.03.010
[46]
Wan J, Lin J S, Guo X L, Wang T, Zhou R X. Chem. Eng. J., 2019, 368: 719.

doi: 10.1016/j.cej.2019.03.016
[47]
Yang F F, Liu D, Zhao Y T, Wang H, Han J Y, Ge Q F, Zhu X L. ACS Catal., 2018, 8(3): 1672.

doi: 10.1021/acscatal.7b04097
[48]
Li W, Zhang S L, Fan Q N, Zhang F Z, Xu S L. Nanoscale, 2017, 9(17): 5677.

doi: 10.1039/C7NR01017F
[49]
Wu W, Song L, Li Y C, Zhang F, Zeng R C, Li S Q, Zou Y H. J. Disper. Sci. Technol., 2021, 42(14): 2154.

doi: 10.1080/01932691.2020.1806862
[50]
Alibakhshi E, Ghasemi E, Mahdavian M, Ramezanzadeh B, Yasaei M. J. Clean. Prod., 2020, 251: 119676.

doi: 10.1016/j.jclepro.2019.119676
[51]
Wang H, Yang F, He S A, Li Y, Wu Y. J. Mol. Struct., 2022, 1249: 131529.

doi: 10.1016/j.molstruc.2021.131529
[52]
Wang Y Y, Xie C, Zhang Z Y, Liu D D, Chen R, Wang S Y. Adv. Funct. Mater., 2018, 28(4): 1703363.

doi: 10.1002/adfm.201703363
[53]
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Angew. Chem. Int. Ed., 2017, 56(21): 5867.

doi: 10.1002/anie.201701477
[54]
Zhao Y F, Chen G B, Bian T, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Smith L J, O’Hare D, Zhang T R. Adv. Mater., 2015, 27(47): 7823.

doi: 10.1002/adma.201570324
[55]
Tan L, Xu S M, Wang Z L, Xu Y Q, Wang X, Hao X J, Bai S, Ning C J, Wang Y, Zhang W K, Jo Y K, Hwang S J, Cao X Z, Zheng X S, Yan H, Zhao Y F, Duan H H, Song Y F. Angew. Chem., 2019, 131(34): 11986.

doi: 10.1002/ange.v131.34
[56]
Bai S, Li T, Wang H J, Tan L, Zhao Y F, Song Y F. Chem. Eng. J., 2021, 419: 129390.

doi: 10.1016/j.cej.2021.129390
[57]
Tokudome Y, Fukui M G, Iguchi S, Hasegawa Y, Teramura K, Tanaka T, Takemoto M, Katsura R, Takahashi M. J. Mater. Chem. A, 2018, 6(20): 9684.

doi: 10.1039/C8TA01621F
[58]
Zhu L, Qiao Z P. RSC Adv., 2022, 12(17): 10592.

doi: 10.1039/D2RA01178F
[59]
Sun D Z, Li J, Shen T Y, An S, Qi B, Song Y F. ACS Appl. Mater. Interfaces, 2022, 14(14): 16369.

doi: 10.1021/acsami.2c02888
[60]
Ali Khan A, Tahir M. ACS Appl. Energy Mater., 2022, 5(1): 784.

doi: 10.1021/acsaem.1c03266
[61]
Li P S, Xie Q X, Zheng L R, Feng G, Li Y J, Cai Z, Bi Y M, Li Y P, Kuang Y, Sun X M, Duan X. Nano Res., 2017, 10(9): 2988.

doi: 10.1007/s12274-017-1509-3
[62]
de Smit E, Weckhuysen B M. Chem. Soc. Rev., 2008, 37(12): 2758.

doi: 10.1039/b805427d
[63]
Yang C, Zhao H B, Hou Y L, Ma D. J. Am. Chem. Soc., 2012, 134(38): 15814.

pmid: 22938192
[64]
Zhang H, Chu W. Prog. Chem., 2009, 21(4): 622
( 张辉, 储伟. 化学进展, 2009, 21(4): 622).
[65]
Gao W, Gao R, Zhao Y F, Peng M, Song C Q, Li M Z, Li S W, Liu J J, Li W Z, Deng Y C, Zhang M T, Xie J L, Hu G, Zhang Z S, Long R, Wen X D, Ma D. Chem, 2018, 4(12): 2917.

doi: 10.1016/j.chempr.2018.09.017
[66]
Bao X H. Chin. Sci. Bull., 2018, 63(14): 1266.
( 包信和. 科学通报, 2018, 63(14): 1266. ).
[67]
Jia J, Wang H, Lu Z L, O’Brien P G, Ghoussoub M, Duchesne P, Zheng Z Q, Li P C, Qiao Q, Wang L, Gu A L, Jelle A A, Dong Y C, Wang Q, Ghuman K K, Wood T, Qian C X, Shao Y, Qiu C Y, Ye M M, Zhu Y M, Lu Z H, Zhang P, Helmy A S, Singh C V, Kherani N P, Perovic D D, Ozin G A. Adv. Sci., 2017, 4(10): 1700252.

doi: 10.1002/advs.v4.10
[68]
Hoch L B, O’Brien P G, Ali F M, Sandhel A, Perovic D D, Mims C A, Ozin G A. ACS Nano, 2016, 10(9): 9017.

doi: 10.1021/acsnano.6b05416
[69]
Qi Y H, Song L Z, Ouyang S X, Liang X C, Ning S B, Zhang Q Q, Ye J H. Adv. Mater., 2020, 32(6): 1903915.

doi: 10.1002/adma.v32.6
[70]
Chen Y, Zhang Y M, Fan G Z, Song L Z, Jia G, Huang H T, Ouyang S X, Ye J H, Li Z S, Zou Z G. Joule, 2021, 5(12): 3235.

doi: 10.1016/j.joule.2021.11.009
[71]
Zhao Y F, Zhao B, Liu J J, Chen G B, Gao R, Yao S Y, Li M Z, Zhang Q H, Gu L, Xie J L, Wen X D, Wu L Z, Tung C H, Ma D, Zhang T R. Angew. Chem. Int. Ed., 2016, 55(13): 4215.

doi: 10.1002/anie.201511334
[72]
Li Z H, Liu J J, Zhao Y F, Shi R, Waterhouse G I N, Wang Y S, Wu L Z, Tung C H, Zhang T R. Nano Energy, 2019, 60: 467.

doi: 10.1016/j.nanoen.2019.03.069
[73]
Li Z H, Liu J J, Zhao Y F, Waterhouse G I N, Chen G B, Shi R, Zhang X, Liu X W, Wei Y M, Wen X D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(31): 1800527.

doi: 10.1002/adma.v30.31
[74]
Zhao Y F, Li Z H, Li M Z, Liu J J, Liu X W, Waterhouse G I N, Wang Y S, Zhao J Q, Gao W, Zhang Z S, Long R, Zhang Q H, Gu L, Liu X, Wen X D, Ma D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(36): 1803127.

doi: 10.1002/adma.201803127
[75]
Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40(7): 3703.

doi: 10.1039/c1cs15008a pmid: 21505692
[76]
Ma Z Q, Porosoff M D. ACS Catal., 2019, 9(3): 2639.

doi: 10.1021/acscatal.8b05060
[77]
Tan T H, Xie B Q, Ng Y H, Abdullah S F B, Tang H Y M, Bedford N, Taylor R A, Aguey-Zinsou K F, Amal R, Scott J. Nat. Catal., 2020, 3(12): 1034.

doi: 10.1038/s41929-020-00544-3
[78]
Liu L C, Puga A V, Cored J, ConcepciÓn P, PÉrez-Dieste V, García H, Corma A. Appl. Catal. B Environ., 2018, 235: 186.

doi: 10.1016/j.apcatb.2018.04.060
[79]
Wang L X, Wang L, Zhang J, Liu X L, Wang H, Zhang W, Yang Q, Ma J Y, Dong X, Yoo S J, Kim J G, Meng X J, Xiao F S. Angew. Chem. Int. Ed., 2018, 57(21): 6104.

doi: 10.1002/anie.v57.21
[80]
Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal., 2017, 7(12): 8544.

doi: 10.1021/acscatal.7b03251
[81]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.

doi: 10.1038/nchem.2794
[82]
Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas A A, Wood T E, Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Joule, 2018, 2(7): 1369.

doi: 10.1016/j.joule.2018.03.007
[83]
Shao T Y, Wang X N, Dong H X, Liu S K, Duan D L, Li Y P, Song P, Jiang H J, Hou Z H, Gao C, Xiong Y J. Adv. Mater., 2022, 34(28): 2202367.

doi: 10.1002/adma.v34.28
[84]
Deng B W, Song H, Peng K, Li Q, Ye J H. Appl. Catal. B: Environ., 2021, 298: 120519.

doi: 10.1016/j.apcatb.2021.120519
[85]
Zhang Z S, Mao C L, Meira D M, Duchesne P N, Tountas A A, Li Z, Qiu C Y, Tang S L, Song R, Ding X, Sun J C, Yu J F, Howe J Y, Tu W G, Wang L, Ozin G A. Nat. Commun., 2022, 13(1): 1.

doi: 10.1038/s41467-021-27699-2
[86]
Song L Z, Yi X L, Ouyang S X, Ye J H. Nanoscale Adv., 2022, 4(16): 3391.

doi: 10.1039/D2NA00315E
[87]
Li Z H, Shi R, Zhao J Q, Zhang T R. Nano Res., 2021, 14(12): 4828.

doi: 10.1007/s12274-021-3436-6
[88]
He Z H, Qian Q L, Ma J, Meng Q L, Zhou H C, Song J L, Liu Z M, Han B X. Angew. Chem. Int. Ed., 2016, 55(2): 737.

doi: 10.1002/anie.201507585
[89]
Wang H, Zhou W, Liu J X, Si R, Sun G, Zhong M Q, Su H Y, Zhao H B, Rodriguez J A, Pennycook S J, Idrobo J, Li W X, Kou Y, Ma D. J. Am. Chem. Soc., 2013, 135(10): 4149.

doi: 10.1021/ja400771a
[90]
Gao W, Zhao Y F, Chen H R, Chen H, Li Y W, He S, Zhang Y K, Wei M, Evans D G, Duan X. Green Chem., 2015, 17(3): 1525.

doi: 10.1039/C4GC01633E
[91]
Bai S X, Shao Q, Wang P T, Dai Q G, Wang X Y, Huang X Q. J. Am. Chem. Soc., 2017, 139(20): 6827.

doi: 10.1021/jacs.7b03101
[92]
Zhao J Q, Shi R, Waterhouse G I N, Zhang T R. Nano Energy, 2022, 102: 107650.

doi: 10.1016/j.nanoen.2022.107650
[93]
Li Z H, Liu J J, Shi R, Waterhouse G I N, Wen X D, Zhang T R. Adv. Energy Mater., 2021, 11(12): 2002783.

doi: 10.1002/aenm.v11.12
[94]
Xu S, Wang X L, Zhao R. Prog. Chem, 2003, 15(2): 141
( 许珊, 王晓来, 赵睿. 化学进展, 2003, 15(2): 141).
[95]
Taifan W, Baltrusaitis J. Appl. Catal. B Environ., 2016, 198: 525.

doi: 10.1016/j.apcatb.2016.05.081
[96]
Usman M, Wan Daud W M A, Abbas H F. Renew. Sustain. Energy Rev., 2015, 45: 710.

doi: 10.1016/j.rser.2015.02.026
[97]
Qin Z Z, Chen J, Xie X L, Luo X, Su T M, Ji H B. Environ. Chem. Lett., 2020, 18(4): 997.

doi: 10.1007/s10311-020-00996-w
[98]
Zhang G J, Liu J W, Xu Y, Sun Y H. Int. J. Hydrog. Energy, 2018, 43(32): 15030.

doi: 10.1016/j.ijhydene.2018.06.091
[99]
Tang Y, Wei Y C, Wang Z Y, Zhang S R, Li Y T, Nguyen L, Li Y X, Zhou Y, Shen W J, Tao F F, Hu P J. J. Am. Chem. Soc., 2019, 141(18): 7283.

doi: 10.1021/jacs.8b10910 pmid: 31021087
[100]
Mao X Y, Foucher A C, Stach E A, Gorte R J. J. Catal., 2020, 381: 561.

doi: 10.1016/j.jcat.2019.11.040
[101]
Santos Carvalho L, Martins A R, Reyes P, Oportus M, Albonoz A, Vicentini V, do Carmo Rangel M. Catal. Today, 2009, 142(1-2): 52.

doi: 10.1016/j.cattod.2009.01.010
[102]
Djinović P, Osojnik Črnivec I G, Erjavec B, Pintar A. Appl. Catal. B Environ., 2012, 125: 259.

doi: 10.1016/j.apcatb.2012.05.049
[103]
Lin J M, Cen J, Li Z J, Yang L Y, Yao N. Chem. Ind. Eng. Prog., 2022, 41(1): 201.
( 林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. 化工进展, 2022, 41(1): 201. ).

doi: 10.16085/j.issn.1000-6613.2021-0310
[104]
Rostrupnielsen J R, Hansen J H B. J. Catal., 1993, 144(1): 38.

doi: 10.1006/jcat.1993.1312
[105]
Jiang W B, Liu J X, Qiu C, Long R, Xiong Y J. J. Univ. Sci. Tech. China, 2020, 50(11): 1361.
( 江文斌, 刘敬祥, 邱畅, 龙冉, 熊宇杰. 中国科学技术大学学报, 2020, 50(11): 1361.).
[106]
Li X Y, Wang C, Tang J W. Nat. Rev. Mater., 2022, 7(8): 617.

doi: 10.1038/s41578-022-00422-3
[107]
Zhao J Q, Guo X D, Shi R, Waterhouse G I N, Zhang X R, Dai Q, Zhang T R. Adv. Funct. Mater., 2022, 32(31): 2204056.

doi: 10.1002/adfm.v32.31
[108]
Xing F L, Nakaya Y, Yasumura S, Shimizu K I, Furukawa S. Nat. Catal., 2022, 5(1): 55.

doi: 10.1038/s41929-021-00730-x
[109]
Nakaya Y, Xing F L, Ham H, Shimizu K I, Furukawa S. Angewandte Chemie, 2021, 133(36): 19867.

doi: 10.1002/ange.v133.36
[110]
Jiang W B, Low J, Mao K K, Duan D L, Chen S M, Liu W, Pao C W, Ma J, Sang S K, Shu C, Zhan X Y, Qi Z M, Zhang H, Liu Z, Wu X J, Long R, Song L, Xiong Y J. J. Am. Chem. Soc., 2021, 143(1): 269.

doi: 10.1021/jacs.0c10369
[111]
Hou Z Y, Chen P, Fang H L, Zheng X M, Yashima T. Int. J. Hydrog. Energy, 2006, 31(5): 555.

doi: 10.1016/j.ijhydene.2005.06.010
[112]
Ocsachoque M, Pompeo F, Gonzalez G. Catal. Today, 2011, 172(1): 226.

doi: 10.1016/j.cattod.2011.02.057
[113]
Wang P, Zhang X Y, Shi R, Zhao J Q, Yuan Z Y, Zhang T R. Energy Fuels, 2022, 36(19): 11627.

doi: 10.1021/acs.energyfuels.2c01349
[114]
Xu Z M, Bian Z F. Acta Phys. Chim. Sin., 2020, 36(3): 1907013.

doi: 10.3866/PKU.WHXB201907013
( 许振民, 卞振锋. 物理化学学报, 2020, 36(3): 1907013.).
[115]
Zhao J Q, Shi R, Zhang X R, Wang Z P, Zhang T R. Nanotechnology, 2022, 33(18): 185401.

doi: 10.1088/1361-6528/ac4c5f
[116]
Song S, Song H, Li L M, Wang S Y, Chu W, Peng K, Meng X G, Wang Q, Deng B W, Liu Q X, Wang Z, Weng Y X, Hu H L, Lin H W, Kako T, Ye J H. Nat. Catal., 2021, 4(12): 1032.

doi: 10.1038/s41929-021-00708-9
[117]
Dai L, Zhang H. Sci. Bull., 2018, 63(11): 669.

doi: 10.1016/j.scib.2018.04.013
[118]
Zhou L, He S R, Xu X H, Li G W, Jia C C. Adv. Sci., 2023, 10(2): 2204674.

doi: 10.1002/advs.v10.2
[119]
Liu J C, Luo L L, Xiao H, Zhu J F, He Y, Li J. J. Am. Chem. Soc., 2022, 144(45): 20601.

doi: 10.1021/jacs.2c06785
[120]
Gan T, Chu X F, Qi H, Zhang W X, Zou Y C, Yan W F, Liu G. Appl. Catal. B Environ., 2019, 257: 117943.

doi: 10.1016/j.apcatb.2019.117943
[121]
Zhao Y F, Jia X D, Chen G B, Shang L, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T R. J. Am. Chem. Soc., 2016, 138(20): 6517.

doi: 10.1021/jacs.6b01606
[122]
Zhang G Q, Li Y L, He C X, Ren X Z, Zhang P X, Mi H W. Adv. Energy Mater., 2021, 11(11): 2003294.

doi: 10.1002/aenm.v11.11
[123]
Niu W J, He J Z, Gu B N, Liu M C, Chueh Y L. Adv. Funct. Mater., 2021, 31(35): 2103558.

doi: 10.1002/adfm.v31.35
[124]
Ng S F, Lau M Y L, Ong W J. Sol. RRL, 2021, 5(6): 2000535.

doi: 10.1002/solr.v5.6
[125]
Jiang H Y, Katsumata K I, Hong J, Yamaguchi A, Nakata K, Terashima C, Matsushita N, Miyauchi M, Fujishima A. Appl. Catal. B Environ., 2018, 224: 783.

doi: 10.1016/j.apcatb.2017.11.011
[126]
Gao G, Zhu Z, Zheng J, Liu Z, Wang Q, Yan Y S. J. Colloid Interface Sci., 2019, 555: 1.

doi: 10.1016/j.jcis.2019.07.025
[127]
Wang X, Wang Z L, Bai Y, Tan L, Xu Y Q, Hao X J, Wang J K, Mahadi A H, Zhao Y F, Zheng L R, Song Y F. J. Energy Chem., 2020, 46: 1.

doi: 10.1016/j.jechem.2019.10.004
[128]
Fan J X, Zhao Y, Du H X, Zheng L R, Gao M Y, Li D Q, Feng J T. ACS Appl. Mater. Interfaces, 2022, 14(23): 26752.

doi: 10.1021/acsami.2c04794
[129]
Ren J, Ouyang S X, Xu H, Meng X G, Wang T, Wang D F, Ye J H. Adv. Energy Mater., 2017, 7(5): 1601657.

doi: 10.1002/aenm.201601657
[130]
Li Z H, Liu J J, Zhao J Q, Shi R, Waterhouse G I N, Wen X D, Zhang T R. Adv. Funct. Mater., 2023, 33(11): 2213672.

doi: 10.1002/adfm.v33.11
[1] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[2] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.
[3] Saba Jamil, Afaaf Rahat Alvi, Shanza Rauf Khan, Muhammad Ramzan Saeed Ashraf Janjua. Layered Double Hydroxides(LDHs): Synthesis & Applications [J]. Progress in Chemistry, 2019, 31(2/3): 394-412.
[4] Xu Guohe, Li Jie, Deng Jinni, Yin Lv, Zheng Zhaohui, Ding Xiaobin. Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli [J]. Progress in Chemistry, 2015, 27(12): 1732-1742.
[5] Ms Xiang|Wang Qiaochun|Tian He**. Photo-Driven Molecular Shuttles [J]. Progress in Chemistry, 2009, 21(01): 106-115.