中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1060-1075 DOI: 10.7536/PC200429 Previous Articles   Next Articles

• Review •

Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials

Jianlin Shi1,**(), Zile Hua1   

  1. 1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
  • Contact: Jianlin Shi
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(21835007); the National Natural Science Foundation of China(21776297)
Richhtml ( 26 ) PDF ( 744 ) Cited
Export

EndNote

Ris

BibTeX

Condensed state chemistry, as we know, means diverse chemical processes taking place in liquids and solids. Actually, condensed state chemistry is present throughout the synthesis and preparation of inorganic materials, especially the nano- and porous solid materials. In the material synthesis, obtaining target solids with desired chemical compositions and phase structures, is probably one of the most fundamental issues of condensed state chemistry. While in the synthesis of porous solid materials such as microporous zeolites or mesoporous oxides, the regulations of pore structures along with the chemical compositions and phase structures become important. Moreover, aiming at the applications in, e.g., catalysis and drug delivery, key factors such as the active sites and defects, and the geometric/physical features such as the dimensions, dispersity and morphologies, should be taken into considerations in addition to the issues mentioned above. In this feature article, by focusing on the inorganic oxides, we discuss several aspects of condensed state chemistry in the chemical syntheses of nanoparticles and superfine powders, pore structural regulations of mesoporous materials and composites, and the synthesis and catalytic properties of hierarchically porous structured zeolite, so as to acquire further in-depth understanding of condensed state chemistry in the materials synthesis and promote the development of nano-/porous inorganic solids under the guidance of condensed state chemistry.

Contents

===1 Introduction

===2 Condensed state chemistry for the preparation of nanoparticles and ultrafine powders

===2.1 Brief description about inorganic nanoparticles and ultrafine powders

===2.2 Characteristics of condensed state chemistry of inorganic nanoparticles and ultrafine powders

===2.3 General chemical methods for preparation of inorganic nanoparticles and ultrafine powders

===3 Condensed state chemistry for the preparation of nanomaterials and mesostructured nanocomposites

===3.1 Descriptions of condensed state chemistry routes for the preparation of nanocomposites

===3.2 Soft-templating preparation of mesoporous and mesostructured nanocomposites

===3.3 Inverse-replication preparation of crystallized mesoporous oxides and bicomponent mesoporous composites

===3.4 Template-free preparation of mesoporous metal oxides and composites

===3.5 Post-incorporation strategy for the preparation of mesoporous host-guest nanocomposites

===4 Condensed state chemistry in the preparation of hierarchically structured zeolites

===4.1 Etching preparation of hierarchically structured zeolites

===4.2 Templating preparation of hierarchically structured zeolites

===4.3 Template-free and self-templating preparation of hierarchically structured zeolites

===4.4 Perspectives on condensed state chemistry synthesis and applications of hierarchically structured zeolites

===5 Conclusion and remarks

Table 1 Chemical agents and synthetic procedures for the preparation of oxide nanoparticles
Fig.1 Schematics of the general physical/chemical synthetic strategies for nanocomposites by(a) “post-deposition” approach and(b) “one-pot” or “one-step” approach[20]. Copyright 2013, American Chemical Society
Fig.2 Schematics of mesostructured materials/composites with(a) amorphous framework,(b) crystallized framework composed of numerous nanosized polycrystallites,(c) guest species homogeneously doped or dispersed in the crystallized host framework(small and round dots present the guest ions and/or ultrasmall crystallites), and (d) guests(crystallites/clusters/nanoparticles) loaded/dispersed in the pore channels attaching on the pore surface[20]. Copyright 2013, American Chemical Society
Fig.3 SEM images of(a) nickel oxalate dihydrate and(b) NiO calcined at 300 ℃; TEM images of(c) nanoporous NiO calcined at 300 ℃ and(d) 340℃[50]. Copyright 2008, Wiley
Fig.4 Schematics of loading guest species in the mesopore channels of mesoporous hosts by employing the mesopores as the microreactors:(a) Reactant A is first introduced by pore surface modification, followed by the introduction of reactant B via a certain kind of interaction(e.g., complexing);(b) A and B are co-introduced simultaneously into the pore channels, and subsequent in situ reaction between the reactants A and B results in the formation of product C within the pore channels[20]. Copyright 2013, American Chemical Society
Fig.5 Schematics of a co-nanocasting strategy for preparation of metal oxides-incorporated mesoporous nanocomposites[20]. Copyright 2013, American Chemical Society
Fig.6 Proposed evolution process of single-crystalline and defect-free hierarchical nanozeolites by amino acid-assisted crystallization[104]. Copyright 2019, American Chemical Society
Fig.7 Preparation procedure of hierarchical full-zeolitic monolith[108]. Copyright 2016, Elsevier
Fig.8 Schematics of the crystallization process of hierarchical porous ZSM-5 single crystals in a quasi-solid-state system[109]. Copyright 2016, Wiley
[1]
Shi J L . Adv. Mater., 1999,11(13):1103.
[2]
Shi J L . Mater. Res., 1999,14(4):1398. https://www.cambridge.org/core/product/identifier/S0884291400048925/type/journal_article

doi: 10.1557/JMR.1999.0190
[3]
Shi J L . Mater. Res., 1999,14(4):1378.
[4]
Shi J L . Mater. Res., 1999,14(4):1389. https://www.cambridge.org/core/product/identifier/S0884291400048913/type/journal_article

doi: 10.1557/JMR.1999.0189
[5]
Shi J L . Mater. Sci., 1999,34(15):3801. http://link.springer.com/10.1023/A:1004600816317

doi: 10.1023/A:1004600816317
[6]
Shi J L , Gao J H , Lin Z X , Yen T . Am. Ceram. Soc., 1991,74(5):994. http://www.blackwell-synergy.com/toc/jace/74/5

doi: 10.1111/jace.1991.74.issue-5
[7]
Shi J L , Gao J H , Lin Z X , Yan D S . Mater. Sci., 1993,28(2):342.
[8]
Shi J L , Lin Z X , Qian W J , Yen T S . Eur. Ceram. Soc., 1994,13(3):265. https://linkinghub.elsevier.com/retrieve/pii/0955221994900353

doi: 10.1016/0955-2219(94)90035-3
[9]
Shi J L , Li B S , Ruan M L , Yen T S . Eur. Ceram. Soc., 1995,15(10):959. https://linkinghub.elsevier.com/retrieve/pii/0955221995000653

doi: 10.1016/0955-2219(95)00065-3
[10]
Shi J L , Gao J H , Li B S , Yen T S . Eur. Ceram. Soc., 1995,15(10):967.
[11]
Shi J L , Gao J H . Mater. Sci., 1995,30(3):793.
[12]
Ji Y M , Jiang D Y , Wu Z H , Feng T , Shi J L . Mater. Res. Bull., 2005,40(9):1521.
[13]
Livage J , Henry M , Sanchez C . Prog. Solid State Chem., 1988,18(4):259.
[14]
Hench L L , West J K . Chem. Rev., 1990,90(1):33.
[15]
Sanchez C , Belleville P , Popall M , Nicole L . Chem. Soc. Rev., 2011,40(2):696.
[16]
Ciriminna R , Sciortino M , Alonzo G , Schrijver A D , Pagliaro M . Chem. Rev., 2011,111(2):765.
[17]
Mutin P H , Vioux A . Chem. Mater., 2009,21(4):582.
[18]
Leskelä M , Ritala M . Angew. Chem. Int. Ed., 2003,42(45):5548.
[19]
Debecker D P , Mutin P H . Chem. Soc. Rev., 2012,41(9):3624.
[20]
Shi J L . Chem. Rev., 2013,113(3):2139.
[21]
Beck J S , Vartuli J C , Roth W J , Leonowicz M E , Kresge C T , Schmitt K D , Chu C W , Olson D H , Sheppard E W , McCullen S B , Higgins J B , Schlenker J L. . J. Am. Chem. Soc., 1992,114(27):10834.
[22]
Chen H R , Shi J L , Li Y S , Yan J N , Hua Z L , Chen H G , Yan D S . Adv. Mater., 2003,15(13):1078.
[23]
Soler-lllia G J A A , Sanchez C , Lebeau B , Patarin J . Chem. Rev., 2002,102(11):4093.
[24]
Hua Z L , Shi J L , Wang L , Zhang W H . J. Non-Cryst. Solids, 2001,292(1/3):177.
[25]
Lee Y J , Lee J S , Park Y S , Yoon K B . Adv. Mater., 2001,13(16):1259.
[26]
Mehdi A , Reye C , Corriu R . Chem. Soc. Rev., 2011,40(2):563.
[27]
Shi Y F , Wan Y , Zhao D Y . Chem. Soc. Rev., 2011,40(7):3854.
[28]
Zhao D Y , Yang P D , Chmelka B F , Stucky G D . Chem. Mater., 1999,11(5):1174.
[29]
Smarsly B , Grosso D , Brezesinski T , Pinna N , Boissière C , Antonietti M , Sanchez C . Chem. Mater., 2004,16(15):2948.
[31]
Mamak M , Métraux G S , Petrov S , Coombs N , Ozin G A , Green M A . Am. Chem. Soc., 2003,125(17):5161. https://pubs.acs.org/doi/10.1021/ja027881p

doi: 10.1021/ja027881p
[32]
Chen H R , Gu J L , Shi J L , Liu Z C , Gao J H , Ruan M L , Yan D S . Adv. Mater., 2005,17(16):2010.
[33]
Robert J P , Mehdi A , Reyé C , Thieuleux C . Chem. Commun., 2002,(13):1382.
[34]
Zhang L X , Zhang W H , Shi J L , Hua Z L , Li Y S , Yan J N . Chem. Commun., 2003,2:210.
[35]
Zhang W H , Lu X B , Xiu J H , Hua Z L , Zhang L X , Robertson M , Shi J L , Yan D S , Holmes J D . Adv. Funct. Mater., 2004,14(6):544.
[36]
张一平(Zhang Y P), 周春晖(Zhou C H), 王学杰(Wang X J), 杨彤(Yang T), 徐羽展(Xu Y Z) . 化学进展(Prog. Chem.), 2008,20(1):33.
[37]
Gu J L , Huang Y , Elangovan S P , Li Y S , Zhao W R , Toshio I , Yamazaki Y , Shi J L . J. Phy. Chem. C, 2011,115(43):21211.
[38]
Lee K , Kim Y H , Han S B , Kang H K , Park S , Seo W S , Park J T , Kim B , Chang S . Am. Chem. Soc., 2003,125(23):6844. https://pubs.acs.org/doi/10.1021/ja034137b

doi: 10.1021/ja034137b
[39]
Yang H F , Shi Q H , Tian B Z , Lu Q Y , Gao F , Xie S H , Fan J , Yu C Z , Tu B , Zhao D Y . Am. Chem. Soc., 2003,125(16):4724.
[40]
Tian B Z , Liu X Y , Solovyov L A , Liu Z , Yang H F , Zhang Z D , Xie S H , Zhang F Q , Tu B , Yu C Z , Terasaki O , Zhao D Y . Am. Chem. Soc., 2004,126(3):865.
[41]
Tian Z R , Tong W , Wang J Y , Duan N G , Krishnan V V , Suib S L . Science, 1997,276(5314):926.
[42]
Rumplecker A , Kleitz F , Salabas E L , Schüth F . Chem. Mater., 2007,19(3):485.
[43]
Zhu K , He H , Xie S , Zhang X , Zhou W , Jin S , Yue B . Chem. Phys. Lett., 2003,377(3/4):317.
[44]
Shen W H , Dong X P , Zhu Y F , Chen H R , Shi J L . Micro. Meso. Mater., 2005,85(1/2):157.
[45]
Cui X Z , Zhang H , Dong X P , Chen H R , Zhang L X , Guo L M , Shi J L . Mater. Chem., 2008,18(30):3575.
[46]
Shen W H , Shi J L , Chen H R , Gu J L , Zhu Y F , Dong X P . Chem. Lett., 2005,34(3):390.
[47]
Cui X Z , Li H , Guo L , He D N , Chen H R , Shi J L . Dalton Trans., 2008, (45):6435.
[48]
Wan L M , Cui X Z , Chen H R , Shi J L . Mater. Lett., 2010,64(12):1379.
[49]
Cui X Z , Zhou J , Ye Z Q , Chen H R , Li L , Ruan M L , Shi J L . Catal., 2010,270(2):310. https://linkinghub.elsevier.com/retrieve/pii/S0021951710000060

doi: 10.1016/j.jcat.2010.01.005
[50]
Yu C C , Zhang L X , Shi J L , Zhao J J , Gao J H , Yan D S . Adv. Funct. Mater., 2008,18(10):1544.
[51]
Yu C C , Dong X P , Guo L M , Li J T , Qin F , Zhang L X , Shi J L , Yan D S . J. Phy. Chem. C, 2008,112(35):13378.
[52]
Gao Z , Cui F M , Zeng S Z , Guo L M , Shi J L . Micro. Meso. Mater., 2010,132(1/2):188.
[53]
Gao Z , Zhou J , Cui F M , Zhu Y , Hua Z L , Shi J L . Dalton Trans., 2010,39(46):11132.
[54]
Bian S W , Baltrusaitis J , Galhotra P , Grassian V H . Mater. Chem., 2010,20(39):8705.
[55]
Feng Y J , Li L , Niu S F , Qu Y , Zhang Q , Li Y S , Zhao W R , Li H , Shi J L . Appl. Catal. B-Environ., 2012,111:461.
[56]
Lee J W , Ahn T , Kim J H , Ko J M , Kim J D . Electrochim. Acta, 2011,56(13):4849.
[57]
Moller K , Bein T . Chem. Mater., 1998,10(10):2950.
[58]
Han Y J , Kim J M , Stucky G D . Chem. Mater., 2000,12(8):2068.
[59]
Shin H J , Ryoo R , Liu Z , Terasaki O . Am. Chem. Soc., 2001,123(6):1246.
[60]
Zhang L X , Shi J L , Yu J , Hua Z L , Zhao X G , Ruan M L . Adv. Mater., 2002,14(20):1510.
[61]
Gu J L , Shi J L , You G J , Xiong L M , Qian S X , Hua Z L , Chen H R . Adv. Mater., 2005,17(5):557.
[62]
Li L , Shi J L , Zhang L X , Xiong L M , Yan J N . Adv. Mater., 2004,16(13):1079.
[63]
Besson S , Gacoin T , Ricolleau C , Jacquiod C , Boilot J P . Nano Lett., 2002,2(4):409.
[64]
Hua Z L , Shi J L , Zhang L X , Ruan M L , Yan J N . Adv. Mater., 2002,14(11):830.
[65]
Zhang W H , Shi J L , Wang L Z , Yan D S . Chem. Mater., 2000,12(5):1408.
[66]
Garcia C , Zhang Y M , Disalvo F , Wiesner U. Angew. Chem. Int. Ed., 2003,42(13):1526.
[67]
Zhang W H , Shi J L , Chen H R , Hua Z L , Yan D S . Chem. Mater., 2001,13(2):648.
[68]
Wight A P , Davis M E . Chem. Rev., 2002,102(10):3589.
[69]
Liu N , Chen Z , Dunphy D R , Jiang Y B , Assink R A , Brinker C J . Angew. Chem. Int. Ed., 2003,42(15):1731.
[70]
Wu C G , Bein T . Science, 1994,264(5166):1757.
[71]
Li L , Shi J L . Adv. Syn. Catal., 2005,347(14):1745.
[72]
Li L , Shi J L , Yan J N , Zhao X G , Chen H G . Appl. Catal. A: Gen., 2004,263(2):213.
[73]
Shi J L , Hua Z L , Zhang L X . Mater. Chem., 2004,14(15):795.
[74]
Cui X Z , Guo L M , Cui F M , He Q J , Shi J L . J. Phy. Chem. C, 2009,113(10):4134.
[75]
Cui X Z , Shi J L , Chen H R , Zhang L X , Guo L M , Gao J H , Li J B . J. Phys. Chem. B, 2008,112(38):12024.
[76]
Li Y S , Chen Y , Liang L , Gu J L , Zhao W R , Lei L , Shi J L . Appl. Catal. A: Gen., 2009,366(1):57.
[77]
Chen Y , Li Y S , Li L , Gu J L , Zhao W R , Li L , Shi J L . Chin. J. Catal., 2009,30(3):230.
[78]
Guo L M , Li J T , Zhang L X , Li J B , Li Y S , Yu C C , Shi J L , Ruan M L , Feng J W . Mater. Chem., 2008,18(23):2733.
[79]
Guo L M , Cui X Z , Li Y S , He Q J , Zhang L X , Bu W B , Shi J L . Chem. Asian J., 2009,4(9):1480.
[80]
Soler-Illia G J A A , Azzaroni O . Chem. Soc. Rev., 2011,40(2):1107.
[81]
Yang P P , Gai S , Lin J . Chem. Soc. Rev., 2012,41(9):3679.
[82]
Pcech J , Pizarro P , Serrano D P , Cejka J . Chem. Soc. Rev., 2018,47(22):8263.
[83]
Li S Y , Li J F , Mei D , Fan S B , Zhao T S , Wang J G , Fan W B . Chem. Soc. Rev., 2019,48(3):885.
[84]
Zhang X Y , Liu D X , Xu D D , Asahina S , Cychosz K A , Agrawal K V , Yasser A W , Bhan A , Saleh A H , Terasaki O , Thommes M , Tsapatsis M . Science, 2012,336(6089):1684.
[85]
Xu D D , Swindlehurst G R , Wu H H , David H O , Zhang X Y , Tsapatsis M . Adv. Funct. Mater., 2014,24(2):201.
[86]
Qin Z X , Pinard L , Benghalem M A , Daou T J , Melinte G , Ersen O , Asahina S , Gilson J P , Valtchev V . Chem. Mater., 2019,31(13):4639.
[87]
Ge T G , Hua Z L , He X Y , Yan Z , Ren W C , Chen L S , Zhang L X , Chen H R , Lin C C , Yao H L , Shi J L . Chin. J. Catal., 2015,36(6):866.
[88]
Ding K L , Corma A , Maciá-Agulló J A , Hu J G , Krämer S , Stair P C , Stucky G D . J. Am. Chem. Soc., 2015,137(35):11238. https://www.ncbi.nlm.nih.gov/pubmed/26322625

doi: 10.1021/jacs.5b06791 pmid: 26322625
[89]
Wang Y , Lin M , Tuel A . Micro. Meso. Mater., 2007,102(1/3):80.
[90]
Du C L , Cui N , Li L H , Hua Z L , Shi J L . RSC Adv., 2019,9:9694.
[91]
Zhang B , Zhang Y H , Hu Y Y , Shi Z P , Azhati A , Xie S H , He H Y , Tang Y . Chem. Mater., 2016,28(8):2757.
[92]
Xu D D , Ma Y H , Jing Z F , Lu H , Singh B , Ji F , Shen X F , Cao F L , Oleynikov P , Huai S , Terasaki O , Che S A . Nat. Comm., 2014,5:4262.
[93]
Singh B K , Xu D D , Han L , Ding J , Wang Y M , Che S A . Chem. Mater., 2014,26(24):7183.
[94]
Zhu J , Zhu Y H , Zhu L K , Marcello R , Alexander van der Made , Yang C G , Pan S X , Liang W , Zhu L F , Jin Y , Qi S , Wu Q M , Meng X J , Zhang D L , Yu H , Li J X , Chu Y Y , Zheng A M , Qiu S L , Zheng X M , Xiao F S . J. Am. Chem. Soc., 2014,136(6):2503. https://www.ncbi.nlm.nih.gov/pubmed/24450997

doi: 10.1021/ja411117y pmid: 24450997
[95]
Tian Q W , Liu Z H , Zhu Y H , Dong X L , Youssef S , Basset J , Miao S , Wei X , Zhu L K , Zhang D L , Huang J F , Meng X J , Xiao F S , Yu H . Adv. Funct. Mater., 2016,26(12):1881.
[96]
Dong X L , Shaikh S , Vittenet J R , Wang J , Liu Z H , Kushal D B , Ola A , Wei X , Osorio I , Youssef S , Jean-marie B , Shaikh A A , Yu H . ACS Sus. Chem. Eng., 2018,6(11):15832.
[97]
Zhu X C , Hofmann J P , Brahim M , Kosinov N , Wu L L , Qian Q Y , Weckhuysen B M , Asahina S , Ruiz-martínez J , Hensen E M . ACS Catal., 2016,6(4):2163.
[98]
Shahami M , Dooley K M , Shantz D F . Catal., 2018,368:354.
[99]
Chen Z W , Dong L , Chen C , Wang Y D , Wang Y , Zhang J , Qian W , Hong M . Nanoscale, 2019,11(35):16667.
[100]
Sun Q M , Wang N , Bai R S , Chen X X , Yu J H . J. Mater. Chem. A, 2016,4(39):14978.
[101]
Sun Q M , Wang N , Bai R S , Chen G R , Shi Z Q , Zou Y C , Yu J H . ChemSusChem, 2018,11(21):3812.
[102]
Chen C , Zhai D , Dong L , Wang Y D , Zhang J , Liu Y , Chen Z W , Wang Y , Qian W , Hong M . Chem. Mater., 2019,31(5):1528.
[103]
Zhang Q , Chen G R , Wang Y Y , Chen M Y , Guo G Q , Shi J , Luo J , Yu J H . Chem. Mater., 2018,30(8):2750.
[104]
Zhang Q , Mayoral A , Terasaki O , Zhang Q , Ma B , Zhao C , Yang G J , Yu J H . Am. Chem. Soc., 2019,141(9):3772.
[105]
Li B , Hu Z J , Kong B , Wang J X , Li W , Sun Z K , Qian X F , Yang Y S , Wei S , Xu H L , Zhao D Y . Chem. Sci., 2014,5(4):1565.
[106]
Li G N , Huang H B , Yu B W , Wang Y , Tao J W , Wei Y X , Li S G , Liu Z M , Xu Y , Xu R R . Chem. Sci, 2016,7:1582.
[107]
Shang C , Wu Z X , Wu W D , Chen X D . ACS Appl. Mater. Interfaces, 2019,11(18):16693.
[108]
Zhou J , Teng J W , Ren L P , Wang Y D , Liu Z C , Liu W , Yang W M , Xie Z K . Catal., 2016,340:166.
[109]
Ge T G , Hua Z L , He X Y , Lv J , Chen H R , Zhang L X , Yao H L , Liu Z W , Lin C C , Shi J L . Chem. Eur. J., 2016,22(23):7895.
[110]
He X Y , Ge T G , Hua Z L , Zhou J , Lv J , Zhou J L , Liu Z C , Shi J L . ACS Appl. Mater. Interfaces, 2016,8(11):7118.
[111]
Machoke A G , Beltrán A M , Inayat A , Winter B , Tobias W , Kruse N , Güttel R , Spiecker E , Schwieger W . Adv. Mater., 2015,27(6):1066.
[112]
Weissenberger T , Reiprich B , Machoke A G F , Klühspies K , Bauer J Dotzel R , Cascic J L , Schwieger W . Catal. Sci. Tech., 2019,9:3259.
[113]
Weissenberger T , Leonhardt R , Zubiri B A , Martina P , Sheppard T L , Reiprich B , Bauer J , Dotzel R , Kahnt M , Schropp A , Christian G S , Grunwaldt J , Casci J L , Cejka J , Spiecker E , Schwieger W . Chem. Eur. J., 2019,25(63):14430.
[114]
Li A , Wang X , Wang T , Liu H L , Gao T A , Fan M H , Huo Q S , Qiao Z A . Chem. Eur. J., 2018,24(48):12600.
[115]
Rani P , Srivastava R . ACS Sus. Chem. Eng., 2019,7(11):9822.
[116]
Pan M , Zheng J J , Liu Y J , Ning W W , Tian H P , Li R F . Catal., 2019,369:72.
[117]
Wei L , Song K C , Wu W , Holdren S , Zhu G H , Shulman E , Shang W J , Chen H Y , Zachariah M R , Liu D X . Am. Chem. Soc., 2019,141(22):8712.
[118]
Wu D , Yu X , Chen X Q , Yu G , Zhang K , Qiu M H , Xue W J , Yang C G , Liu Z Y , Sun Y H . ChemSusChem, 2019,12(16):3871.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[3] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[4] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[5] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[6] Wang Wenqian, Chen Linfeng, Wen Yongqiang*, Zhang Xueji, Song Yanlin, Jiang Lei. Mesoporous Silica Nanoparticle-Based Controlled-Release System [J]. Progress in Chemistry, 2013, 25(05): 677-691.
[7] Qi Hui, Zhu Yanhong*, Xu Huibi, Yang Xiangliang. Magnetic Iron Oxide Nanoparticle-Based Theranostic Nanomedicine [J]. Progress in Chemistry, 2013, 25(04): 611-619.
[8] Ma Liqun, Zhai Shangru, Liu Na, Zhai Bin, An Qingda. Controlled Fabrication and Application of Platelet SBA-15 Materials [J]. Progress in Chemistry, 2012, 24(04): 471-482.
[9] Hu Yi,Liu Weiming, Zou Bin, Tang Susu, Huang He. Enzyme Immobilization on Mesoporous Materials [J]. Progress in Chemistry, 2010, 22(08): 1656-1664.
[10] . The Research of Periodic Mesoporous Organosilicas (PMOs) [J]. Progress in Chemistry, 2010, 22(06): 1152-1160.
[11] Du Xiaoming Li Jing Wu Erdong. The Study of Adsorption of Hydrogen on Zeolites [J]. Progress in Chemistry, 2010, 22(01): 248-254.
[12]

Lv Yongjun|Li Peijin|Guo Yanglong|Wang Yanqin|Lu Guanzhong**

. Immobilization of Enzymes on Mesoporous Materials [J]. Progress in Chemistry, 2008, 20(0708): 1172-1179.
[13] Zhang Yu,Zhang Weimin,Sun Zhongxi**. Synthesis of Nanocrystalline and Mesoporous Iron Oxide [J]. Progress in Chemistry, 2007, 19(10): 1503-1509.
[14] Li Jie1|Zhou Chunhui1**|Du Zexue2,Min Enze2,Ge Zhonghua1|Li Xiaonian1. New Mesoporous Titanosilicate Catalytic Materials [J]. Progress in Chemistry, 2007, 19(04): 444-455.
[15] Yan Wang**,Xuhan Zheng,Zhaohua Jiang. Ordered Mesoporous Materials for Biology and Medicine [J]. Progress in Chemistry, 2006, 18(10): 1345-1351.